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Abstract
This paper aims at studying a broad class of mathematical programming with
non-differentiable vanishing constraints. First, we are interested in some various quali-
fication conditions for the problem. Then, these constraint qualifications are applied to
obtain, under different conditions, several stationary conditions of type Karush/Kuhn–
Tucker.
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1 Introduction

Since 2007, a difficult class of optimization problems was introduced by Kanzow
and his co-authors in [1,2]; it was called mathematical programming with vanishing
constraints (MPVC for short). The MPVCs received attention from different fields.
Some of their applications in topological optimization have been introduced in [1].
Also, MPVCs are generalizations of another group of optimization problems, named
mathematical programming with equilibrium constraints (MPEC in brief).

Since MPVCs are a generalized form of MPECs, it seems natural that we seek to
generalize the results of MPECs to them. As we know, inMPECs, occurrence of situa-
tions, which could lead to necessary conditions in Karush/Kuhn–Tucker (KKT) types,
is very limiting and hindering. Therefore, instead of KKT condition some other condi-
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tions are substituted. They have the style and appearance of KKT condition, and also,
their coefficients are more free than KKT coefficients. The recent conditions, which
are called stationary conditions, can be proved under some constraint qualifications
that their occurrence is more natural [3–9].

The same process has been repeated for MPVCs, and numerous constraint qual-
ifications have been introduced, which lead to different stationary conditions. For
instance, the first-order stationary conditions for MPVCs can be found in [1,10,11].
The second-order stationary conditions and exact penalty theorem are given in [2] and
[12], respectively. Also, relaxation methods in [13], stability in [14], and numerical
algorithms in [15] have been presented. In addition, weak and strong duality results
for MPVCs could be seen in [16].

In the previous works that referenced earlier, all functions which define MPVC
are continuously differentiable. Unlike the MPECs which their non-smooth form has
been studied in some references as in [3,7–9,17], the earlier works for MPVCs assume
the limiting criteria of continuously differentiability for functions. So, to the best of
our knowledge, the current article is the first that studies the stationary conditions for
MPVCs where their constraints are non-smooth, meaning that they are not necessarily
differentiable. In this paper, we assume the objective function is differentiable.

Since the feasible set of anMPVC is not necessarily convex, even under the criteria
of convexity of the functions which construct it (to be discussed in next sections),
applying common methods of convex analysis is not applicable here. Therefore, we
take the non-smooth analysis approach. To choose a suitable sub-differential, we select
a sub-differential which not only is convex but also its calculation rules are known. The
best selection is Clarke sub-differential. Therefore, we consider the functions which
define the problem to be locally Lipschitz.

The structure of the subsequent sections of this paper is as follows: In Sect. 2, we
define required definitions, theorems, and relations of non-smooth analysis. In Sect. 3,
we will introduce some various constraint qualifications for a systemwith non-smooth
vanishing constraints. Also, relations between defined constraint qualifications are
presented in Sect. 3. In Sect. 4, we apply these constraint qualifications to obtain
different kinds of stationary conditions for the problem.

2 Notations and Preliminaries

In this section, we provide an overview for some notations and preliminary results that
will be used throughout this paper. Further details and examples of these results can
be found in the books [18–20].

First,we recall thatR+ and 〈x, y〉denote, respectively, the nonnegative real numbers
[0,+∞[ and the standard inner product of vectors x, y ∈ R

n . For a non-empty subset
M of R

n , let:

M− := {x ∈ R
n : 〈x, d〉 ≤ 0, ∀d ∈ M},

Ms := {x ∈ R
n : 〈x, d〉 < 0, ∀d ∈ M}.

M⊥ := M− ∩ (−M)− = {x ∈ R
n : 〈x, d〉 = 0, ∀d ∈ M}.
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It can easily be shown that if Ms 
= ∅, then cl(Ms) = M−, which cl(Ms) denotes the
topological closure of Ms . Here, it is necessary to note that for given closed convex
cones M1, M2, M3, and M4, we have:

(M1 ∪ M2)
− = M−

1 ∩ M−
2 , (M1 × M2)

− = M−
1 × M−

2 , (1)
(
M−

1 × M−
2

) ∩ (
M−

3 × M−
4

) = (
M−

1 ∩ M−
3

) × (
M−

2 ∩ M−
4

)
. (2)

The convex hull and the convex cone (containing origin) of M ⊆ R
n are, respectively,

denoted by conv(M) and cone(M). It is easy to see that if {Mκ}κ∈Λ is a class of convex
subsets of R

n with |Λ| < ∞ and with the convention
⋃

κ∈∅ Mκ = ∅, then one has:

cone

(
⋃

κ∈Λ

Mκ

)

=
{

∑

κ∈Λ

ακdκ : ακ ≥ 0, dκ ∈ Mκ

}

.

The famous bipolar theorem says that (M−)− = cl
(
cone(M)

)
for each ∅ 
= M ⊆ R

n .
We define the normal cone of convex set A ⊆ R

n at x0 ∈ cl(A) as

N (A, x0) := {d ∈ R
n : 〈d, x − x0〉 ≤ 0, ∀x ∈ A}.

The following relation for any subset K of R
n is immediately from bipolar theorem:

N (K−, 0) = cl
(
cone(K )

)
. (3)

Let ψ : R
n → R

∗ := R ∪ {+∞} be a locally Lipschitz function, and x0 ∈ dom ψ .
The Clarke sub-differential of ψ at x0 is defined as

∂cψ(x0) := {ξ ∈ R
n : ψ◦(x0; v) ≥ 〈ξ, v〉, ∀v ∈ R

n},

where ψ◦(x0; v) denotes the Clarke generalized directional derivative of ψ at x0 in
direction v ∈ R

n ,

ψ◦(x0; v) = lim sup
y→x0 t↓0

ψ(y + tv) − ψ(y)

t
.

It should be noted that if ψ is continuously differentiable at x0, then ∂cψ(x0) =
{�ψ(x0)}. Consequently, the sentences expressed in terms of ∂c are generalizations of
sentence that are expressed with gradient for C1 functions. Moreover, it can be shown
that if ψ is a locally Lipschitz function, ∂cψ(x0) is a non-empty, convex, and compact
set. Also, ψ◦(x; v) is a convex function with respect to v.

If ψ1 and ψ2 are locally Lipschitz functions, the following relationships should
always hold:
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∂c(ψ1 + ψ2)(x0) ⊆ ∂cψ1(x0) + ∂cψ2(x0), (4)

∂c(λψ1)(x0) = λ∂cψ1(x0), ∀λ ∈ R, (5)

∂c(ψ1ψ2)(x0) ⊆ ψ1(x0)∂cψ2(x0) + ψ2(x0)∂cψ1(x0), (6)

ψ◦(x; v) = max{〈ξ, v〉 : ξ ∈ ∂cψ(x0)}. (7)

The following three approximate cones for ∅ 
= M ⊆ R
n at x0 ∈ cl(M) will be

requested in this article:

• The contingent cone Γ (M, x0),

Γ (M, x0) :=
{
v ∈ R

n : ∃tr ↓ 0, ∃vr → v such that x0 + trvr ∈ M ∀r ∈ N

}
.

• The cone of feasible directions Υ (M, x0),

Υ (M, x0) :=
{
v ∈ R

n : ∃ε > 0, such that x0 + tv ∈ M ∀t ∈]0, ε[
}
.

• The cone of attainable directions Ω(M, x0),

Ω(M, x0) :=
{
v ∈ R

n : ∀tr ↓ 0, ∃vr → v such that x0 + trvr ∈ M ∀r ∈ N

}
.

Remark 2.1 The cone of attainable directions of M at x0 has an another representation
as follows (see, e.g., [19]):

v ∈ Ω(M, x0), if and only if there exists a scalar δ > 0 together with a map-
ping ϕ : R → R

n such that ϕ(β) ∈ M for all β ∈]0, δ[, ϕ(0) = x0, and
limβ↓0 ϕ(β)−ϕ(0)

β
= v.

The relationship in these cones is as

cl
(
Υ (M, x0)

) ⊆ Ω(M, x0) ⊆ Γ (M, x0) ⊆ cl
(
cone (Γ (M, x0))

)
. (8)

Note that if the continuously differentiable function ψ(·) attaints its minimum on
M ⊆ R

n at x0 ∈ M , then:

− ∇ψ(x0) ∈ NF (M, x0), (9)

where NF (M, x0) denotes the Fréchet normal cone of M at x0, which is defined as
NF (M, x0) := (Γ (M, x0))−.

3 Constraint Qualifications

Let I := {1, . . . ,m}, and for each i ∈ I the functions Gi and Hi are locally Lip-
schitz from R

n to R
∗. In this section, we introduce and compare several constraint

qualifications (CQ) for the following systemwith vanishing constraints (SVC in short):
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Π :=
{
Hi (x) ≥ 0, i ∈ I ,
Hi (x)Gi (x) ≤ 0, i ∈ I .

The feasible set of Π is assumed to be non-empty, i.e.,

S := {x ∈ R
n : Hi (x) ≥ 0 and Hi (x)Gi (x) ≤ 0 for all i ∈ I } 
= ∅.

Considering a feasible point x̂ ∈ S (this point will be fixed throughout this section),
we define following index sets:

I+0 := {i ∈ I : Hi (x̂) > 0, Gi (x̂) = 0},
I+− := {i ∈ I : Hi (x̂) > 0, Gi (x̂) < 0},
I0+ := {i ∈ I : Hi (x̂) = 0, Gi (x̂) > 0},
I00 := {i ∈ I : Hi (x̂) = 0, Gi (x̂) = 0},
I0− := {i ∈ I : Hi (x̂) = 0, Gi (x̂) < 0}.

For given I� ⊆ I and θ ∈ {G, H}, let

σθ
I∗ :=

⋃

i∈I∗
∂cθi (x̂).

Notice, if I00 = ∅, then Π is locally equivalent with the following system:

Π∗ :=
{
Hi (x) = 0, Gi (x) > 0, i ∈ I0+,

Hi (x) ≥ 0, Gi (x) ≤ 0, i ∈ I0− ∪ I+− ∪ I+0 .

Since Π∗ has the classic form of nonlinear systems, definition of CQs for it is so easy.
But, when I00 
= ∅, there is no any classic system that is equivalent to Π . Thus, we
consider the tightened system for Π , which is a classic system that its feasible set
is contained in S. For this purpose, it is easy to see that the following system is a
tightened system for Π when I00 = ∅:

Π∗ :=
{
Hi (x) = 0, Gi (x) ≥ 0, i ∈ I0+,

Hi (x) ≥ 0, Gi (x) ≤ 0, i ∈ I0− ∪ I+− ∪ I+0 .

To add the functions Hi and Gi for i ∈ I00 to Π∗, we can add them to the first line or
to the second line of it. Thus, we achieve the following tightened systems:

Π1 :=
{
Hi (x) = 0, Gi (x) ≥ 0, i ∈ I0+ ∪ I00,
Hi (x) ≥ 0, Gi (x) ≤ 0, i ∈ I0− ∪ I+− ∪ I+0,

Π2 :=
{
Hi (x) = 0, Gi (x) ≥ 0, i ∈ I0+,

Hi (x) ≥ 0, Gi (x) ≤ 0, i ∈ I0− ∪ I+− ∪ I+0 ∪ I00 .
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Considering Π1 and Π2, the corresponding linearized cones at x̂ are, respectively,
given by L−

1 and L−
2 , in which

L1 := σ H
I0+∪I00 ∪

(
−σ H

I0+∪I00

)
∪

(
−σ H

I0−

)
∪

(
σG
I+0∪I00

)
,

L2 := σ H
I0+ ∪

(
−σ H

I0+

)
∪

(
−σ H

I0−∪I00

)
∪

(
σG
I+0∪I00

)
.

Following [1,10,11], we also define the linearized cone L− as

L := σ H
I0+ ∪

(
−σ H

I0+

)
∪

(
−σ H

I0−∪I00

)
∪

(
σG
I+0

)
.

Now, we can define some new version of Abadie, Khun–Tucker, Guignard, Zang-
will, Mangasarian–Fromovitz, and linear independent CQs in extension of the CQs
that are introduced in [1,2,10,11,13–15]. We also introduce some new useful CQs for
Π .

Definition 3.1 We say that Π satisfies

• the MPVC-LICQ at x̂ if Π1 satisfies the LICQ at x̂ , i.e.,

0 ∈
∑

i∈I0+∪I0−∪I00

αi∂cHi (x̂)

+
∑

i∈I00∪I+0

βi∂cGi (x̂) ⇒ αi = 0 (∀i ∈ I0+ ∪ I0− ∪ I00), βi = 0 (∀i ∈ I00 ∪ I+0).

• the MPVC-MFCQ at x̂ if Π1 satisfies the MFCQ at x̂ , i.e.,

(i) 0 ∈ ∑
i∈I00∪I0+ αi∂cHi (x̂) ⇒ αi = 0, ∀i ∈ I00 ∪ I0+,

(ii)
(
σ H
I00∪I0+

)⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0∪I00

)s 
= ∅.

• the ĜCQ at x̂ if

L−
1 ⊆ cl

(
conv

(
Γ (S, x̂)

) )
.

• the VC-MFCQ at x̂ if

(i) 0 ∈ ∑
i∈I00∪I0+ αi∂cHi (x̂) ⇒ αi = 0, ∀i ∈ I00 ∪ I0+,

(ii)
(
σ H
I00∪I0+

)⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s 
= ∅.
• the VC-GCQ at x̂ if

L−
2 ⊆ cl

(
conv

(
Γ (S, x̂)

) )
.

• the weak GCQ (resp., ACQ, KTCQ, ZCQ), denoted shortly by WGCQ (resp.,
WACQ, WKTCQ, WZCQ), at x̂ if

L− ⊆ cl
(
conv

(
Γ (S, x̂)

) ) (
resp., ⊆ Γ (S, x̂), ⊆ Ω(S, x̂), ⊆ cl

(
Υ (S, x̂)

))
.
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Remark 3.1

(i) Since the feasible set of Π2 (resp. Π1) is included in S and is not necessarily
equal with it, therefore VC-GCQ (resp. ĜCQ) for Π is not equivalent to GCQ
for Π2 (resp. Π1). Note that GCQ for Π2 (resp. Π1) implies the VC-GCQ (resp.
ĜCQ) for Π .

(ii) There are no implication relations between the VC-MFCQ forΠ and the MFCQ
for Π2 at x̂ . Note that the MFCQ for Π2 is irrelevant for us and we did not
consider.

(iii) Unlike the Ref. [1], the inclusion L− ⊆ cl
(
conv

(
Γ (S, x̂)

) )
is not named GCQ

in above definition. The reason of this naming is that the classic GCQ for Π is
formalized as

(
−σ H

I0+∪I0−∪I00

)− ∩
⎛

⎝
⋃

i∈I+0∪I0+∪I0−∪I00

∂c
(
HiGi

)
(x̂)

⎞

⎠

−
⊆ cl

(
conv

(
Γ (S, x̂)

) )
.

(10)
On the other hand, owing to

∂c(Gi Hi )(x̂) ⊆ Gi (x̂)∂cHi (x̂) + Hi (x̂)∂cGi (x̂),

we conclude that:

(
−σ H

I0+∪I0−∪I00

)− ∩
⎛

⎝
⋃

i∈I+0∪I0+∪I0−∪I00

∂c
(
HiGi

)
(x̂)

⎞

⎠

−

⊇
⋂

i∈I0+

[(
− ∂cHi (x̂)

)− ∩
(
Gi (x̂)∂cHi (x̂)

)−]
∩

⋂

i∈I00

(
− ∂cHi (x̂)

)−∩

⋂

i∈I0−

[(
− ∂cHi (x̂)

)− ∩
(
Gi (x̂)∂cHi (x̂)

)−]
∩

⋂

i∈I+0

(
Hi (x̂)∂cGi (x̂)

)−

=
⋂

i∈I0+

(
− ∂cHi (x̂)

)− ∩
⋂

i∈I0+

(
∂cHi (x̂)

)− ∩
⋂

i∈I00

(
− ∂cHi (x̂)

)−∩
⋂

i∈I0−

(
− ∂cHi (x̂)

)− ∩
⋂

i∈I+0

(
∂cGi (x̂)

)− = L−.

Therefore, L− ⊆ cl
(
conv

(
Γ (S, x̂)

) )
is weaker than (10). Note that if the func-

tions Hi andGi are continuously differentiable, [1, Lemma4] shows that equality
holds in last inclusion, and so L− ⊆ cl

(
conv

(
Γ (S, x̂)

) )
is equivalent to (10).

We recall that by adding the index set I00 as a whole to system Π∗, we attained to
systems Π1 and Π2. Now, in another way, we add the set I00 to systems Π∗ in which
I00 has been divided to two parts. To this aim, we call the ordered pair (β1, β2), a
partition of I00 and we write (β1, β2) ∈ P(I00), if β1 and β2 are non-empty subsets
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of I00 such that β1 ∩ β2 = ∅ and β1 ∪ β2 = I00. Motivated by [10], we add β1 to the
first line and β2 to the second line of system Π∗, and we get the below system:

Π(β1,β2) :=
{
Hi (x) = 0, Gi (x) ≥ 0, i ∈ I0+ ∪ β1,

Hi (x) ≥ 0, Gi (x) ≤ 0, i ∈ I0− ∪ I+− ∪ I+0 ∪ β2 .

The feasible set of Π(β1,β2) is denoted by S(β1,β2). Also, we consider the linearized
cone

(
L(β1,β2)

)−
at x̂ , in which

(
L(β1,β2)

)
:=

(
σ H
I0+∪β1

)
∪

(
−σ H

I0+∪β1

)
∪

(
−σ H

I0−∪β2

)
∪

(
σG
I+0∪β2

)
.

Following [10,11], we introduce another linearized cone for Π as L� := L− ∩ T ,
where

T := {d ∈ R
n : H◦

i (x̂; d) G◦
i (x̂; d) ≤ 0, i ∈ I00}.

It is worth mentioning that the product of convex functions d → H◦
i (x̂; d) and d →

G◦
i (x̂; d) is, in general, non-convex. So, unlike to L−, L−

1 , L−
2 , and

(
L(β1,β2)

)−
, the

linearized cone L� is not convex.
Since the proof of following lemma is just similar to the proof of [11, Lemma 2.4],

we do not repeat it.

Lemma 3.1 The following equality is always true:

Γ (S, x̂) =
⋃

(β1,β2)∈P(I00)

Γ
(
S(β1,β2), x̂

)
.

Lemma 3.2 The following inclusion holds true:

⋃

(β1,β2)∈P(I00)

(
L(β1,β2)

)− ⊆ L�.

Proof Assume that d ∈ (
L(β1,β2)

)−
. Then,

d ∈
(
σ H
I0+

)⊥ ∩
(
σ H

β1

)⊥ ∩
(
−σ H

I0−

)− ∩
(
−σ H

β2

)− ∩
(
σG
I+0

)− ∩
(
σG

β2

)−
.

It is enough to prove that:

d ∈
(
−σ H

I00

)− ∩ T .

From d ∈
(
σ H

β1

)⊥ ∩
(
−σ H

β2

)−
, it can be concluded that d ∈

(
−σ H

I00

)−
.
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From d ∈
(
−σ H

β2

)−
, we get 〈d, s〉 ≥ 0 for each i ∈ β2 and s ∈ σ H

β2
. Therefore,

H◦
i (x̂; d) ≥ 0 for each i ∈ β2. Similarly, from d ∈ (σG

β2
)− we can conclude that

G◦
i (x̂; d) ≤ 0 for each i ∈ β2. Hence,

H◦
i (x̂; d) G◦

i (x̂; d) ≤ 0, ∀i ∈ β2. (11)

Also, from d ∈ (σ H
β1

)⊥, we deduce that H◦
i (x̂; d) = 0 for each i ∈ β1. This equality

and (11) imply that:

H◦
i (x̂; d) G◦

i (x̂; d) ≤ 0, i ∈ β1 ∪ β2 = I00 �⇒ d ∈ T ,

and the lemma is proved. ��
In [11, lemma 2.4], the remarkable fact was shown that, if functions Hi and Gi

are smooth, then equality holds in Lemma 3.2. The following example shows that
inclusion of Lemma 3.2 can be strict in non-smooth case.

Example 3.1 Take in Π ,

H1(x1, x2) = −x22 , G1(x1, x2) = |x1| − x2,

H2(x1, x2) = x21 , G2(x1, x2) = x1 − |x2|.
It is easy to see that the feasible set of this system is S = R− × {0}. Considering
x̂ = (0, 0), we deduce that I00 = {1, 2} and P(I00) = {

(β1, β2), (β2, β1)
}
, in which

β1 = {1} and β2 = {2}. By a short calculation, we get,
∂cH1(x̂) = {(0, 0)}, H0

1 (x̂; d) = 0,

∂cH2(x̂) = {(0, 0)}, H0
2 (x̂; d) = 0,

∂cG1(x̂) = [−1, 1] × {−1}, G0
1(x̂; d) = |d1| − d2,

∂cG2(x̂) = {1} × [−1, 1], G0
2(x̂; d) = d1 − |d2|.

Thus, we conclude that

(
L(β1,β2)

)− =
(
σ H

β1

)⊥ ∩
(
−σ H

β2

)− ∩
(
σG

β2

)− = R− × {0},
(
L(β2,β1)

)− =
(
σ H

β2

)⊥ ∩
(
−σ H

β1

)− ∩
(
σG

β1

)− = {0} × R+,

L− =
(
−σ H

I00

)− = R × R,

T = {d ∈ R
2 : 0 × G0

i (x̂; d) ≤ 0, i = 1, 2} = R × R.

Therefore,

⋃

(β1,β2)∈P(I00)

(
L(β1,β2)

)− = (R− × {0}) ∪ ({0} × R+)

= R− × R+ � R × R = L− ∩ T = L�.
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Corollary 3.1 The following assertion is valid:

Γ (S, x̂) ⊆ L�.

Proof According to Lemmas 3.1 and 3.2, we can conclude that:

Γ (S, x̂) =
⋃

(β1,β2)∈P(I00)

Γ
(
S(β1,β2), x̂

) (∗)⊆
⋃

(β1,β2)∈P(I00)

Γ
(
L(β1,β2)

)− ⊆ L�,

in which the inclusion (∗) always holds (see, e.g., [19]). ��
The last corollary leads us to the following definition.

Definition 3.2 We say that Π satisfies the MPVC-GCQ (resp., MPVC-ACQ, MPVC-
KTCQ, MPVC-ZCQ) at x̂ if

L� ⊆ cl
(
conv

(
Γ (S, x̂)

) ) (
resp., ⊆ Γ (S, x̂), ⊆ Ω(S, x̂), ⊆ cl

(
Υ (S, x̂)

))
.

Now, we can state the main theorem of this section.

Theorem 3.1 The followingdiagramsummarizes the relationships between the defined
CQs:

MPVC-L ICQ
(a) ↓

MPVC-MFCQ
(b)−→ VC-MFCQ

(c) ↓ (d)↘
WKTCQ

(e)←− WZCQ
(f) ↓ (g) ↘ (h) ↘

W ACQ MPVC-KTCQ
(i)←− MPVC-ZCQ

(j) ↓ (k) ↘ (l) ↓
WGCQ MPVC-ACQ

(m) ↘ (n) ↓
ĜCQ

(q)←− VC-GCQ
(p)←− MPVC-GCQ,

(12)

where (d) holds when I00 = ∅ and Hi functions are linear for i ∈ I0+, and implication
(c) holds if I00 = ∅ and Hi functions for i ∈ I0+ are continuously differentiable at x̂ .

Proof

(a) and (b): Straightforward.
(e), ( f ), ( j), (i), (l) and (n): The conclusions are immediate from (8).
(m), (h), (g) and (k): The implications are straightforward consequences of L� ⊆
L−.
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(p): It is enough to prove that L−
2 ⊆ L�. To this end, let d ∈ L−

2 =
(
σ H
I0+

)⊥ ∩
(
−σ H

I0−∪I00

)− ∩
(
σG
I+0∪I00

)−
. From d ∈ (−σ H

I00
)− and d ∈ (σG

I00
)−, we can conclude

that:

〈d, ζ 〉 ≤ 0, ∀ζ ∈ σG
I00 �⇒ G◦

i (x̂; d) ≤ 0, i ∈ I00,

〈d, ξ 〉 ≥ 0, ∀ξ ∈ σ H
I00 �⇒ H◦

i (x̂; d) ≥ 0, i ∈ I00.

Therefore, for each i ∈ I00 we have:

H◦
i (x̂; d) G◦

i (x̂; d) ≤ 0 �⇒ d ∈ T .

This means d ∈ L� which gives the assertion.
(q): It is direct consequence of inclusion L2 ⊆ L1.
(d): Let

d ∈
(
σ H
I0+

)⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s
. (13)

Assume that Hi (x) = ai x for each i ∈ I0+. From d ∈
(
σ H
I0+

)⊥ = {ai : i ∈ I0+}⊥
and ai x̂ = 0 (since Hi (x̂) = 0 for all i ∈ I0+), we get:

Hi (x̂ + td) = ai x̂ + tai d = 0, ∀i ∈ I0+. (14)

The definition of Clarke directional derivative and d ∈
(
σG
I+0

)s
imply that for some

δ1 > 0 we have:

G0
i (x̂; v) < 0 ⇒ Gi (x̂ + td) − Gi (x̂)︸ ︷︷ ︸

=0

< 0, ∀t ∈]0, δ1[, ∀i ∈ I+0. (15)

Put Ĥi (x) := −Hi (x) for i ∈ I0−. According to d ∈
(
−σ H

I0−

)s
, we conclude that

〈
d, ξ

〉
< 0, ∀ξ ∈ ∂c Ĥi (x̂), ∀i ∈ I0−.

This means Ĥ0
i (x̂; d) < 0, and similar to (15), we find a scalar δ2 > 0 such that for

all t ∈]0, δ2[ and i ∈ I0− one has Ĥi (x̂ + td) < 0. Thus,

Hi (x̂ + td) > 0, ∀i ∈ I0−, ∀t ∈]0, δ2[. (16)

Taking δ := min{δ1, δ2} > 0, from (14)-(16) we deduce that x̂ + td ∈ S for each
t ∈]0, δ[. This means that d ∈ Υ (S, x̂), and so, with regard to (13), we get:

(
σ H
I0+

)⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s ⊆ Υ (S, x̂).
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Therefore, one has:

L− =
(
σ H
I0+

)⊥ ∩
(
−σ H

I0−

)− ∩
(
σG
I+0

)−

= cl

((
σ H
I0+

)⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s
)

⊆ cl
(
Υ (S, x̂)

) ⊆ Γ (S, x̂).

(c): Let

d ∈ {∇Hi (x̂) : i ∈ I0+}⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s
.

According to [21,TheoremF], and recalling the linearly independence of {∇Hi (x̂) : i ∈
I0+}, we can find a neighborhood U of x̂ and a function ψ : U −→ R

n such that ψ

is continuous on U and differentiable at x̂ with

ψ(x̂) = 0, ∇ψ(x̂) = 0,

Hi
(
x + ψ(x)

) = 〈∇Hi (x̂), x − x̂
〉
, ∀i ∈ I0+ ∀x ∈ U . (17)

For each α ∈ R with x̂ + αd ∈ U , let ϕ(α) := x̂ + αd + ψ(x̂ + αd). Owing to
d ∈ {∇Hi (x̂) : i ∈ I0+}⊥, there exists ε > 0 such that for each η ∈]0, ε[ one has:

Hi
(
ϕ(η)

) = Hi
(
x̂ + ηd + ψ(x̂ + ηd)

) = η
〈∇Hi (x̂), d

〉 = 0, i ∈ I0+. (18)

Taking Ĥi (x) := −Hi (x) for i ∈ I0−, and according to d ∈
(
−σ H

I0−

)s =
(⋃

i∈I0− ∂c Ĥi (x̂)
)s
, we get Ĥ0

i (x̂; d) < 0. Consequently, there exist ε1 > 0 and

β > 0 such that:

Ĥi (x̂ + td) −
=0

︷ ︸︸ ︷
Ĥi (x̂) ≤ −βt, ∀t ∈]0, ε1[. (19)

On the other hand, if we denote the Lipschitz constance of Ĥi (·) around x̂ by ρi , then
there exists ε2 > 0 such that:

Ĥi (x̂ + t d̃) − Ĥi (x̂ + td) ≤ ρt‖d̃ − d‖, ∀t ∈]0, ε2[, ∀d̃ ∈ R
n, (20)

where ρ := max{ρi : i ∈ I0−}. Since

0 = ∇ψ(x̂) = lim
d→0

ψ(x̂ + td) −
=0

︷ ︸︸ ︷
ψ(x̂)

t
= lim

d→0

ψ(x̂ + td)

t
, (21)

we find a positive scalar ε3 > 0 such that:

∥∥∥∥
ψ(x̂ + td)

t

∥∥∥∥ <
β

2ρ
, ∀t ∈]0, ε3[. (22)
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Taking η ∈]0, ε̄[ in which ε̄ := min{ε1, ε2, ε3}, we conclude that for all i ∈ I0− one
has

Ĥi
(
ϕ(η)

) = Ĥi

(
x̂ + η

(
d + ψ(x̂ + ηd)

η

))
− Ĥi (x̂ + ηd) + Ĥi (x̂ + ηd)

(20)≤ ρη

∥∥∥∥
ψ(x̂ + ηd)

η

∥∥∥∥ + Ĥi (x̂ + ηd)

(22)≤ ρη
β

2ρ
+ Ĥi (x̂ + ηd)

(19)≤ ηβ

2
− ηβ = −ηβ

2
< 0,

which ensure that
Hi

(
ϕ(η)

)
< 0, ∀η ∈]0, ε̄[, ∀i ∈ I0−. (23)

By d ∈
(
σG
I+0

)s
and the latter proof, we can find a scalar ε̃ > 0 such that:

Gi
(
ϕ(η)

)
< 0, ∀η ∈]0, ε̃[, ∀i ∈ I+0.

The last inequality together (18) and (23) implies that for all η ∈ ]
0,min{ε, ε̄, ε̃}[ we

have ϕ(η) ∈ S. Also,

lim
η→0

ϕ(η) − ϕ(0)

η
= lim

η→0

x̂ + ηd + ψ(x̂ + ηd) − x̂ − ψ(x̂)

η

(21)= 0,

and so d ∈ Ω(S, x̂).
Thus, we proved that:

{∇Hi (x̂) : i ∈ I0+}⊥ ∩
(
−σ H

I0−

)s ∩
(
σG
I+0

)s ⊆ Ω(S, x̂),

which ensure that

L− = cl
(
{∇Hi (x̂) : i ∈ I0+}⊥ ∩

(
−σ H

I0−

)s ∩
(
σG
I+0

)s) ⊆ cl
(
Ω(S, x̂)

) ⊆ Ω(S, x̂).

��

Example 3.2 Consider the following system,

Π̂ :=
{
x2 ≥ 0,
x2(x2 − |x1|) ≤ 0.

with following data:

H1(x1, x2) = x2, G1(x1, x2) = x2 − |x1|, x̂ = (0, 0), I = {1}.
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Fig. 1 Feasible set of Π̂

We have drawn the feasible set of Π̂ in Fig. 1. With a simple calculation, it could be
seen that:

I00 = {1}, ∂cH1(x̂) = {(0, 1)}, ∂cG1(x̂) = [−1, 1] × {1}.

The MPVC-LICQ is not satisfied at x̂ , since we can choose α1 = 1 and β1 = −1 in
the following inclusion,

0 ∈ α1{(0, 1)} + β1
([−1, 1] × {1}).

According to

0 ∈ α1{(0, 1)} �⇒ α1 = 0,

{(0, 1)}⊥ ∩
(
[−1, 1] × {1}

)s = (
R × {0}) ∩ ({0}×] − ∞, 0[ ) = ∅, (24)

we conclude that the MPVC-MFCQ is not satisfied at x̂ , while the implication (24)
and equality {(0, 1)}⊥ = R×{(0, 0)} 
= ∅ show that the VC-MFCQ holds at x̂ . Thus,
VC-MFCQ is strictly weaker than MPVC-MFCQ for non-smooth SVCs. Also,

L− = {−(0, 1)}− = R × R+,

L−
1 = {(0, 1)}⊥ ∩

(
[−1, 1] × {1}

)− = (
R × {0}) ∩ ({0} × R−

) = {(0, 0)},

L−
2 = {−(0, 1)}− ∩

(
[−1, 1] × {1}

)− = {(0, 0)},
L� = L− ∩ {d ∈ R

2 : d2 ≥ 0, d2(d2 − |d1|) ≤ 0} = S.

123



814 Journal of Optimization Theory and Applications (2018) 179:800–819

Above equalities show that WZCQ, WKTCQ, and WACQ fail, whereas WGCQ,
MPVC-ZCQ, MPVC-KTCQ, MPVC-ACQ, MPVC-GCQ, VC-GCQ, and ĜCQ hold
at x̂ . Thus, the inverse implications of [WZCQ ⇒ MPVC-ZCQ], [WKTCQ ⇒
MPVC-KTCQ], [W ACQ ⇒ MPVC-ACQ], and [W ACQ ⇒ WGCQ] do not
hold. Also, the assumption I00 = ∅ could not be eliminated in the implications
[VC-MFCQ ⇒ WKTCQ] and [VC-MFCQ ⇒ WZCQ].

4 Stationarity Conditions

In this section, motivated by [12,14,15], we will be mainly concerned with the math-
ematical problem with vanishing constraints (MPVC) given as

min f (x) s.t. x ∈ S, (P)

where f : R
n −→ R is a continuously differentiable function and S is defined as

previous section. It should be noted that the general form of a MPVC which has been
considered in [1,2,10,11,13,16] includes inequality constraints g j (x) ≤ 0, j ∈ J
and equality constraints ht (x) = 0, t ∈ T for some finite index sets J and T . Since
adding these constraints to problem (P) does not increase the technical problems of
the issue and just prolongs the formulas, we ignore them and just deal with problem
(P).

Now, we can state the KKT type necessary optimality condition for problem (P).
The following theorem is non-smooth version of [1, Theorem 1].

Theorem 4.1 Let x̂ be a local solution of (P) such that WGCQ holds at x̂ . If cone(L)

is a closed cone, and the objective function f (·) is continuously differentiable at x̂ ,
then there exist coefficients λH

i and λG
i , for i ∈ I , such that:

0 ∈ ∇ f (x̂) +
∑

i∈I

(
− λH

i ∂cHi (x̂) + λG
i ∂cGi (x̂)

)
, (25)

and

λH
i = 0 (i ∈ I+0 ∪ I+−), λH

i ≥ 0 (i ∈ I0− ∪ I00), λH
i free (i ∈ I0+), (26)

λG
i = 0 (i ∈ I0+ ∪ I0− ∪ I00 ∪ I+−), λG

i ≥ 0 (i ∈ I+0). (27)

Proof Owing to (9),WGCQ, bipolar theorem, and closedness of cone(L), we conclude
that

−∇ f (x̂) ∈ NF (S, x̂) = (
Γ (S, x̂)

)− = (
cl

(
conv

(
Γ (S, x̂)

) ))− ⊆ L−− = cl
(
cone(L)

) = cone(L).

Considering the structure of convex cones, we can find nonnegative scalars

ai (i ∈ I0+), bi (i ∈ I0+), ci (i ∈ I00 ∪ I0−), di (i ∈ I+0),
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such that

−∇ f (x̂) ∈
∑

i∈I0+
ai∂cHi (x̂) +

∑

i∈I0+
−bi∂cHi (x̂) +

∑

i∈I00∪I0−
−ci∂cHi (x̂) +

∑

i∈I+0

di∂cGi (x̂).

Tacking

λH
i :=

⎧
⎨

⎩

−(ai − bi ), if i ∈ I0+,

ci if i ∈ I00 ∪ I0−,

0 if i ∈ I+− ∪ I+0,

λG
i :=

{
di if i ∈ I+0,

0 if i ∈ I+− ∪ I0+ ∪ I0− ∪ I00,

the result is proved. ��
Conditions (25)–(27) were named the KKT conditions and strongly stationary

conditions for (P) in [1,10], respectively. We will call them the strongly stationary
conditions (SSC in short) too.

The following example shows that we cannot replace the smoothness condition of
f (·) by its Lipschitzian condition in above theorem, and we cannot replace the∇ f (x̂)
by ∂c f (x̂) in (25) too.

Example 4.1 Consider the optimization problem as

min −x2 + |x1 − x2| s.t. x ∈ S = ({0} × R+) ∪ (R+ × {0}).

We can formalize this problem as a MPVC with following data,

H1(x1, x2) = x2, H2(x1, x2) = x1, G1(x1, x2) = −x1, G2(x1, x2) = −x2,

f (x1, x2) = −x2 + |x1 − x2|.

We observe that x̂ = (0, 0) is an optimal solution of problem, and I00 = {1, 2}. Since

L− =
(
−σ H

I00

)− = ({(−1, 0), (0,−1)})− = R+ × R+ = conv(Γ (S, x̂)),

the WGCQ is satisfied at x̂ . It is easy to show that the cone(L) is closed, and also, the
below SSC type relations do not hold for any nonnegative scalars λH

1 , λH
2 , λG

1 , and
λG
2 :

(
0

0

)
=

(
γ

−1 − γ

)
− λH

1

(
0

1

)
− λH

2

(
1

0

)
+ λG

1

(−1

0

)
+ λG

2

(
0

1

)
,

γ ∈ [−1, 1], λG
1 = λG

2 = 0.

The following example shows the assumption of closedness of cone(L) in Theorem
4.1 cannot be waived.
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Example 4.2 Let H1(x1, x2) = 1, and G1(x1, x2) is the support function of

Q := {(−q,−q2) : 0 ≤ q ≤ 1}.

Thus, S = {(x1, x2) ∈ R
2 : x1 ≥ 0, x1 + x2 ≥ 0}. Clearly, x̂ = (0, 0) is the optimal

solution of the problemminx∈S f (x), in which f (x1, x2) = x1. By a short calculation,
we get I+0 = {1}, and

L = ∂cG1(x̂) = Q = {(x1, x2) ∈ R
2 : − 1 < x1 < 0, x1 ≤ x2 < −x21 } ∪ {(0, 0), (−1,−1)},

L− = S = cl
(
conv

(
Γ (S, x̂)

))
,

cone
(L) = {(x1, x2) ∈ R

2 : x1 ≤ x2, x1 < 0, x2 < 0} ∪ {(0, 0)}.

Therefore, theWGCQ is satisfied at x̂ , and cone
(
L

)
is not closed. Obviously, following

SSC type relations do not hold for each of the nonnegative scalars λH
1 and λG

1 :

(0, 0) ∈ {(1, 0)} − λH
1 {(0, 0)} + λG

1 Q, λH
1 = 0.

As diagram (12) shows, VC-GCQ is weaker than WGCQ. In [1, page 93], with an
example shows thatWGCQ is strictly stronger thanVC-GCQ.As a result, it seems that
one cannot get from VC-GCQ (resp. ĜCQ) to SSC, but it can reach to some weaker
conditions which in future, we call them VC-stationary conditions (reap. weakly sta-
tionary conditions).

Since the proof of following theorem is similar to the proof of Theorem 4.1, we
ignore it.

Theorem 4.2 Suppose that x̂ is a local solution of (P) and VC-GCQ (resp. ĜCQ)
holds at x̂ . If cone(L2) (resp. cone(L1)) be a closed cone, then there exist real coeffi-
cients λH

i and λG
i , for i ∈ I , which satisfy in (25) and

λH
i = 0 (i ∈ I+− ∪ I+0), λH

i free (i ∈ I0+), λH
i ≥ 0 (i ∈ I0− ∪ I00),

λG
i = 0 (i ∈ I+− ∪ I0+ ∪ I0−), λG

i ≥ 0 (i ∈ I+0 ∪ I00).
(28)

(
resp.

λH
i = 0 (i ∈ I+− ∪ I+0), λH

i free (i ∈ I0+ ∪ I00), , λH
i ≥ 0 (i ∈ I0−),

λG
i = 0 (i ∈ I+− ∪ I0+ ∪ I0−), λG

i ≥ 0 (i ∈ I+0 ∪ I00).

)

(29)

Asmentioned before, conditions (25) and (28) are refereed byVC-stationary condition
(VCSC in brief), and conditions (25) and (29) are namedweakly stationary conditions
(shortly, WSC).

Theorem 4.3 Assume that x̂ is an optimal solution of (P), andMPVC-GCQ is satisfied

at x̂ . If cone
(
L(β∗

1 ,β∗
2 )

)
and cone

(
L(β∗

2 ,β∗
1 )

)
are closed for some (β∗

1 , β∗
2 ) ∈ P(I00),

then the strongly stationary conditions hold at x̂ .
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Proof Considering the classic formula (9), MPVC-GCQ, Lemma 3.2, and bipolar
theorem, one can see that

− ∇ f (x̂) ∈ (
Γ (S, x̂)

)− ⊆
(
L�)− ⊆

⎛

⎝
⋃

(β1,β2)∈P(I00)

(
L(β1,β2)

)−
⎞

⎠

−

=
⋂

(β1,β2)∈P(I00)

(
L(β1,β2)

)−− =
⋂

(β1,β2)∈P(I00)

cl
(
cone

(
L(β1,β2)

) )

⊆ cl
(
cone

(
L(β∗

1 ,β∗
2 )

))
∩ cl

(
cone

(
L(β∗

2 ,β∗
1 )

))
= cone

(
L(β∗

1 ,β∗
2 )

)
∩ cone

(
L(β∗

2 ,β∗
1 )

)
.

(30)

On the other hand, according to the definition of L(β∗
1 ,β∗

2 ) and L(β∗
2 ,β∗

1 ) we have

cone
(
L(β∗

1 ,β∗
2 )

)
=

⋃ { ∑

i∈I0+∪β∗
1

− λH
i ∂cHi (x̂) +

∑

i∈I0−∪β∗
2

− λH
i ∂cHi (x̂)

+
∑

i∈I+0∪β∗
2

λG
i ∂cGi (x̂) :

λH
i free i ∈ I0+ ∪ β∗

1 ; λH
i ≥ 0 i ∈ I0− ∪ β∗

2

λG
i ≥ 0 i ∈ I+0 ∪ β∗

2

}
,

and

cone
(
L(β∗

2 ,β∗
1 )

)
=

⋃ { ∑

i∈I0+∪β∗
2

− λH
i ∂cHi (x̂) +

∑

i∈I0−∪β∗
1

− λH
i ∂cHi (x̂)

+
∑

i∈I+0∪β∗
1

λG
i ∂cGi (x̂)) :

λH
i free i ∈ I0+ ∪ β∗

2 ; λH
i ≥ 0 i ∈ I0− ∪ β∗

1 ;
λG
i ≥ 0 i ∈ I+0 ∪ β∗

1

}
.

Therefore,

cone
(
L(β∗

1 ,β∗
2 )

)
∩ cone

(
L(β∗

2 ,β∗
1 )

)
=

⋃ { ∑

i∈I0+∪I0−∪I00

− λH
i ∂cHi (x̂) +

∑

i∈I+0

λG
i ∂cGi (x̂) :

λH
i free i ∈ I0+; λH

i ≥ 0 i ∈ β∗
1 ∪ β∗

2 = I00; λH
i ≥ 0 i ∈ I0−; λG

i ≥ 0 i ∈ I0+
}

=
⋃ {∑

i∈I
(−λH

i ∂cHi (̂x) + λG
i ∂cGi (̂x)) : λH

i free i ∈ I0+; λH
i = 0 i ∈ I+0 ∪ I+−;

λH
i ≥ 0 i ∈ I00 ∪ I0−; λG

i ≥ 0 i ∈ I+0; λG
i = 0 i ∈ I0+ ∪ I0− ∪ I00 ∪ I+−

}
.

(31)
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Combining the virtues of (30) and (31) , the result is proved. ��
As we saw in proof of Theorem 4.3,

cone(L(β1,β2)) ∩ cone(L(β2,β1)) = cone(L),

for each (β1, β2) ∈ P(I00), and so, the closedness of cone(L(β1,β2)) and cone(L(β2,β1))

leads us to closedness of cone(L), while closedness of cone(L) does not lead to them.
There are two different assumptions in getting the SSC:

(a) WGCQ and closedness of cone(L) (Theorem 4.1).
(b) MPVC-GCQ and closedness of cone(L(β1,β2)) and cone(L(β2,β1)) (Theorem 4.3).

Since the MPVC-GCQ is weaker than WGCQ (see diagram (12)) and closedness
condition in (b) is stronger than in (a), none of Theorems 4.1 and 4.3 are better than
the other. It is worth mentioning that if Hi and Gi are continuously differentiable,
their sub-differentials contain single element, and so, the closedness conditions in (a)
and (b) automatically hold. Hence, as mentioned in [11], Theorem 4.3 is strictly better
than Theorem 4.1 for MPVCs with smooth constraints.

5 Conclusions

Calculating the Clarke sub-differential of a function � : R
n → R might be difficult

in general. However, the functions considered in our work are locally Lipschitz and it
empowers the numerical viability of our presented necessary conditions. This is due to
an important corollary of the Rademacher’s Theorem [18] which says: Given x̄ ∈ R

n ,

∂c�(x̄) = conv
(
{ lim
r→∞ � f (xr ) : xr → x̄, xr ∈ Q}

)
, (32)

in which Q is any full-measure subset of R
n that includes all the points where � is

differentiable. According to (32), the gradient sampling approach [22] can be utilized
to generate a suitable approximation of ∂c�(x̄) and applying in our results. Here, we
address this approach briefly. Considering an appropriate ball centered at x̄ , say Ux̄ ,
a large number of points in Ux̄ are randomly generated. At the second steep, among
randomly generated points, the points at which � is differentiable are selected. Assume
that these points are x1, x2, . . . , xk . According to (32),

Ck := conv ({��(xr ) : r = 1, 2, . . . , k})

is considered as an approximation of ∂c�(x̄) and is applied in our results. The accuracy
of this approximation can be improved by increasing k. See [22] for more details about
gradient sampling techniques. To compute ∂c�(x̄), another sampling method has been
presented in [23]. It works based on ε-sub-differential introduced by Goldstein.
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