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Abstract
Subgradient methods converge linearly on a convex function that grows sharply away
from its solution set. In this work, we show that the same is true for sharp functions that
are only weakly convex, provided that the subgradient methods are initialized within
a fixed tube around the solution set. A variety of statistical and signal processing tasks
come equipped with good initialization and provably lead to formulations that are
both weakly convex and sharp. Therefore, in such settings, subgradient methods can
serve as inexpensive local search procedures. We illustrate the proposed techniques
on phase retrieval and covariance estimation problems.
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1 Introduction

Typical methods for statistics and signal processing tasks follow the two-step strategy:
(i) find a moderately accurate solution at a low sample complexity cost (e.g., using
spectral initialization), and (ii) refine the approximate solution by an iterative “local
search algorithm” that converges rapidly under natural statistical assumptions. For
smooth problem formulations, the term “local search” almost universally refers to
gradient descent or a close variant thereof; see, for example, [1–8]. For nonsmooth
and nonconvex problems, the meaning of local search is much less clear. In this work,
we ask the following question.

Is there a generic gradient-based local search procedure for nonsmooth and non-
convexproblems,which converges linearly under standard regularity conditions?

We answer this question positively for the class of weakly convex functions, i.e.,
those that become convex after a sufficiently large quadratic perturbation.We show that
standard subgradient methods, originally designed for sharp convex problems, locally
converge linearly when applied to sharp functions that are only weakly convex. We
focus on three stepsize rules: Polyak stepsize [9,10], geometrically decaying stepsize
[11,12], and constant stepsize [13–15].As a proof of concept, we illustrate the resulting
algorithms on phase retrieval and covariance estimation problems.

2 Discussion

Our approach is rooted in subgradient methods for convex optimization. To motivate
the discussion, consider the constrained optimization problem

min
x∈X

g(x), (1)

where g is an L-Lipschitz convex function on R
d and X is a closed and convex set.

Given a current iterate xk , subgradient methods proceed as follows:

⎧
⎪⎨

⎪⎩

Choose any ζk ∈ ∂g(xk)

Set xk+1 = projX
(

xk − αk · ζk

‖ζk‖
)

⎫
⎪⎬

⎪⎭
.

Here, the symbol projX (y) denotes the nearest point of X to y and {αk} is a specified
stepsize sequence. The choice of the sequence {αk} determines the behavior of the
scheme and is the main distinguishing feature among subgradient methods. In this
work, we will only be interested in subgradient methods that are linearly convergent.
As usual, linear rates of convergence of iterative methods require some regularity
conditions to hold. Here, the appropriate regularity condition is sharpness [16,17] (or
equivalently a global error bound): There exists a real μ > 0 satisfying

g(z) − min
x∈X

g(x) ≥ μ · dist(z;X ∗) for all z ∈ X ,

123



964 Journal of Optimization Theory and Applications (2018) 179:962–982

where X ∗ denotes the set of minimizers of (1), and dist(z;X ∗) denotes the distance
of z to X ∗. Assuming sharpness holds, subgradient methods with a judicious choice
of {αk} produce iterates that converge to X ∗ at the linear rate

√
1 − (μ/L)2. Results

of this type date back to the 1960s and 1970s [9–12,18], while some more recent
approaches have appeared in [13–15].

Various contemporary problems lead to formulations that are indeed sharp, but are
only weakly convex and locally Lipschitz. Recall that a function g is ρ-weakly convex
[19] if the perturbed function x �→ g(x) + ρ

2 ‖ · ‖2 is convex for some ρ ≥ 0.1 Note
that weakly convex functions need not be smooth nor convex. A quick computation
(Lemma 3.1) shows that if g is μ-sharp and ρ-weakly convex, then there is a tube
around the solution set X ∗ that contains no extraneous stationary points:

T :=
{

x ∈ X : dist(x;X ∗) <
2μ

ρ

}

.

In this work, we show that the standard linearly convergent subgradient methods, orig-
inally designed for convex problems, apply in this much greater generality, provided
they are initialized within a slight contraction of the tube T . The methods exhibit
essentially the same linear rate of convergence as in the convex case, while the weak
convexity constant ρ only determines the validity of the initialization. We focus on
three stepsize rules: Polyak stepsize [9,10], geometrically decaying stepsize [11,12],
and constant stepsize [13–15]. As a proof of concept, we illustrate the resulting algo-
rithms on phase retrieval and covariance estimation problems.

Our current work sits within the broader scope of analyzing subgradient and prox-
imal methods for weakly convex problems [19–26]; see also the recent survey [27].
In particular, the paper [21] proves a global sublinear rate of convergence, in terms
of a natural stationarity measure, of a (stochastic) subgradient method on any weakly
convex function. In contrast, here we are interested in subgradient methods that are
locally linearly convergent under the additional sharpness assumption. The arguments
we present are all quick modification of the proofs already available in the convex set-
ting. Nonetheless, we believe that the drawn conclusions are interesting and powerful,
opening the door to generic local search procedures for nonsmooth and nonconvex
problems.

3 Notation

Throughout, we consider the Euclidean spaceRd , equipped with an inner product 〈·, ·〉
and the induced norm ‖x‖ := √〈x, x〉. The distance and the projection of any point

1 To the best of our knowledge, the class of weakly convex functions was introduced in 1972 in a local
publication of the Institute of Cybernetics in Kiev and then used in [19]. These are the functions that are
lower bounded by a linear function up to a little-o term that is uniform in the base point. The term ρ-weak
convexity, as we use it here, corresponds to the setting when the error term is a quadratic. A number of
other names are used in the literature instead of ρ-weak convexity, such as semi-convex, prox-regular, and
lower-C2.
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y ∈ R
d onto a set X are defined by

dist(y;X ) := inf
x∈X

‖y − x‖ and projX (y) := argmin
x∈X

‖y − x‖,

respectively. Note that projX (y) is nonempty as long asX is a closed set. The indicator
function of a set X , denoted by δX , is defined to be zero on X and +∞ off it.

3.1 Weakly Convex Functions

Our main focus is on those functions that are convex up to an additive quadratic
perturbation. Namely, a function g : Rd → R ∪ {+∞} is called ρ-weakly convex
(with ρ ≥ 0), if the assignment x �→ g(x) + ρ

2 ‖x‖2 is a convex function. The
algorithms we consider will all use generalized derivative constructions. Variational
analytic literature highlights a number of distinct subdifferentials (e.g., [28–31]); for
weakly convex functions, all of these constructions coincide. Consider a ρ-weakly
convex function g. The subdifferential of g at x , denoted ∂g(x), is the set of all
vectors v ∈ R

d satisfying

g(y) ≥ g(x) + 〈v, y − x〉 + o(‖y − x‖) as y → x . (2)

Though the condition (2) appears to lack uniformity with respect to the basepoint x ,
the subgradients of g automatically satisfy the much stronger property:

g(y) ≥ g(x) + 〈v, y − x〉 − ρ

2
‖y − x‖2, ∀x, y ∈ R

d , v ∈ ∂g(x). (3)

Indeed, this follows quickly by applying the subgradient inequality to the convex
function g+ ρ

2 ‖·‖2. Thus, wemay use the two conditions, (2) and (3), interchangeably
for weakly convex functions. We note in passing that localizing condition (3) leads to
so-called prox-regular functions, introduced in [32].

Weakly convex functions are widespread in applications and are typically easy to
recognize. One common source is the composite problem class:

min
x

F(x) := h(c(x)), (4)

where h : Rm → R is convex and L-Lipschitz, and c : Rd → R
m is a C1-smooth map

with β-Lipschitz gradient. An easy argument shows that F is Lβ-weakly convex. This
is aworst case estimate. In concrete circumstances, the composite function F may have
a muchmore favorable weak convexity constant ρ. The elements of the subdifferential
∂F(x) are straightforward to compute through the chain rule [28, Theorem 10.6,
Corollary 10.9]:

∂F(x) = ∇c(x)∗∂h(c(x)) for all x ∈ R
d .
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For a discussion of some recent uses of weakly convex functions in optimization, see
the short survey [27]. Throughout the paper, we will use the following two running
examples to illustrate our results.

Example 3.1 (Phase retrieval) Phase retrieval is a common computational problem,
with applications in diverse areas such as imaging, X-ray crystallography, and speech
processing. For simplicity, we will focus on the version of the problem over the reals.
The (real) phase retrieval problemseeks to determine a point x satisfying themagnitude
conditions,

|〈ai , x〉|2 ≈ bi for i = 1, . . . ,m,

where ai ∈ R
d and bi ∈ R are given. Note that we can only recover the optimal x up

to a universal sign change, since |〈ai , x〉| = |〈ai ,−x〉|. In this work, we will focus on
the following optimization formulation of the problem [24,33,34]:

min
x

1

m

m∑

i=1

|〈ai , x〉2 − bi |.

Clearly, this is an instance of (4). Indeed, undermild statistical assumptions on theway
ai are generated, the formulation is ρ-weakly convex, for some numerical constant ρ
independent of d and m [24, Corollary 3.2]. Moreover, under an appropriate model of
the noise in themeasurements, the problem is sharp [24, Proposition 3]. It isworthwhile
to mention that numerous other approaches to phase retrieval exist, based on different
problem formulations; see, for example, [3,35–37].

Experiment setupAll of the experiments on phase retrievalwill be generated accord-
ing to the following procedure. In the exact setup, we generate standard Gaussian
measurements ai ∼ N (0, Id×d), for i = 1, . . . ,m, and generate the target signal
x̄ ∼ N (0, Id×d). We then set bi = 〈ai , x̄〉2 for each i = 1, . . . ,m. In the corrupted
setup, we generate ai and x̄ as in the exact case. We then corrupt a proportion of the
measurements with outliers. Namely, we set bi = (1 − zi )〈ai , x̄〉2 + zi |ζi |, where
zi ∼ Bernoulli(0.1) and ζi ∼ N (0, 100).

Example 3.2 (Covariance matrix estimation) The problem of covariance estimation
from quadratic measurements, introduced in [38], is a higher rank variant of phase
retrieval. Let a1, . . . , am ∈ R

d be measurement vectors. The goal is to recover a
low-rank decomposition of a covariance matrix X̄ X̄ T , with X̄ ∈ R

d×r for a given
0 ≤ r ≤ d, from quadratic measurements

bi ≈ aTi X̄ X̄ T ai = Tr(X̄ X̄ T aia
T
i ).

Note that we can only recover X̄ up to multiplication by an orthogonal matrix. This
problem arises in a variety of contexts, such as covariance sketching for data streams
and spectrum estimation of stochastic processes.We refer the reader to [38] for details.
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In our examples, we will assume m is even and will focus on the potential function2

min
X∈Rd×r

1

m

m∑

i=1

∣
∣
∣

〈
XXT , a2i a

T
2i − a2i−1a

T
2i−1

〉
− (b2i − b2i−1)

∣
∣
∣ . (5)

Under exact measurements, i.e., bi = aTi X̄ X̄ T ai and under appropriate statistical
assumptions on how ai are generated, the formulation (5) is ρ-weakly convex for a
numerical constant ρ, independent of d or m, and is sharp. Indeed, this is a simple
consequence of two results, namely [38, Corollary 1] and [2, Lemma 5.4]. It is possible
to show that the objective is also sharp when the measurements are corrupted by gross
outliers. This guarantee is beyond the scope of our current work and will appear in a
different paper.

Experiment setup All of the experiments on covariance matrix estimation will
be generated according to the following procedure. In the exact setup, we gen-
erate standard Gaussian measurements ai ∼ N (0, Id×d) for i = 1, . . . ,m, and
generate the target matrix X̄ ∈ R

d×r as a standard Gaussian. We then set bi =
‖X̄ T ai‖2F for each i = 1, . . . ,m. In the corrupted setup, we generate ai and X̄
as in the exact case. We then corrupt a proportion of the measurements with out-
liers. Namely, we set bi = (1 − zi )‖X̄ T ai‖2F + zi |ζi |, where ζi ∼ N (0, 100) and
zi ∼ Bernoulli(0.1). All plots will show iteration counter k versus the scaled Pro-
crustes distance dist(Xk,X ∗)/‖X̄‖ = min

�T �=I
‖�Xk − X̄‖F/‖X̄‖F .

3.2 Setting of the Paper

Throughout the manuscript, we make the following assumption.

Assumption A Consider the optimization problem

min
x∈X

g(x), (6)

satisfying the following properties for some real ρ ≥ 0 and μ > 0.

1. (Weak convexity) The function g : Rd → R is ρ-weakly convex, and the set
X ⊂ R

d is closed and convex. The set of minimizers X ∗ := argmin
x∈X

g(x) is

nonempty.
2. (Sharpness) The inequality

g(z) − min
x∈X

g(x) ≥ μ · dist(z;X ∗) holds for all z ∈ X .

2 Note this potential function is different from the direct generalization of the one used in phase retrieval,

minx
∑

i

∣
∣
∣‖XT ai‖2 − bi

∣
∣
∣. The reason for the more exotic formulation is that the differences a2i a

T
2i −

a2i−1a
T
2i−1 in (5) allow the authors of [38] to prove sharpness of the objective function by appealing to an

	2/	1 restricted isometry property of the resulting linear map. See [38, Section III.B] for details. It is not
clear whether the naive objective function is also sharp with high probability under reasonable statistical
assumptions.
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We will say that a point x̄ ∈ X is stationary for the target problem (6) if

g(x) − g(x̄) ≥ o(‖x − x̄‖) as x → x̄ in X .

That is, x̄ is stationary precisely when the zero vector is a subgradient of g + δX at x̄ .
Shortly, we will discuss subgradient methods that converge linearly to X ∗ under

appropriate initialization. As a first step, therefore, we must identify a neighborhood
of X ∗ that is devoid of extraneous stationary points of (6). This is the content of the
following lemma.

Lemma 3.1 (Neighborhood with no stationary points) The problem (6) has no station-
ary points x satisfying

0 < dist(x;X ∗) <
2μ

ρ
. (7)

Proof Fix a stationary point x ∈ X \X ∗ of (6). Choosing an arbitrary x̄ ∈ projX ∗(x),
observe

μ · dist(x;X ∗) ≤ g(x) − g(x̄) ≤ ρ

2
‖x − x̄‖2 = ρ

2
· dist2(x;X ∗).

Dividing through by dist(x;X ∗), the result follows. ��
In light of Lemma 3.1, for any γ > 0 we define the following tube

Tγ :=
{

x ∈ X : dist(x;X ∗) < γ · μ

ρ

}

and the constant
L := sup {‖ζ‖ : ζ ∈ ∂g(x), x ∈ T1} . (8)

Lemma 3.1 guarantees that the tubes Tγ contain no extraneous stationary points of
the problem for any 0 < γ ≤ 2. Moreover, observe that μ and L play reciprocal
roles; consequently, the ratio τ := μ/L should serve as a measure of conditioning.
The following lemma verifies the inclusion τ ∈ [0, 1].
Lemma 3.2 (Condition measure) The inclusion τ ∈ [0, 1] holds.
Proof Consider an arbitrary point x ∈ T1 \ X ∗ and choose any x̄ ∈ projX ∗(x). By
Lebourg’s mean value theorem [39, Theorem 2.3.7], there exists a point z in the open
segment (x, x̄) and a vector ζ ∈ ∂g(z) satisfying

g(x) − g(x̄) = 〈ζ, x − x̄〉. (9)

Trivially z lies in T1, and therefore ‖ζ‖ ≤ L . Using this estimate and sharpness in (9)
yields the guarantee

μ · dist(x;X ∗) ≤ g(x) − g(x̄) ≤ ‖ζ‖ · ‖x − x̄‖ ≤ L · dist(x;X ∗).

The result follows. ��
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To summarize, we will use the following symbols to describe the parameters of the
problem class (6): ρ is the weak convexity constant of g, μ is the sharpness constant
of g, L is the maximal subgradient norm at points in the tube T1, and τ is the condition
measure τ = μ/L ∈ [0, 1].

4 Polyak Subgradient Method

In this section, we consider the Polyak subgradient method for problem (6). A prelim-
inary version of this material applied to the phase retrieval problem appeared in [34];
we present the arguments here for the sake of completeness.

The Polyak subgradientmethod is summarized inAlgorithm1. Themethod requires
knowing the optimal value minx∈X g(x). In a number of circumstances, this indeed is
reasonable (e.g., exact penalty approach for solving nonlinear equations). The latter
sections explore subgradient methods that do not require a known optimal value.

Algorithm 1: Polyak Subgradient Method

Data: Initial point x0 ∈ R
d

Step k: (k ≥ 0)
Choose ζk ∈ ∂g(xk)
if ζk �= 0 then

Set xk+1 = projX
(
xk − g(xk)−minx∈X g(x)

‖ζk‖2 ζk

)

else
Set xk+1 = xk

end

The following theorem shows that Algorithm 1, originally proposed for convex
problems enjoys the same linear convergence guarantees for functions that are only
weakly convex, provided it is initialized within a certain tube of the optimal solution
set.

Theorem 4.1 (Linear rate) Fix a real 0 < γ < 1. Then, Algorithm 1 initialized at
any point x0 ∈ Tγ produces iterates that converge Q-linearly to X ∗. That is, for each
index k ≥ 0 we have

dist2(xk+1;X ∗) ≤
(
1 − (1 − γ )τ 2

)
dist2(xk;X ∗). (10)

Proof We proceed by induction. Suppose that the theorem holds up to iteration k − 1.
We will prove inequality (10). To this end, observe that the inductive hypothesis
implies, dist(xk;X ∗) ≤ dist(x0;X ∗), and therefore xk lies in Tγ . Observe that in
the case ζk = 0, we have xk+1 = xk by the definition of the subgradient method
and xk ∈ X ∗ by Lemma 3.1; hence, (10) holds trivially. Therefore, we may suppose
ζk �= 0 for the rest of the proof. Choose now a point x̄ ∈ projX ∗(xk). Taking into
account that projX is nonexpansive, we successively deduce
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‖xk+1 − x̄‖2 ≤
∥
∥
∥(xk − x̄) − g(xk)−g(x̄)

‖ζk‖2 ζk

∥
∥
∥
2

= ‖xk − x̄‖2 + 2(g(xk) − g(x̄))

‖ζk‖2 · 〈ζk, x̄ − xk〉 + (g(xk) − g(x̄))2

‖ζk‖2
≤ ‖xk − x̄‖2 + 2(g(xk) − g(x̄))

‖ζk‖2
(
g(x̄) − g(xk) + ρ

2
‖xk − x̄‖2

)

+ (g(xk) − g(x̄))2

‖ζk‖2
= ‖xk − x̄‖2 + (g(xk) − g(x̄))

‖ζk‖2
(
ρ‖xk − x̄‖2 − (g(xk) − g(x̄))

)

≤ ‖xk − x̄‖2 + (g(xk) − g(x̄))

‖ζk‖2
(
ρ‖xk − x̄‖2 − μ‖xk − x̄‖

)

= ‖xk − x̄‖2 + ρ(g(xk) − g(x̄))

‖ζk‖2
(

‖xk − x̄‖ − μ

ρ

)

‖xk − x̄‖.

Combining the inclusion xk ∈ Tγ with sharpness, we therefore deduce

dist2(xk+1;X ∗) ≤ ‖xk+1 − x̄‖2 ≤
(

1 − (1 − γ )μ2

‖ζk‖2
)

‖xk − x̄‖2.

The result follows. ��

As a numerical illustration, we apply the Polyak subgradient method (Fig. 1) to our
two running examples, phase retrieval and covariance matrix estimation. Notice that a
linear rate of convergence is observed in all experiments except for two, with the rate
improving monotonically with an increasing number of measurements m. In the two
exceptional experiments, the number of measurements m is too small to guarantee
that the initial point x0 is within the basin of attraction, and the subgradient methods
stagnate.

5 Subgradient Method with Constant Stepsize

Recall that the Polyak subgradient method (Algorithm 1) crucially relies on knowing
the minimal value of the optimization problem (6). Henceforth, all the subgradient
methods we consider are agnostic to this value. That being said, they will require
some estimates on the problem parameters (μ, ρ, L). We begin by analyzing a sub-
gradient methodwith a constant stepsize (Algorithm 2). Constant stepsize schemes are
often methods of choice in practice. We will show that when properly initialized, the
subgradient method with constant stepsize generates iterates xk such that dist(xk;X ∗)
converges linearly up to a certain threshold.
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Algorithm 2: Subgradient method with constant stepsize

Data: Initial point x0 ∈ R
d and stepsize α > 0

Step k: (k ≥ 0)
Choose ζk ∈ ∂g(xk)
if ζk �= 0 then

Set xk+1 = projX
(
xk − α · ζk‖ζk‖

)

else
Set xk+1 = xk

end

The analysis we present fundamentally relies on the following estimate, often used
in the analysis of subgradient methods. To simplify notation, for any point x ∈ R

d ,
we set

E(x) := dist2(x;X ∗).

Whenever x has an index k as a subscript, we will set Ek := E(xk). The following
lemma will feature in both the constant and geometrically decaying stepsize schemes.

Lemma 5.1 (Basic recurrence) Consider a point x ∈ T1 and a nonzero subgradient

ζ ∈ ∂g(x), and define x+ := projX
(
x − α

ζ
‖ζ‖

)
for some α > 0. Then, the estimate

holds:
E(x+) ≤ (

1 + ρα
L

)
E(x) − 2ατ

√
E(x) + α2. (11)

Proof Choose an arbitrary point x̄ ∈ projX ∗(x). Observe

‖x+ − x̄‖2 ≤
∥
∥
∥(x − x̄) − α

ζ
‖ζ‖

∥
∥
∥ = ‖x − x̄‖2 + 2α

‖ζ‖ · 〈ζ, x̄ − x〉 + α2

≤ ‖x − x̄‖2 + 2α
‖ζ‖ ·

(
g(x̄) − g(x) + ρ

2
‖x − x̄‖2

)
+ α2

≤
(

1 + αρ

‖ζ‖
)

‖x − x̄‖2 − 2αμ

‖ζ‖ · ‖x − x̄‖ + α2.

Thus, the inequality holds:

E(x+) ≤
(
1 + αρ

‖ζ‖
)
E(x) − 2αμ

‖ζ‖ · √
E(x) + α2,

and consequently taking into account α/‖ζ‖ ≥ α/L we have

E(x+) ≤ sup
t≥α/L

{
(1 + ρt) E(x) − 2μt · √

E(x) + α2
}

.

Notice, the function inside the supremum is linear in t with slope given by s :=
ρE(x) − 2μ

√
E(x). The inclusion x ∈ T1 directly implies s ≤ 0. Therefore, the

supremum on the right-hand side is attained at t = α
L , yielding the claimed estimate

(11). ��
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In light of Lemma 5.1, we can now prove that the quantities Ek = E(xk) converge
linearly below a certain fixed threshold. The proof is a modification of that in [15,
Section 4].

Lemma 5.2 (Contraction inequality) Fix a constant 0 < α <
τμ
ρ
, and let {xk}k≥0 be

the iterates generated by Algorithm 2. Define the quantity

E∗ :=
(

αL

μ + √
μ2 − αρL

)2

. (12)

Then, whenever an iterate xk lies in T1, the estimate holds:

Ek+1 − E∗ ≤ qk(Ek − E∗),

where qk := 1 + α
L

(
ρ − 2μ√

Ek+
√
E∗

)
satisfies qk < 1.

Proof Looking back at estimate (11), consider the following equation in the variable
e:

e = (
1 + αρ

L

)
e − 2ατ · √e + α2. (13)

An easy computation shows that the minimal positive solution to (13) is exactly E∗,
defined in (12). Note that E∗ is well defined by the inequality α ≤ τ · μ

ρ
.

Subtracting (13) from (11) yields the estimate

Ek+1 − E∗ ≤ (1 + αρ
L )(Ek − E∗) − 2ατ(

√
Ek − √

E∗)

=
(
1 + α

L

(
ρ − 2μ√

Ek+
√
E∗

))
(Ek − E∗).

Finally, noting

√
E∗ = αL

μ + √
μ2 − αρL

= μ − √
μ2 − αρL

ρ
≤ μ

ρ
,

we obtain

ρ − 2μ√
Ek + √

E∗ < ρ − 2μ

2μ/ρ
= 0.

This completes the proof of the lemma. ��
Iterating Lemma 5.2, we see that the quantities Ek decrease to a value at most

E∗ at a linear rate. Figure 2 illustrates this behavior on our two running examples.
It is also clear from the figure that the linear rate of convergence improves as Ek

tends to E∗. An explanation is immediate from the expression for qk in Lemma 5.2.
Indeed, as Ek decreases, so do the contraction factors qk , and for Ek ≈ E∗, we have
qk ≈ (1−τ 2)+ αρ

L . Thus, as the stepsize tends to zero, the limiting linear rate coincides
with an ideal rate of ≈ 1 − τ 2.
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Even though Ek could be smaller than E∗ and q could be negative, it is apparent
from Fig. 2 that even after Ek becomes smaller than E∗, all the following values Ek

stay close to E∗. This is the content of the following theorem. The convex version of
this theorem appears in [15, Theorem 1].

Theorem 5.1 (Convergence of fixed stepsize subgradient method) Fix constants 0 <

γ < 1 and α satisfying

0 < α <
γ τ√

1 + 2τ 2
· μ

ρ
. (14)

Let xk be the iterates generated by Algorithm 2 with stepsize α and initial point
x0 ∈ Tγ . Define the constants

E∗ :=
(

αL

μ + √
μ2 − αρL

)2

and D :=
√
max{E0, 2α2 + E∗}.

Then, for each index k, the estimates hold:

√
Ek ≤ D <

γμ
ρ

and Ek − E∗ ≤ max
{
qk(E0 − E∗), 2α2

}
,

where the coefficient q := 1 + α
L

(
ρ − μ

D

)
satisfies 0 < q < 1.

Proof We first verify the claims that are independent of the iteration counter. To this
end, observe that (14) directly implies α < τ · μ

ρ
, and therefore E∗ is well defined.

Next, we show D <
γμ
ρ
. Indeed, noting

√
E∗ < ατ−1 and using (14), we deduce

D2 = max{E0, 2α
2 + E∗} ≤ max{E0, α

2(2 + τ−2)} <

(
γμ

ρ

)2

.

Next, we show the inequalities 0 < q < 1. To this end, observe

−1 ≤ −τα

D
< α

L

(
ρ − μ

D

) ≤ (1 − γ −1) · ρα

L
< 0,

where the first inequality follows from the inequality, α ≤ D, and the third follows
from the inequality, D <

γμ
ρ
. Thus, we conclude 0 < q < 1, as claimed.

We now proceed by induction. Fix an index k and suppose as inductive hypothesis
that for each index i = 0, 1, . . . , k, the estimates hold:

√
Ei ≤ D and Ei − E∗ ≤ max

{
qi (E0 − E∗), 2α2

}
.
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Let us consider two cases. Suppose first Ek ≥ E∗. Then, by applying Lemma 5.2, we
deduce

Ek+1 − E∗ ≤
(
1 + α

L

(
ρ − 2μ√

Ek+
√
E∗

))
(Ek − E∗)

≤ (
1 + α

L

(
ρ − μ

D

))
(Ek − E∗)

= q(Ek − E∗).

Suppose now that the second case, Ek < E∗, holds. Then, Lemma 5.2 implies

Ek+1 ≤ Ek + αρ
L (Ek − E∗) − 2ατ(

√
Ek − √

E∗)
≤ max

E∈[0,E∗]{E + αρ
L (E − E∗) − 2ατ(

√
E − √

E∗)}
= max{E∗, α

L (2μ
√
E∗ − ρE∗)}.

Subtracting E∗, we conclude

Ek+1 − E∗ ≤ max{0, 2τα
√
E∗} ≤ 2α2.

Thus, in both cases, we have the estimate

Ek+1 − E∗ ≤ max
{
q(Ek − E∗), 2α2

}
.

In particular, we immediately deduce
√
Ek+1 ≤ D. Applying the inductive hypothesis,

we conclude

Ek+1 − E∗ ≤ max
{
q · max{qk(E0 − E∗), 2α2}, 2α2

}

= max{qk+1(E0 − E∗), 2α2}.

The theorem is proved. ��

6 Geometrically Decaying Stepsize

In the previous section, we showed linear convergence of the constant stepsize scheme
up to a fixed tolerance E∗. To obtain a linearly convergent method to the true solution
set, we will allow the stepsize to decrease geometrically. The analogous strategy in the
convex setting goes back to Goffin [12], and our argument is a direct generalization
of [12] to the weakly convex setting. The intuition for why one may expect linear
convergence under such stepsizes may be gleaned from the Polyak method under the
optimal stepsize

αk = g(xk) − minx∈X g(x)

‖ζk‖ .
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It is easy to verify that since the Ek tend to zero Q-linearly, the stepsizes αk tend to
zero R-linearly. We implement such a geometrically decaying stepsize in Algorithm 3
and prove linear convergence of the method in Theorem 6.1. In the proof, we use the
notation Ek := dist2(xk;X ∗) as in the previous section.
Algorithm 3: Subgradient method with geometrically decaying stepsize

Data: Constants λ > 0 and 0 < q < 1.
Step k: (k ≥ 0)
Choose ζk ∈ ∂g(xk)
Set stepsize αk = λ · qk
if ζk �= 0 then

Set xk+1 = projX
(
xk − αk

ζk‖ζk‖
)

else
Set xk+1 = xk

end

Theorem 6.1 Fix a real 0 < γ < 1 and suppose τ ≤
√

1
2−γ

. Set

0 < λ ≤ γμ2

ρL
and q :=

√

1 − (1 − γ )τ 2,

where λ is assumed finite. Then, the iterates xk generated by Algorithm 3, initialized
at some point x0 with dist(x0;X ∗) ≤ λ

τ−
√

τ 2−(1−ρλL−1−q2)
, satisfy:

dist2(xk;X ∗) ≤ max
{

λ2

τ 2
, dist(x0;X ∗)2

} (
1 − (1 − γ )τ 2

)k
. (15)

Proof We will prove the result by induction.
To this end, suppose the bound (15) holds for all i = 0, . . . , k. Appealing to

Lemma 5.1 and using the relation αk = λqk , we obtain

Ek+1 ≤
(

1 + ρλqk

L

)

Ek − 2λτqk
√
Ek + λ2q2k . (16)

Define the constant M := max
{

λ
τ
, dist(x0;X ∗)

}
. Recall the induction assumption

guarantees
√
Ek ≤ Mqk . Let us therefore fix some value R ∈ [0, M] satisfying√

Ek = Rqk . Inequality (16) then implies

Ek+1 ≤ max
R∈[0,M]

{

R2q2k + ρλR2

L
q3k − 2λτ Rq2k + λ2q2k

}

.

Note that the expression inside the maximum is a convex quadratic in R and therefore
the maximum must occur either at R = 0 or R = M . We therefore deduce

Ek+1 ≤ q2k · max

{

λ2, M2 + ρλ

L
M2qk − 2λτM + λ2

}

. (17)
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To complete the induction, it is therefore sufficient to show

λ2 ≤ M2q2 and M2 + ρλ

L
M2qk − 2λτM + λ2 ≤ M2q2. (18)

We begin by verifying the first property. Note M ≥ λ
τ
. Hence, it suffices to show that

τ ≤ q. Observe that the assumption τ ≤
√

1
2−γ

directly implies

τ 2 + (1 − γ )τ 2 ≤ 1.

Rearranging yields τ 2 ≤ 1− (1−γ )τ 2 = q2. Hence, the first condition in (18) holds.
Next, we show that M satisfies the second property in (18). Rearranging the expres-

sion, we must establish

(

1 + ρλ

L
qk − q2

)

M2 − 2λτM + λ2 ≤ 0. (19)

We will show that the quadratic on the left-hand side in M has two real positive roots.
To this end, a quick computation shows that the two roots are

λτ ±
√

λ2τ 2 − λ2
(
1 + ρλ

L qk − q2
)

1 + ρλ
L qk − q2

= λ

τ ∓
√

τ 2 −
(
1 + ρλ

L qk − q2
) .

To see that the discriminant is nonnegative, observe

τ 2 −
(

1 + ρλ

L
qk − q2

)

≥ τ 2 −
(

1 + ρλ

L
− q2

)

≥ τ 2 − (1 + γ τ 2 − q2) = 0.

Thus, the convex quadratic in (19) has two real roots. ObserveM ≥ λ/τ , and therefore
M is greater than the minimal root. It suffices therefore to argue that M is smaller than
the largest root. If M = λ/τ , then this is clearly true. Otherwise, it must be that
M = √

E0. Our assumption on the initial distance
√
E0 then guarantees that

√
E0 is

smaller than the largest positive root of (19), as claimed. Hence, the condition (19)
holds, and the induction is complete. ��

In the convex setting, ρ = 0, Theorem 6.1 recovers the guarantees in Goffin [12].
Theorem 6.1 demonstrates a precise relationship between the initial distance, the con-
stant λ which controls the rate, and the constants τ and ρ. In particular, the larger the
initial distance, the larger λ needs to be to guarantee convergence. It is now straightfor-
ward to see how one should set the parameters q and λ to guarantee linear convergence
within the tube Tγ .
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Corollary 6.1 Fix a real 0 < γ < 1 and suppose τ ≤
√

1
2−γ

and ρ > 0. Set

λ := γμ2

ρL
and q :=

√

1 − (1 − γ )τ 2.

Then, the iterates xk generated by Algorithm 3, initialized at any point x0 ∈ Tγ ,
satisfy:

dist2(xk;X ∗) ≤ γ 2μ2

ρ2

(
1 − (1 − γ )τ 2

)k
. (20)

Proof Looking back at Theorem 6.1, we see that dist(x0;X ∗) satisfies the assumed
upper bound:

dist(x0;X ∗) <
γμ

ρ
= λ

τ
≤ λ

τ − √
τ 2 − (1 − ρλL−1 − q2)

.

Since λ
τ

= γμ
ρ
, we conclude thatmax

{
dist(x0;X ∗), λ

τ

} ≤ γμ
ρ
. The result immediately

follows after applying Theorem 6.1. ��
We now illustrate the performance of Algorithm 3 on our two running examples

in Fig. 3. Empirically, we observed that λ > 0 and 0 < q < 1 must be tuned for
performance, which is what we did in the experiments. We observe linear convergence
in all cases, and the convergence rate of the method improves monotonically as the
chosen rate q is decreased. The Polyak scheme pictured in Fig. 1 clearly outperforms
all other methods, while the geometrically decaying stepsize scheme performs much
better than the constant stepsize scheme in Fig. 2. That being said, we should stress that
thePolyak subgradientmethod requires knowledgeof the optimal value of the problem,
which is often unavailable. We also note that the work [15] provides schemes which
can indeed automatically adapt to the unknown parameter μ for convex problems. We
leave extensions of such algorithms to weakly convex problems for future work.

Acknowledgements Research of Drusvyatskiy and MacPhee was partially supported by the AFOSR YIP
Award FA9550-15-1-0237 and by the NSF DMS 1651851 and CCF 1740551 Awards. Research of Paquette
was supported by NSF CCF 1740796.

References

1. Jane, P., Netrapalli, P.: Fast exact matrix completion with finite samples. In: Grnwald, P., Hazan,
E., Kale, S. (eds.) Proceedings of The 28th Conference on Learning Theory, Proceedings of Machine
Learning Research, vol. 40, pp. 1007–1034. PMLR, Paris, France (2015). http://proceedings.mlr.press/
v40/Jain15.html

2. Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., Recht, B.: Low-rank solutions of linear matrix
equations via procrustes flow. In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning—Volume 48, ICML’16, pp. 964–973. JMLR.org (2016). http://dl.
acm.org/citation.cfm?id=3045390.3045493

3. Candès, E., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE
Trans. Inf. Theory 61(4), 1985–2007 (2015). https://doi.org/10.1109/TIT.2015.2399924

123

http://proceedings.mlr.press/v40/Jain15.html
http://proceedings.mlr.press/v40/Jain15.html
http://dl.acm.org/citation.cfm?id=3045390.3045493
http://dl.acm.org/citation.cfm?id=3045390.3045493
https://doi.org/10.1109/TIT.2015.2399924


Journal of Optimization Theory and Applications (2018) 179:962–982 981

4. Jain, P., Jin, C., Kakade, S., Netrapalli, P.: Global convergence of non-convex gradient descent for com-
putingmatrix squareroot. In: Proceedings of the 20th International Conference onArtificial Intelligence
and Statistics (AISTATS), pp. 479–488 (2017). http://proceedings.mlr.press/v54/jain17a.html

5. Chen, Y., Wainwright, M.: Fast low-rank estimation by projected gradient descent: general statistical
and algorithmic guarantees (2015). arXiv:1509.03025

6. Meka, R., Jain, P., Dhillon, I.: Guaranteed rank minimization via singular value projection (2009).
arXiv:0909.5457

7. Boumal, N.: Nonconvex phase synchronization. SIAM J. Optim. 26(4), 2355–2377 (2016)
8. Brutzkus, A., Globerson, A.: Globally optimal gradient descent for a ConvNet with Gaussian inputs

(2017). arXiv:1702.07966
9. Eremin, I.: The relaxation method of solving systems of inequalities with convex functions on the

left-hand side. Dokl. Akad. Nauk SSSR 160, 994–996 (1965)
10. Poljak, B.: Minimization of unsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969)
11. Shor, N.: The rate of convergence of the method of the generalized gradient descent with expansion of

space. Kibernetika (Kiev) 2, 80–85 (1970)
12. Goffin, J.: On convergence rates of subgradient optimization methods. Math. Program. 13(3), 329–347

(1977). https://doi.org/10.1007/BF01584346
13. Supittayapornpong, S., Neely, M.: Staggered time average algorithm for stochastic non-smooth opti-

mization with O(1/t) convergence (2016). arXiv:1607.02842
14. Yang, T., Lin, Q.: RSG: beating subgradient method without smoothness and strong convexity (2016).

arXiv:1512.03107
15. Johnstone, P., Moulin, P.: Faster subgradient methods for functions with Hölderian growth (2017).

arXiv:1704.00196
16. Polyak, B.: Sharp minima. Institute of Control Sciences Lecture Notes, Moscow, USSR; Presented at

the IIASAWorkshop on Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria,
vol. 3, pp. 369–380 (1979)

17. Burke, J., Ferris, M.: Weak sharp minima in mathematical programming. SIAM J. Control Optim.
31(5), 1340–1359 (1993). https://doi.org/10.1137/0331063

18. Poljak, B.: Subgradient methods: a survey of Soviet research. In: Nonsmooth Optimization (Proc.
IIASA Workshop, Laxenburg, 1977), IIASA Proc. Ser., vol. 3, pp. 5–29. Pergamon, Oxford (1978)

19. Nurminskii, E.A.: The quasigradient method for the solving of the nonlinear programming problems.
Cybernetics 9(1), 145–150 (1973). https://doi.org/10.1007/BF01068677

20. Nurminskii, E.A.: Minimization of nondifferentiable functions in the presence of noise. Cybernetics
10(4), 619–621 (1974). https://doi.org/10.1007/BF01071541

21. Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate O(k−1/4) on weakly
convex functions (2018). arXiv:1802.02988

22. Drusvyatskiy, D., Lewis, A.: Error bounds, quadratic growth, and linear convergence of proximal
methods. To appear in Mathematics of Operations Research (2016). arXiv:1602.06661

23. Duchi, J., Ruan, F.: Stochastic methods for composite optimization problems (2017). Preprint
arXiv:1703.08570

24. Duchi, J., Ruan, F.: Solving (most) of a set of quadratic equalities: composite optimization for robust
phase retrieval (2017). arXiv:1705.02356

25. Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth
maps (2016). Preprint arXiv:1605.00125

26. Davis, D., Grimmer, B.: Proximally guided stochastic method for nonsmooth, nonconvex problems
(2017). Preprint arXiv:1707.03505

27. Drusvyatskiy, D.: The proximal point method revisited. To appear in SIAG/OPT Views and News
(2018). arXiv:1712.06038

28. Rockafellar, R., Wets, R.B.: Variational Analysis. Grundlehren der mathematischen Wissenschaften,
vol. 317. Springer, Berlin (1998)

29. Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren
der mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

30. Penot, J.P.: Calculus Without Derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-4538-8

31. Ioffe, A.: Variational Analysis of Regular Mappings. Springer Monographs in Mathematics.
Springer, Cham (2017). https://doi-org.offcampus.lib.washington.edu/10.1007/978-3-319-64277-2.
Theory and Applications

123

http://proceedings.mlr.press/v54/jain17a.html
http://arxiv.org/abs/1509.03025
http://arxiv.org/abs/0909.5457
http://arxiv.org/abs/1702.07966
https://doi.org/10.1007/BF01584346
http://arxiv.org/abs/1607.02842
http://arxiv.org/abs/1512.03107
http://arxiv.org/abs/1704.00196
https://doi.org/10.1137/0331063
https://doi.org/10.1007/BF01068677
https://doi.org/10.1007/BF01071541
http://arxiv.org/abs/1802.02988
http://arxiv.org/abs/1602.06661
http://arxiv.org/abs/1703.08570
http://arxiv.org/abs/1705.02356
http://arxiv.org/abs/1605.00125
http://arxiv.org/abs/1707.03505
http://arxiv.org/abs/1712.06038
https://doi.org/10.1007/978-1-4614-4538-8
https://doi-org.offcampus.lib.washington.edu/10.1007/978-3-319-64277-2


982 Journal of Optimization Theory and Applications (2018) 179:962–982

32. Poliquin, R., Rockafellar, R.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc.
348, 1805–1838 (1996)

33. Eldar, Y., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon.
Anal. 36(3), 473–494 (2014). https://doi.org/10.1016/j.acha.2013.08.003

34. Davis, D., Drusvyatskiy, D., Paquette, C.: The nonsmooth landscape of phase retrieval (2017).
arXiv:1711.03247

35. Chen, Y., Candès, E.: Solving random quadratic systems of equations is nearly as easy as solving
linear systems. Commun. Pure Appl. Math. 70(5), 822–883 (2017). https://doi-org.offcampus.lib.
washington.edu/10.1002/cpa.21638

36. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. To appear in Foundations of
Computational Mathematic (2017). arXiv:1602.06664

37. Tan, Y., Vershynin, R.: Phase retrieval via randomized Kaczmarz: theoretical guarantees (2017).
arXiv:1605.08285

38. Chen, Y., Chi, Y., Goldsmith, A.J.: Exact and stable covariance estimation from quadratic sampling
via convex programming. IEEE Trans. Inf. Theory 61(7), 4034–4059 (2015)

39. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

123

https://doi.org/10.1016/j.acha.2013.08.003
http://arxiv.org/abs/1711.03247
https://doi-org.offcampus.lib.washington.edu/10.1002/cpa.21638
https://doi-org.offcampus.lib.washington.edu/10.1002/cpa.21638
http://arxiv.org/abs/1602.06664
http://arxiv.org/abs/1605.08285

	Subgradient Methods for Sharp Weakly Convex Functions
	Abstract
	1 Introduction
	2 Discussion
	3 Notation
	3.1 Weakly Convex Functions
	3.2 Setting of the Paper

	4 Polyak Subgradient Method
	5 Subgradient Method with Constant Stepsize
	6 Geometrically Decaying Stepsize
	Acknowledgements
	References




