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Abstract
The purpose of this work is to pose and solve the problem to guide a collection of
weakly interacting dynamical systems (agents, particles, etc.) to a specified terminal
distribution. This is formulated as a mean-field game problem, and is discussed in both
non-cooperative games and cooperative games settings. In the non-cooperative games
setting, a terminal cost is used to accomplish the task;we establish that themapbetween
terminal costs and terminal probability distributions is onto. In the cooperative games
setting, the goal is to find a common optimal control that would drive the distribution
of the agents to a targeted one. We focus on the cases when the underlying dynamics is
linear and the running cost is quadratic. Our approach relies on and extends the theory
of optimal mass transport and its generalizations.

Keywords Mean-field games · Linear stochastic systems · Weakly interacting
particle system · McKean–Vlasov dynamics · Optimal control

Mathematics Subject Classification 91A13 · 60J60 · 49J20

Communicated by Qianchuan Zhao.

B Tryphon T. Georgiou
tryphon@uci.edu

Yongxin Chen
yongchen@iastate.edu

Michele Pavon
pavon@math.unipd.it

1 Iowa State University, IA 50011 Ames, IA, USA

2 University of California, Irvine, CA 92697, USA

3 Università di Padova, via Trieste 63, 35121 Padova, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-018-1365-7&domain=pdf


Journal of Optimization Theory and Applications (2018) 179:332–357 333

1 Introduction

Mean-field game (MFG) theory is the study of games involving a large number of
agents. In the non-cooperative games setting, the basic model requires agents to abide
by identical dynamics and seek to minimize an individual cost function that is also the
same for all. As the number of agents increases to infinity, the empirical distribution
of their states becomes indifferent to the strategy of any single agent and yet it couples
their individual responses. Thus, the aggregate response of the agents (mean field)
drives individual responses while the action of individual agents is insignificant. On
the flip side, in the cooperative games setting, the agents seek to jointly optimize a
common performance index. Either way, the desire to minimize cost, individually or
collectively, drives the empirical distribution of agents in suitableways. The purpose of
this work to study for both, non-cooperative and cooperative MFGs, the control prob-
lem to steer the collective response of agents over a finite window of time between
two specified end-point marginal distributions by suitable choice of cost (i.e., incen-
tives) in non-cooperative games and centralized control with cooperative agents, and
also the problem to ensure a desired stationary distribution under similar conditions.
This viewpoint is influenced by optimal mass transport (OMT) theory that deals with
the flow of time-marginal densities for a collective (agents, particles, resources) and
corresponding control and modeling problems.

The study of MFG was introduced into the engineering literature by Huang et al.
[1] and, independently, by Lasry and Lions [2]. Earlier, in the economics literature,
similar models were considered by Jovanovic and Rosental [3]. The importance of the
subject stems from the wide range of applications that include modeling and control
of multi-agent dynamical systems, stock market dynamics, crowd dynamics, power
systems and more; see [1,2,4,5], and also see [6–12] in the special case of linear
dynamics and quadratic cost. The cooperative games counterparts of MFG have been
studied in [5,13,14], and are usually known as the optimal control of McKean–Vlasov
dynamics.

The other important component, OMT, originates in the work of Monge [15] and
aims directly at relating/transporting distributions under minimum cost. Kantorovich
[16] introduced linear programming and duality theory for solving OMT resource
allocation problems and, in recent years, a fast developing phase was spurred by awide
range of applications of OMT to probability theory, economics, weather modeling,
biology and mathematical physics [17–24]. The connection between dynamic OMT
[25] and stochastic control has been explored in our work, e.g., [26,27], where the
focus has been on regulating stochastic uncertainty of diffusion processes and of
stochastically driven dynamical systems by suitable control action. These stochastic
control problems, in turn, relate to a classical maximum entropy problem on path space
known as the Schrödinger bridge problem; see e.g., [28–34].

One goal of the present work is to study density-steering problems in an MFG
framework or, equivalently, explore the role of interaction potential and decentralized
strategies when steering an initial distribution to a terminal one. In particular, we
are interested on how to design an added terminal cost so as to provide incentives
for agents, under a Nash equilibrium strategy, to move collectively as specified. To
this end, we establish that the map between terminal costs and terminal probability
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distributions is onto, under the assumptions that the underlying dynamics is linear and
the running cost is quadratic. Thereby,we develop anMFG-based synthesis framework
for OMT-type stochastic control problems with or without stochastic excitation.

The paper evolves along the following lines. First, we discuss the motivation and
problem formulation in Sect. 2. The solution is provided in Sect. 3. In Sect. 4 we study
similar problems with less or no disturbance. Section 5 is dedicated to the special case
with Gaussian marginal distributions. Similar problems in the stationary setting are
investigated in Sect. 6. In Sect. 7, we developed the cooperative game counterpart of
the density-steering problem. This follows by a simple academic example in Sect. 8
and a brief concluding remark in Sect. 9.

2 Problem Formulation

We herein investigate the collective dynamical response of a group of agents (also
thought of as particles, players, and so on) that interact weakly with each other. The
terminology “weakly” refers to the agents being statistically indistinguishable (anony-
mous) and affecting each other’s response only through their empirical distribution
[35]. Thus, we consider such a system of N agents with dynamics1 specified by

dxi (t) = Axi (t)dt + 1

N − 1

∑

j �=i

Āx j (t)dt + Bui (t)dt + Bdwi (t),

xi (0) = xi0, i = 1, . . . , N . (1)

Here, xi , ui , wi represent the state, control input, white noise disturbance, respectively,
for the i th agent, and the model parameters are the same for all. We further assume that
their initial conditions x10 , x

2
0 , . . . , x

N
0 are all independent with the same probability

density ρ0. The i th agent interacts with the rest through the averaged position. The
matrices A, Ā ∈ R

n×n, B ∈ R
n×m are continuous functions of time; for notational

simplicity,weoftenuse, e.g., A insteadof A(t). It is assumed that the pair is controllable
in the sense that the reachability Gramian

M(t, s) =
∫ t

s
Φ(t, τ )B(τ )B(τ )′Φ(t, τ )′dτ

is invertible for all s < t . Here,Φ(·, ·) denotes the state transitionmatrix that is defined
via

∂Φ(t, s)

∂t
= AΦ(t, s), Φ(s, s) = I .

Clearly, in case when A is time-invariant, Φ(t, s) = eA(t−s).

1 This type of weakly coupled system of linear stochastic models has been studied in [6,7,9]. In our setting
we further assume that the noise dwi and control action u affect the dynamics in a similar manner, through
the same matrix B. The more general case, where this is not so, is more demanding and will be pursued in
future publication, cf. [32,33].
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In non-cooperative MFG [1], each agent searches for an optimal control strategy
to minimize its own cost2

Ji (ui ) = E

{∫ 1

0
f (t, xi (t), ui (t), μ

N (t))dt + g(xi (1), μ
N (1))

}
, (2)

where

μN (t) = 1

N

N∑

i=1

δxi (t) (3)

is the empirical distribution of the states of the N agents at time t . Thus, this is a non-
cooperative game and the cost of the i th agent is affected by the strategies of others
only through the empirical distribution. An optimal control corresponds to a Nash
equilibrium for the game. We follow the arguments in [5] and restrict ourselves to
equilibria that correspond to symmetric Markovian control strategies (state feedback)

ui (t) = φ(t, xi (t)), i = 1, . . . , N . (4)

When N is large, the empirical distribution μN is indifferent to small perturbations
of control strategy of a single agent. This points to the following approach [5] to obtain
an approximate Nash equilibrium: fix a family (μ(t))0≤t≤1 of probability measures
and solve the standard stochastic control problem

φ� = argminφ E

{∫ 1

0
f (t, x(t), φ(t, x(t)), μ(t))dt + g(x(1), μ(1))

}
(5)

subject to the dynamics

dx(t) = Ax(t)dt + Āx̄μ(t)dt + Bφ(t, x(t))dt + Bdw(t), x(0) = x0 (6)

where

x̄μ := 〈x, μ(t)〉 =
∫

Rn
x μ(dx)

denotes the mean3 of the distribution μ(t), and x0 is a random vector with probability
density ρ0.

Considering the choice (μ(t))0≤t≤1 as a parameter, the remaining issue is to choose
this distribution flow so that the actual distribution of the solution x(t) of (6) with
optimal control strategy

u�(t) = φ�(t, x(t)) (7)

coincides with μ(t). The solution to the MFG problem involves establishing the exis-
tence and uniqueness of the solution to two coupled partial differential equations

2 For simplicity of notation and without loss in generality we take the end-point to be t = 1.
3 Throughout, we use the expressions x̄μ or 〈x, μ(t)〉 interchangeably.
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(PDEs) [5]. It has been shown that a Nash equilibrium point for this mean-field game
exists under rather mild assumptions on the cost function [1,2,4–9]. That is, there
exists a family (μ(t))0≤t≤1 such that the distribution flow of the solution x(t) of (6)
under optimal control strategy φ� coincides with this sameμ. In addition, this optimal
control φ� is proven to be an ε-Nash equilibrium to the N -player-game for N large
[5,36].

Departing from previous literature, this paper deals with the density-steering prob-
lem of the N -player-game system. More specifically, we are interested in introducing
a suitable cost incentive so that the system is driven to a specific distributionμ1 at time
t = 1 under (7). In fact, it turns out that under mild conditions, a quadratic running
cost in both the control and state (i.e., group linear tracking as in the work of Huang
et al. [1]), can be enhanced by a suitable terminal cost g as follows

Ji (ui ) = E

{∫ 1

0

(
1

2
‖ui (t)‖2 + 1

2
‖xi (t) − x̄(t)‖2Q

)
dt + g(xi (1), μ

N (1))

}
(8)

so as to accomplish the task of steering the initial distribution to the desired terminal
one. In other words, we show that the mapping between a choice of g and the terminal
distribution μ1 is onto, under the assumption that μ0, μ1 have finite second-order
moments. Formally, the problem we are interested in can be stated as follows.

Problem 2.1 Given N agents governed by (1) with initial probability density ρ0, find
a terminal cost g such that, in the Nash equilibrium with cost functional (8), the agents
will reach a given terminal density ρ1 at time t = 1, in the limit as N goes to ∞.

After this work was completed, it was brought to our attention by a referee that
our framework coincides with the mean-field game planning problem (MFGP), which
was introduced by P-L Lions in his lecture notes at College de France and later studied
in [37,38]. However, the precise problem we study differs from those in [37,38] in
two ways. First, the diffusion term in (1) can be degenerate, in the sense that B is not
required to be square and nonsingular. The presence of a degenerate diffusion violates
the assumptions in [37,38] where the proofs rely on the regularity of the Laplacian
operator Δ. Second, Eq. (1) includes a weak interaction term which is not covered in
[37,38]. Last but not least, our solution is “explicit” and does not require an iterative
scheme. This makes it suitable for direct implementation.

3 General Approach and Solution

For the simplicity of exposition we focus on the case where the running cost depends
only on the control actuation (i.e., taking the matrix Q in (8) to be zero). The extension
to general Q ≥ 0 is straightforward, as can be seen in the discussion at the end of this
section.

We begin by considering the optimal steering problem [32,33,39,40] without ter-
minal cost, i.e., for a fixed density flow (μ(t))0≤t≤1, consider the control problem to
minimize
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J (u) = E

{∫ 1

0

1

2
‖u(t)‖2dt

}

subject to the dynamics

dx(t) = Ax(t)dt + Āx̄μ(t)dt + Bu(t)dt + Bdw(t), x(0) = x0 ∼ ρ0 (9)

and the constraint that x(1) has probability density ρ1. This problem can be (formally)
posed as

inf
ρ,u

∫ 1

0

∫

Rn

1

2
ρ(t, x)‖u(t, x)‖2dxdt, (10a)

∂ρ

∂t
+ ∇ · ((Ax + Āx̄μ + Bu)ρ) − 1

2
tr(BB ′∇2ρ) = 0, (10b)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (10c)

Following a similar argument as in [27], we establish the following sufficient condition
for optimality.

Proposition 3.1 If there exists a function λ such that ρ�, λ satisfy

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄μ + 1

2
tr(BB ′∇2λ) + 1

2
∇λ · BB ′∇λ = 0, (11a)

∂ρ�

∂t
+ ∇ · ((Ax + Āx̄μ + BB ′∇λ)ρ�) − 1

2
tr(BB ′∇2ρ�) = 0, (11b)

and boundary conditions

ρ�(0, ·) = ρ0, ρ�(1, ·) = ρ1, (11c)

then (ρ�, u� = B ′∇λ) is a solution to (10).

Replacing μ in (11) by ρ� we obtain the system of (nonlinear) PDE’s

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄ρ� + 1

2
tr(BB ′∇2λ) + 1

2
∇λ · BB ′∇λ = 0, (12a)

∂ρ�

∂t
+ ∇ · ((Ax + Āx̄ρ� + BB ′∇λ)ρ�) − 1

2
tr(BB ′∇2ρ�) = 0, (12b)

ρ�(0, ·) = ρ0, ρ�(1, ·) = ρ1. (12c)

We will show below that, under mild assumptions, (12) has a solution. In fact, we will
construct such a solution using standard Schrödinger bridge theory [26,27].

Note that the coupled PDEs (12a), (12b) are the same as the PDEs that arise in
classic MFG problems corresponding to (1) and (8). However, the usual boundary
conditions

ρ�(0, ·) = ρ0, λ(1, x) = − g(x, ρ�(1, ·)),
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are now different and given by (12c). Evidently, the Lagrange multiplier −λ is the
value (cost-to-go) function of the associated optimal control problem.

To solve (12), we first consider the Schrödinger bridge problemwith prior dynamics

dx(t) = Ax(t)dt + Bdw(t). (13)

We remark that the Schrödinger bridge can be viewed as a regularized OMT problem
[27,29,30]. Let

ρ̂0(x) = ρ0(x + x̄ρ0)

and

ρ̂1(x) = ρ1(x + x̄ρ1),

then

〈x, ρ̂0〉 = 0, 〈x, ρ̂1〉 = 0.

The Schrödinger bridge with prior dynamics (13) and marginal distributions ρ̂0 and
ρ̂1 is [26,27]

dx(t) = Ax(t)dt + BB ′∇λ̂(t, x(t))dt + Bdw(t), (14)

where λ̂ satisfies

∂λ̂

∂t
+ ∇λ̂ · Ax + 1

2
tr

(
BB ′∇2λ̂

)
+ 1

2
∇λ̂ · BB ′∇λ̂ = 0. (15)

The boundary condition λ̂(1, ·) for λ̂ is chosen in a way so that the resulting density
flow ρ̂(t, x) of (14), which is

∂ρ̂

∂t
+ ∇ ·

((
Ax + BB ′∇λ̂

)
ρ̂
)

− 1

2
tr

(
BB ′∇2ρ̂

)
= 0,

matches the marginal distributions ρ̂0 and ρ̂1.
The Schrödinger bridge corresponds to an optimal control problem [26,27] that

minimizes

E

{∫ 1

0

1

2
‖u(t)‖2dt

}

subject to

dx(t) = Ax(t)dt + Bu(t)dt + Bdw
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and the constraints on the marginal distributions x(0) ∼ ρ̂0 and x(1) ∼ ρ̂1. The
optimal control is given by u(t, x) = B ′∇λ̂(t, x). The pair (λ̂, ρ̂) satisfies that

〈∇λ̂(t, ·), ρ̂(t, ·)〉 = 0 (16)

and therefore
〈x, ρ̂(t, ·)〉 = 0 (17)

for all 0 ≤ t ≤ 1. The intuition for (16) is that if the expectation of the control, i.e.,
〈∇λ̂(t, ·), ρ̂(t, ·)〉, is not constantly 0, then one can always shift the control by its mean
to achieve a smaller cost.

Now let

m(t) = Φ(1, t)′M̄−1
10 (x̄ρ1 − Φ̄10 x̄ρ0), (18)

y(t) the solution to

ẏ(t) = (A + Ā)y(t) + BB ′m(t), y(0) = x̄ρ0 ,

and

γ (t) = −
∫ t

0
( Āy(s) · m(s) + 1

2
m(s) · BB ′m(s))ds.

Here Φ̄10 := Φ̄(1, 0)with Φ̄ being the state transition matrices for the pair (A+ Ā, B)

and the “coupled” Gramian

M̄10 =
∫ 1

0
Φ̄(1, τ )BB ′Φ(1, τ )′dτ

is assumed to be invertible. Note that y(1) = x̄ρ1 .
With these ingredients, we construct a solution to (12) as follows. Define (λ, ρ�)

by
λ(t, x) = λ̂(t, x − y(t)) + m(t) · x + γ (t), (19a)

and
ρ�(t, x) = ρ̂(t, x − y(t)). (19b)

In so doing, (λ, ρ�) is a solution of (12). To see this, on the one hand, substituting (19)
into (12b), in view of (17), we obtain

∂ρ�

∂t
+ ∇ · ((

Ax + Āx̄ρ� + BB ′∇λ
)
ρ�

) − 1

2
tr

(
BB ′∇2ρ�

)

= ∂ρ̂

∂t
− ∇ρ̂ · ((

A + Ā
)
y + BB ′m

)

+∇ · ((
Ax + BB ′∇λ

)
ρ̂
) + Ā〈ξ, ρ̂ (t, ξ − y)〉 · ∇ρ̂ − 1

2
tr

(
BB ′∇2ρ̂

)

= −∇ρ̂ · (
Āy + BB ′m

) + ∇ · (
BB ′mρ̂

) + Ā〈ξ, ρ̂ (t, ξ − y)〉 · ∇ρ̂ = 0,
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where we referred to (17) in the last step. The fact that ρ� matches the boundary
conditions (12c) follows directly from the definition (19b).On the other hand, plugging
(19) into (12a) yields

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄ρ� + 1

2
tr

(
BB ′∇2λ

)
+ 1

2
∇λ · BB ′∇λ

= ∂λ̂

∂t
− ∇λ̂ · ((

A + Ā
)
y + BB ′m

) + ṁ · x + γ̇

+
(
∇λ̂ + m

)
· (

Ax + Āx̄ρ�

) + 1

2
tr

(
BB ′∇2λ̂

)

+ 1

2

(
∇λ̂ + m

)
· BB ′ (∇λ̂ + m

)

= −∇λ̂ · Āy + ṁ · x + γ̇ +
(
∇λ̂ + m

)
· Āx̄ρ� + m · Ax + 1

2
m · BB ′m = 0.

Therefore (λ, ρ�) in (19) is indeed a solution to (12).
The above construction of a solution to (12) is easy to implement numerically.

The only nontrivial requirement is to compute a Schrödinger bridge, which can be
accomplished using an efficient algorithm [41]. The rest follows explicitly from (19).
This construction is very different to that in [37,38] which relies on an iterative scheme
between ρ and λ. The key factor leading to this simplification is that the mean-field
effect can be decoupled when the dynamics is linear and the running cost quadratic.

Finally, back to Problem 2.1, we assert that with terminal cost

g(x, μ) = − λ̂(1, x − x̄μ) − m(1) · x − γ (1), (20)

we can lead the agents to have terminal distribution ρ1. To this extent, we follow the
strategy in [5] as mentioned earlier in Sect. 2. First fix μ = ρ� with ρ� as in (19b),
and then solve the optimal control problem (5). Since g(x, ρ�(1, ·)) = g(x, ρ1) =
− λ(1, x), we have

E

{∫ 1

0

1

2
‖u(t)‖2dt + g(x, ρ�(1, ·))

}

= E

{∫ 1

0

1

2
‖u(t)‖2dt − λ(1, x(1))

}

= E

{∫ 1

0
[1
2
‖u(t)‖2dt − dλ(t, x(t))] − λ(0, x(0))

}

= E

{∫ 1

0
[1
2
‖u(t)‖2dt − ∂λ

∂t
dt − ∇λ · dx(t) − 1

2
tr(BB ′∇2λ)dt] − λ(0, x(0))

}

= E

{∫ 1

0

1

2
‖u(t) − B ′∇λ(t, x(t))‖2dt

}
− E{λ(0, x(0)}.

Hence, the unique optimal control strategy is u�(t) = B ′∇λ(t, x(t)). It follows from
(12) that the probability distribution of the controlled state x(t) is ρ�. Therefore, with

123



Journal of Optimization Theory and Applications (2018) 179:332–357 341

terminal cost g as in (20) we are able to steer the system to terminal distribution ρ1
providing that the agents follow the equilibrium strategy u = B ′∇λ. Thus, we have
established the following result.

Theorem 3.1 Consider N agents governed by (1) with initial density ρ0. Suppose the
terminal cost in (8) is as in (20). Then, in the Nash equilibrium, the agents will reach
density ρ1 at time t = 1, in the mean-field limit.

Even though Theorem 3.1 is a result in the mean-field limit, it is straightforward
to extend it to N agents systems to establish ε optimality. After all, once the terminal
cost g is fixed, the problem becomes a standard MFG problem. Thus, the rest follows
directly from standard MFG theory [5,36].

In fact, the dependence of g on μ is not necessary. One can simply take g(x, μ) =
g(x) = − λ(1, x). With this terminal cost, we can still conclude that (λ, ρ�) corre-
sponds to a Nash equilibrium as well. This is due to the fact that we fix the density
flow first when we derive a Nash equilibrium. We might need the dependence of g on
μ to conclude the uniqueness of the equilibrium. It is unclear to us if this is the case.

For general Q ≥ 0 in (8), the solution is almost the same. The only difference is
that λ̂, ρ̂ now solve the equations

∂λ̂

∂t
+ ∇λ̂ · Ax + 1

2
tr(BB ′∇2λ̂) + 1

2
∇λ̂ · BB ′∇λ̂ − 1

2
x ′Qx = 0,

∂ρ̂

∂t
+ ∇ · ((Ax + BB ′∇λ̂)ρ̂) − 1

2
tr(BB ′∇2ρ̂) = 0,

ρ̂(0, ·) = ρ̂0, ρ̂(1, ·) = ρ̂1.

This corresponds to a Schrödinger bridge for diffusion processes with killing [40].
Again, the same efficient algorithm is applicable [41].

4 Zero-Noise Limit

In this section, we study the same problem (Problem 2.1), with however vanishing
disturbance. More specifically, we consider a system of N agents with dynamics

dxi (t) = Axi (t)dt + 1

N − 1

∑

j �=i

Āx j (t)dt + Bui (t)dt + √
εBdwi (t),

xi (0) = xi0, i = 1, . . . , N , (21)

where ε > 0 represents the variance of the noise. We are especially interested in the
limit behavior of the solution to Problem 2.1 with dynamics (21) when ε goes to 0.

Following the same arguments as in Sect. 3, we arrive at the coupled PDEs

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄ρ� + ε

2
tr

(
BB ′∇2λ

)
+ 1

2
∇λ · BB ′∇λ = 0, (22a)

123



342 Journal of Optimization Theory and Applications (2018) 179:332–357

∂ρ�

∂t
+ ∇ · ((

Ax + Āx̄ρ� + BB ′∇λ
)
ρ�

) − ε

2
tr

(
BB ′∇2ρ�

)
= 0, (22b)

ρ� (0, ·) = ρ0, ρ� (1, ·) = ρ1. (22c)

The optimal control strategy is given by u(t) = B ′∇λ(t, x(t)) and terminal cost g is
as in (20) with adjusted diffusitivity.

Taking the limit of (22) as ε → 0 gives

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄ρ� + 1

2
∇λ · BB ′∇λ = 0, (23a)

∂ρ�

∂t
+ ∇ · ((

Ax + Āx̄ρ� + BB ′∇λ
)
ρ�

) = 0, (23b)

ρ� (0, ·) = ρ0, ρ� (1, ·) = ρ1. (23c)

With similar analysis as in Sect. 3 we conclude that the above PDEs system has a
(viscosity) solution [42]. However, in this case, we need to resort to OMT instead of
Schrödinger bridge. Indeed, the former is the zero-noise limit of the latter [27,29,30].
The solution (λ, ρ�) to (23) has the form (19) with λ̂ being

λ̂ (t, x) = inf
y

{
λ̂ (0, y) + 1

2
(x − Φ (t, 0) y)′ M (t, 0)−1 (x − Φ (t, 0) y)

}
,

where

λ̂ (0, x) = ψ
(
M−1/2

10 Φ10x
)

− 1

2
x ′Φ ′

10M
−1
10 Φ10x .

The function ψ corresponds to the optimal transport map with prior dynamics ẋ =
Ax + Bu, and marginal distributions ρ̂0 and ρ̂1 after coordinate transformation, see
[27]. It can be computed efficiently. It turns out that the solution to (23) solves the
following problem.

Problem 4.1 Given N agents governed by (21) with ε = 0, and initial probability
density ρ0, find a function g such that, in the Nash equilibrium with cost function (8),
the agents would reach a specified density ρ1 at time t = 1, in the limit as N goes to∞.

With the solution to (23), we can choose a terminal cost as in (20). The corresponding
equilibrium control strategy is u(t, x) = B ′∇λ(t, x). The argument is the same as that
in Sect. 3 and is therefore omitted.

Theorem 4.1 Consider N agents governed by (21) with ε = 0 and initial density ρ0.
Suppose the terminal cost g in (8) is as in (20), then, in the Nash equilibrium, the
agents will reach density ρ1 at time t = 1, in the mean-field limit.

5 Gaussian Case

In the special case when ρ0 and ρ1 are normal (Gaussian) distributions, the solutions
have a nice linear structure. Let the two marginal distributions be
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ρ0 ∼ N [m0,Σ0], ρ1 ∼ N [m1,Σ1],
i.e., Gaussian distributions with, respectively, means m0,m1 and covariances Σ0,Σ1.

When ε = 1, λ̂ in (15) equals

λ̂(t, x) = − 1

2
x ′Π(t)x + 1

2

∫ t

0
tr(BB ′Π(s))ds,

where Π(t) is the solution to the Riccati equation

Π̇(t) = − A′Π(t) − Π(t)A + Π(t)BB ′Π(t) (24)

with boundary condition

Π (0) = Σ
−1/2
0

[
I

2
+ Σ

1/2
0 Φ ′

10M
−1
10 Φ10Σ

1/2
0

−
(
I

4
+ Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0

)1/2
]

Σ
−1/2
0 .

whereΦ10 = Φ(1, 0), M10 = M(1, 0). And so, in view of (20), one choice of terminal
cost is

g(x, μ) = 1

2
(x − x̄μ)′Π(1)(x − x̄μ) − m(1) · x, (25)

where m(t) is as in (18). In the above we have discarded some constant terms as
it does not affect the final result. The resulting optimal strategy for each agent is
u(t, x) = B ′∇λ(t, x), which is a linear state feedback.

Theorem 5.1 Consider N agents governed by (1) with initial distribution ρ0 ∼
N [m0,Σ0]. Suppose the terminal cost in (8) is (25). Then, in the Nash equilibrium,
the agents will reach density ρ1 ∼ N [m1,Σ1] at time t = 1, in the mean-field limit.

Following the discussion in Sect. 4, the solution to the problem with noise intensity
ε is almost identical to the above except that, the initial condition of theRiccati Eq. (24)
becomes

Πε (0) = Σ
−1/2
0

[
ε I

2
+ Σ

1/2
0 Φ ′

10M
−1
10 Φ10Σ

1/2
0

−
(

ε2 I

4
+ Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0

)1/2
]

Σ
−1/2
0 .

Taking the limit as ε → 0 we obtain the solution to the deterministic problem, which
corresponds to the initial condition

Π0 (0) = Σ
−1/2
0

[
Σ

1/2
0 Φ ′

10M
−1
10 Φ10Σ

1/2
0

−
(
Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0

)1/2]
Σ

−1/2
0 .
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Since the terminal cost g in (25) is quadratic, once g is fixed, the resulting problem
falls within the class of linear-quadratic mean-field games [6–11]. The optimal policy,
which is a linear state feedback, now follows from standard theory. Our contribution
is to obtain the appropriate value for the terminal cost g in (25).

6 Stationary Case and Invariant Measure

We now turn to the stationary counterpart of Problem 2.1. We would like to design a
cost function that will lead the agents to achieve a given invariant measure ρ, if the
agents follows the equilibrium strategy. In particular, given N agents with identical
dynamics (1) that attempt to minimize their control effort

Ji (ui ) = lim sup
T→∞

1

T
E

{∫ T

0

1

2
‖ui (t)‖2dt

}
,

we look for an extra cost g(x, μ) term added to the above such that, in the equilibrium
state, the agents have some specified distribution. The new cost function is

Ji (ui ) = lim sup
T→∞

1

T
E

{∫ T

0

[
1

2
‖ui (t)‖2 + g(xi (t), μ

N (t))

]
dt

}
(26)

where μN is the empirical distribution (3). Again we are interested in the mean-field
limit of the problem, that is, the case when N goes to ∞.

In this stationary problem an extra running cost is being considered. This is different
from the finite horizon case discussed earlier where a terminal cost is needed instead.
Adding a running cost to dictate the stationary distribution, in an optimal control
setting, has been studied in [33].

Let us first recall some relevant results in the stationary mean-field game problems.
Suppose the N agents with dynamics (1) attempt to minimize the cost function

Ji (ui ) = lim sup
T→∞

1

T
E

{∫ T

0
f (xi (t), ui (t), μ

N (t))dt

}
.

We restrict ourselves to equilibria with symmetric stationary Markovian strategies

ui (t) = φ(xi (t)).

In the mean-field limit, one can adapt the following steps [5]. First, fix a probability
measure μ and then solve the standard stochastic control problem (parametrized by
μ)

φ� = argminφ lim sup
T→∞

1

T
E

{∫ T

0
f (x(t), φ(x(t)), μ(t))dt

}
(27)

subject to the dynamics

dx(t) = Ax(t)dt + Āx̄μdt + Bφ(x(t))dt + Bdw(t). (28)
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Once this standard optimal control problem is solved, the remaining issue is finding
the correct distribution μ such that the stationary distribution of (28) with optimal
control strategy

u�(t) = φ�(x(t))

coincides with μ.
The solution to this MFG problem involves the coupled PDEs [2,5]

1

2
tr

(
BB ′∇2λ

)
+ η − Hρ�

(x,−∇λ) = 0, (29a)

∇ · ((
Ax + Āx̄ρ� + Bφ�

)
ρ�

) − 1

2
tr

(
BB ′∇2ρ�

)
= 0, (29b)

ρ� ≥ 0,
∫

ρ� = 1, (29c)

where η is an unknown constant, u� = φ�(x) is the minimizer of

Hρ(x, p) = min
u∈Rm

{
p′(Ax + Āx̄ρ + Bu) + f (x, u, ρ)

}
.

When the cost function is of the form (26), φ� = B ′∇λ and the PDEs boil down to

1

2
tr

(
BB ′∇2λ

)
+ η + ∇λ · Ax + ∇λ · Āx̄ρ� + 1

2
∇λ · BB ′∇λ − g

(
x, ρ�

) = 0,

(30a)

∇ · ((
Ax + Āx̄ρ� + BB ′∇λ

)
ρ�

) − 1

2
tr

(
BB ′∇2ρ�

)
= 0, (30b)

ρ� ≥ 0,
∫

ρ� = 1. (30c)

The existence of a solution (ρ�, λ) can be shown under some proper assumptions on
g, see [2,5].

Back to our problem, the cost function g in (26) becomes a design parameter, which
is different from the classic MFG setting. Our goal is to choose a function g such that
the corresponding stationary distribution in Nash equilibrium is ρ�. The solution relies
on the same PDEs (30), but with different variables. Given a distribution ρ�, we need to
find λ and the proper cost g that solve (30). It turns out that (30) has solution only for a
small class of distributions ρ�, which we call the feasible distributions. We next focus
on Gaussian distributions. In this case, the feasible distributions can be characterized
by some algebraic equations. The cases of general distributions will be investigated
in future study.

Let ρ� be a Gaussian distribution with mean m and covariance Σ . Plugging the
ansatz

λ(x) = − 1

2
x ′Πx + n′x
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with Π = Π ′, into (30) yields (after discarding constant terms)

− 1

2
tr

(
BB ′Π

) + η + 1

2
x ′ (−Π A − A′Π + ΠBB ′Π

)
x

+ n′ (A − BB ′Π
)
x − m′ Ā′Πx − g

(
x, ρ�

) = 0 (31a)
(
A − BB ′Π

)
Σ + Σ

(
A − BB ′Π

)′ + BB ′ = 0 (31b)
(
A + Ā − BB ′Π

)
m + BB ′n = 0. (31c)

In order for a solution to exist, in view of (31b), it is necessary that Σ satisfies

AΣ + Σ A′ ∈ range(fB), (32a)

where fB(X) = BX ′ + XB ′ is a map from R
n×m to the space of symmetric matrices

(see [33] for other equivalent algebraic conditions). Likewise, by (31c), the mean m
has to satisfy

(A + Ā)m ∈ range(B). (32b)

On the other hand, given (m,Σ) satisfying (32), assuming B has full column rank,
then (31b) has a unique symmetric solution [33]. Therefore, these two conditions (32)
are also sufficient. Now from (31a) it is easy to conclude that a possible cost function
is

g(x, ρ) = 1

2
x ′Qx + n · (A − BB ′Π)x − x̄ρ · Ā′Πx, (33a)

where
Q = −Π A − A′Π + ΠBB ′Π, (33b)

with Π being the unique solution to (31b) and n being a solution to (31c). Therefore,
we have established the following result.

Theorem 6.1 Consider N agents governed by (1). Assuming the Gaussian distribution
N (m,Σ) satisfies (32). If g function in the cost (26) is as in (33), then, in the Nash
equilibrium, the agents have stationary Gaussian distributionN (m,Σ) in the mean-
field limit.

7 Cooperative Game

In this section we shift to a slightly different problem. Given the same interacting
agents’ system (1), we would like to investigate the density-steering problem in the
cooperative game setting. How to select an optimal controller to drive the agents from
given initial distribution ρ0 to terminal distribution ρ1? Again, we restrict ourselves to
equilibriums given by symmetric Markovian strategies in closed-loop feedback form

ui (t) = φ(t, xi (t)), i = 1, . . . , N . (34)
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The cost function we attempt to minimize is the average control energy

J (u) = E

{
1

N

N∑

i=1

∫ 1

0

1

2
‖ui (t)‖2dt

}
. (35)

We are interested in the mean-field limit, namely, the asymptotical behavior of the
solution when N → ∞.

Problem 7.1 Given N agents governed by (1) with initial density ρ0, find a control
strategy (34) with minimum control energy (35) so that the agents will reach density
ρ1 at time t = 1, as N goes to ∞.

The above problem is closely related to the optimal control problem of McKean–
Vlasov dynamics [5,13,14]. The goal in the latter is to minimize a cost function with
possibly a terminal cost while in our problem it becomes to achieve a specified target
distribution with minimum running cost. Our problem reduces to an optimal control
problem ofMcKean–Vlasov dynamics with some proper terminal cost. Therefore, one
contribution of this section is a method to construct such a terminal cost.

The major difference between Problems 7.1 and 2.1 is that the agents are coop-
erative. All the agents always use the same control strategy. A small perturbation on
the control will affect the probability density flow as the perturbation is applied to the
controllers of all the agents, see [5,14] for more discussions on their differences. The
average control energy (35) turns out to be equivalent to relative entropy of the con-
troller systemwith respect to the uncontrolled system [35,43,44]. Therefore, the above
problem can also be viewed as an Schrödinger bridge problem for weakly interacting
particle systems.

Problem 7.1 is formulated as an optimal control problem over the McKean–Vlasov
model

dx(t) = Ax(t)dt + Āx̄(t)dt + Bu(t)dt + Bdw(t), x(0) = x0 ∼ ρ0. (36)

It has the following fluid dynamic formulation. Let ρ(t, ·) be the probability density
of the controlled process x(t), then the optimal control problem can be stated as

inf
ρ,u

∫ 1

0

∫

Rn

1

2
ρ (t, x) ‖u (t, x) ‖2dxdt, (37a)

∂ρ

∂t
+ ∇ · ((Ax + Āx̄ρ + Bu

)
ρ
) − 1

2
tr

(
BB ′∇2ρ

)
= 0, (37b)

ρ (0, ·) = ρ0, ρ (1, ·) = ρ1. (37c)

Proposition 7.1 If there exists (λ, ρ�) satisfying

∂λ

∂t
+ ∇λ · Ax +∇λ · Āx̄ρ� + 1

2
tr

(
BB ′∇2λ

)

+ 1

2
∇λ · BB ′∇λ + Āx · 〈∇λ, ρ�〉=0, (38a)
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∂ρ�

∂t
+ ∇ · ((

Ax + Āx̄ρ� + BB ′∇λ
)
ρ�

) − 1

2
tr

(
BB ′∇2ρ�

)
= 0, (38b)

with boundary conditions

ρ�(0, ·) = ρ0, ρ�(1, ·) = ρ1, (38c)

then (ρ�, u� = B ′∇λ) is a solution to (37).

The above optimality conditions (38) are highly coupled. In general, one may not
expect a solution to exist. But interestingly, as we will see below, (38) always has a
solution. Again, we can construct a solution based on standard Schrödinger bridge
theory.

Let (ρ̂, λ̂) be as in (13)–(16),

m(t) = Φ̄(1, t)′M̂−1
10 (x̄ρ1 − Φ̄10 x̄ρ0) (39a)

and y(t) the solution to

ẏ(t) = (A + Ā)y(t) + BB ′m(t), y(0) = x̄ρ0 , (39b)

where M̂10 = M̂(1, 0) with

M̂(t, s) =
∫ t

s
Φ̄(t, τ )BB ′Φ̄(t, τ )′dτ.

Define

γ (t) = −
∫ t

0
( Āy(s) · m(s) + 1

2
m(s) · BB ′m(s))ds,

λ(t, x) = λ̂(t, x − y(t)) + m(t) · x + γ (t), (40a)

and
ρ�(t, x) = ρ̂(t, x − y(t)), (40b)

then (λ, ρ�) solves (38).
Apparently, (40b) satisfies the boundary conditions (38c). To verify (38b), substitute

(40) into (38b), which gives

∂ρ�

∂t
+ ∇ · ((

Ax + Āx̄ρ� + BB ′∇λ
)
ρ�

) − 1

2
tr

(
BB ′∇2ρ�

)

= ∂ρ̂

∂t
− ∇ρ̂ · ((A+) y + BB ′m

) + ∇ · ((
Ax + BB ′∇λ

)
ρ̂
)

+ Ā〈ξ, ρ̂ (ξ − y)〉 · ∇ρ̂ − 1

2
tr

(
BB ′∇2ρ̂

)

= −∇ρ̂ · (
Āy + BB ′m

) + ∇ · (
BB ′mρ̂

) + Ā〈ξ, ρ̂ (ξ − y)〉 · ∇ρ̂ = 0.
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Similarly, Combing (40) and (38a) yields

∂λ

∂t
+ ∇λ · Ax + ∇λ · Āx̄ρ� + 1

2
tr

(
BB ′∇2λ

)

+ 1

2
∇λ · BB ′∇λ + Āx · 〈∇λ, ρ�〉

= ∂λ̂

∂t
− ∇λ̂ · ((

A + Ā
)
y + BB ′m

)

+ ṁ · x + γ̇ +
(
∇λ̂ + m

)
· (

Ax + Āx̄ρ�

) + 1

2
tr

(
BB ′∇2λ̂

)

+ 1

2

(
∇λ̂ + m

)
· BB ′ (∇λ̂ + m

)
+ Āx · 〈∇λ̂ + m, ρ�〉

= −∇λ̂ · Āy + ṁ · x + γ̇ +
(
∇λ̂ + m

)
· Āx̄ρ�

+m · Ax + 1

2
m · BB ′m + Āx · m + Āy · 〈∇λ̂, ρ�〉

= Āy · 〈∇λ̂ (ξ − y) , ρ̂ (ξ − y)〉 = 0.

Therefore, the pair (ρ�, u� = B ′∇λ) is indeed a solution to (38).
Next we prove that this pair (ρ�, u�) provides a solution to the optimal control

problem (37). Let ū(t) = E{u(t)}, then, by (36), we have

dx̄(t) = (A + Ā)x̄(t)dt + Bū(t)dt (41)

and
d(x̃(t)) = Ax̃(t)dt + Bũ(t)dt + Bdw, (42)

where x̃ = x − x̄ and ũ = u − ū. The control energy can then be decomposed into
two parts as

E

{∫ 1

0

1

2
‖u(t)‖2dt

}
=

∫ 1

0

1

2
‖ū(t)‖2dt + E

{∫ 1

0

1

2
‖ũ(t)‖2dt

}
.

These two parts of control energy, corresponding to ū and u − ū, respectively, can be
minimized independently since the dynamics (41) and (42) are decoupled. We next
show that

(i) ū� minimizes ∫ 1

0

1

2
‖ū(t)‖2dt (43)

(ii) ũ� minimizes

E

{∫ 1

0

1

2
‖ũ(t)‖2dt

}
. (44)

For (i), recalling

u�(t) = B ′∇λ = B ′∇λ̂(t, x(t) − y(t)) + B ′m(t),
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we have

ū�(t) = B ′
E{∇λ̂(t, x(t) − y(t))} + B ′m(t)

= B ′〈∇λ̂(t, x − y(t)), ρ�(t, x)〉 + B ′m(t) = B ′m(t).

Using standard optimal control, it is easy to see that ū�(t) minimizes (43) subject to
(41) and boundary conditions

x̄(0) = x̄ρ0 , x̄(1) = x̄ρ1 .

For (ii), we note

ũ�(t) = B ′∇λ̂(t, x(t) − y(t)) = B ′∇λ̂(t, x(t) − x̄(t)) = B ′∇λ̂(t, x̃(t)).

The rest is an immediate consequence of the Schrödinger bridge theory [26,27]. Hence
we have established the following result.

Theorem 7.1 The pair (ρ�, u� = B ′∇λ) with ρ�, λ as in (40) solves (37).

As discussed earlier, by adding a proper terminal cost to (35), our problem reduces
to an optimal control problem of McKean–Vlasov dynamics. One such choice of
terminal cost is − λ(1, ·).

7.1 Gaussian Case

When both of the marginals ρ0 and ρ1 are normal distributions, the optimal control
u� is a linear-state feedback control. Let the two marginal distributions ρ0 and ρ1 be

ρ0 ∼ N [m0,Σ0], ρ1 ∼ N [m1,Σ1].

By Theorem 7.1, we need only to compute λ as in (40a), which is

λ(t, x) = λ̂(t, x − y(t)) + m(t) · x + γ (t).

The function λ̂ corresponds to the Schrödinger bridge (14), which satisfies [32]

∇λ̂(t, x) = −Π(t)x,

where Π(t) is the solution to the Riccati equation

Π̇(t) = − A′Π(t) − Π(t)A + Π(t)BB ′Π(t)
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with boundary condition

Π (0) = Σ
−1/2
0

[
I

2
+ Σ

1/2
0 Φ ′

10M
−1
10 Φ10Σ

1/2
0

−
(
I

4
+ Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0

)1/2 ]
Σ

−1/2
0 .

It follows that the optimal control is

u�(t) = B ′∇λ(t, x(t)) = − B ′Π(t)(x(t) − y(t)) + B ′m(t)

= − B ′Π(t)x(t) + B ′n(t),

where

n(t) = Π(t)y(t) + m(t)

= Π(t)Φ̄(t, 1)M̂(1, t)M̂−1
10 Φ̄10m0

+Π(t)M̂(t, 0)Φ̄(1, t)′M̂−1
10 m1 + Φ̄(1, t)′M̂−1

10 (m1 − Φ̄10m0).

7.2 Zero-Noise Limit

We study the optimal steering problem for McKean–Vlasov model (36) with reduced
disturbance

√
εdw(t), namely,

dx(t) = Ax(t)dt + Āx̄(t)dt + Bu(t)dt + √
εBdw(t), x(0) = x0. (45)

In particular, we are interested in the zero-noise limit of this problem. That is, optimal
steering problem for dynamics

dx(t) = Ax(t)dt + Āx̄(t)dt + Bu(t)dt, x(0) = x0. (46)

We show that the probability flow of the solution to the latter is the limit of that of the
former as ε goes to 0. This is achieved in a constructive manner.

Let us start with the steering problem for the dynamics

dx(t) = Ax(t)dt + Bũ(t)dt

with marginals ρ̂0 and ρ̂1. This problem has been studied in [27]. The solution is

ũ(t, x) = B ′Φ(1, t)′M−1
10 (T ◦ T−1

t (x) − Φ10(T
−1
t (x))) (47)

where T is the generalized optimal mass transport map [27] with marginals ρ̂0, ρ̂1,
and

Tt (x) = Φ(t, 1)M(1, t)M−1
10 Φ10x + M(t, 0)Φ(1, t)′M−1

10 T (x).
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The corresponding distribution flow is

ρ̂(t, ·) = (Tt )�ρ̂0.

Note that ρ̂ and ũ satisfy the continuity equation

∂ρ̂

∂t
+ ∇ · ((Ax + Bũ)ρ̂) = 0.

We claim that
u�(t, x) = ũ(t, x − y(t)) + B ′m(t) (48)

with y,m in (39), is the optimal control strategy for the steering problem for the
dynamics (46) and the corresponding distribution flow is

ρ�(t, x) = ρ̂(t, x − y(t)). (49)

We shall skip the proof as it is similar to the case with disturbance [(see (40)–(44)].
The solution to the density-steering problemwith dynamics (45), weakly converges

to ρ� as ε goes to 0. This follows directly from the fact a Schrödinger bridge converges
to the corresponding optimal transport solution [27] as ε goes to 0.

8 Examples

Consider N agents with dynamics

dxi (t) = xi (t)dt − 2

N − 1

∑

j �=i

x j (t)dt + dwi (t), 1 ≤ i ≤ N .

The two marginal distributions ρ0 and ρ1 are two normal distributions

ρ0 ∼ N [1, 4], ρ1 ∼ N [−4, 1].

8.1 Non-cooperative Game

One choice of terminal cost that will steer the agents from ρ0 to ρ1 is

g (x, μ) = 0.9805
(
x − x̄μ

)2 + 4.3679x .

Figure 1 showcases the evolution of the probability density in the Nash equilib-
rium. To show that the distribution of the agents would evolve according to Fig. 1,
we simulated the dynamics for a system with N =20,000 agents under the optimal
strategy. Figures 2 and 3 depict the empirical distributions of the particles at time
t = 0 and t = 1. They match with the theoretical distributions ρ0 and ρ1 very well.
We also show the empirical mean of these particles in Fig. 4, which perfectly matches
the theoretical result.
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Fig. 1 Time evolution of
probability densities

Fig. 2 Empirical distribution of
x(0)

Fig. 3 Empirical distribution of
x(1)
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Fig. 4 Time evolution of mean
x̄(t)

Fig. 5 Time evolution of
probability densities

Fig. 6 Empirical distribution of
x(0)
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Fig. 7 Empirical distribution of
x(1)

Fig. 8 Time evolution of mean
x̄(t)

8.2 Cooperative Game

Figure 5 depicts the time evolution of the probability densities with these twomarginal
distributions in the cooperative game setting.

Similarly, we ran some simulations for a particle system with N =20,000 and
obtained Figs. 6 and 7 as the empirical distributions of the agents at time t = 0 and
t = 1. We also show the empirical mean of these particles in Fig. 8. Clearly the mean
is different to the Nash equilibrium in the non-cooperative game setting.

9 Conclusions

We introduce a paradigm to steer a large number of agents from one distribution to
another. The problem lies in the intersection of MFG, OMT and optimal control. We
study such problems for linearly weakly interacting agents with quadratic running
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cost and solve the problem using tools from all these three areas. Results for several
extensions such as stationary and cooperative game problems are also presented. In
the future, we will focus on extending the results in this paper to more general running
cost functions. We expect this paradigm to bring in a new dimension to the study and
applications of MFG and OMT.
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