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Abstract
In this article, two types of fractional local error bounds for quadratic complementarity
problems are established, one is based on the natural residual function and the other
on the standard violation measure of the polynomial equalities and inequalities. These
fractional local error bounds are given with explicit exponents. A fractional local
error bound with an explicit exponent via the natural residual function is new in
the tensor/polynomial complementarity problems literature. The other fractional local
error bounds take into account the sparsity structures, from both the algebraic and
the geometric perspectives, of the third-order tensor in a quadratic complementarity
problem. They also have explicit exponents, which improve the literature significantly.
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1 Introduction

Quadratic complementarity problems (QCPs for short) are natural extensions of linear
complementarity problems (LCPs) [1] and important examples of nonlinear comple-
mentarity problems (NCPs) [2], as well as serving as an important bridge linking them.
More importantly, QCPs are useful mathematical models for a class of three person
non-cooperative games [3,4], the generalized Markowitz portfolio problems [5], etc.

QCPs form a special class of NCPs, with the nonlinear functions being quadratic
polynomial mappings. A quadratic polynomial mapping can be concisely represented
by a third-order tensor, a matrix together with a vector, as a linear mapping can
be completely determined by a matrix and a vector. Higher-order tensors have been
attracting increasingly attention. Powerful tools parallel to those for matrices, such
as spectral theory and tensor decompositions, are developed for treating tensors [6],
avoiding the traditional analysis for polynomials via a vast number of monomials.
The tensor formulation and these fruitful analysis tools motivate the recent trend on
studying tensor complementarity problems (TCPs) (see [7–13] and references therein),
and polynomial complementarity problems (PCPs) [5,14,15]. Both the difficulties and
variety of new discoveries of TCPs and PCPs lie in investigations on tensors. Generally
speaking, the difficulties are huge, when moving from matrices to third-order tensors.
It becomes much more gentler, when moving further to higher-order tensors. Thus,
the study on QCPs is of investigational necessity, and also quite meaningful, which
can even broaden the known knowledge boundary of NCPs [5]. This is one reason for
focusing on QCPs in this paper.

This study is a follow-up of the authors [5], in which basics of the solution set for
a QCP are studied, such as the existence, compactness and uniqueness. As is well-
known [2], another fundamental building block for the theory of solution set of a
mathematical optimization problem is error bound analysis. It is the foundation for
both perturbation analysis of the solution set and algorithmic designs together with
convergence analysis [2].

In the literature, several kinds of error bounds were established for LCPs and NCPs
[1,2]. It is well known that the solution set of an LCP is a polyhedral set. Following
the seminal work by Hoffman [18], a polyhedral set has a (global) Lipschitz error
bound [2,16,17], while the case becomes subtle for NCPs. Usually, structures of the
underlying problems must be taken into consideration to achieve certain types of error
bounds, e.g., Lipschitzian, Hölderian; see [2,19] and references therein. In particular,
when the defining functions of an NCP are polynomials, error bounds can be derived
from error bound analysis for polynomial systems, which has been an active research
frontier [19–28].

In general, hardly a global or even a local Lipschitz error bound can be established
for a polynomial system. Then, alternatively people have been trying to give various
types of local or global Hölderian-type error bounds. The most important ingredient in
a Hölderian-type error bound is the exponent over the residual measure. The existence
of the exponents in theseHölderian-type error bounds can usually be guaranteed by the
classical Łojasiewicz inequality for semialgebraic functions [24], while the explicit
values of these exponents are unknown [2,25,29]. In the literature, systems of quadratic
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systems1 are studied extensively by Luo and Sturm [28], in which a 1
2 Hölderian-type

error bound was given under suitable conditions.
Very recently, by a careful study on the curve expansion for polynomials, an explicit

bound for Łojasiewicz’s exponent was given by D’Acunto and Kurdyka [21]; in turn,
Hölderian-type error bounds with explicit exponents have being derived for a given
system of polynomial inequalities and equalities in terms of the degrees of these
polynomials, the number of variables and the numbers of equalities and inequalities.
(These are all together the parameters of the system.) These exponents are usually
fractional numberswith the denominator being exponential functions of the parameters
of the given systems. Thus, these are called fractional error bounds. Along this line,
one advance is the work by Li, Mordukhovich and Pham [26] (Lemmas 2.1 and 2.2). If
we apply their results to QCPs, then we get a fractional error bound with the exponents
being of order 1

93n
(Proposition 4.1).

The rest article is organized as follows: Preliminaries on error bounds are given
in Sect. 2, including the main error bounds in [26]. An error bound via the natural
residual function with explicit fractional exponent is established in Sect. 3. To the
best knowledge of the authors, this is the first error bound for QCP (and even TCP)
via the natural residual function with explicit fractional exponent. Error bounds via
polynomial reduction are established in Sect. 4. Section 4.1 is a direct application of the
known results to QCPs, setting the ground standard error bounds of QCPs by the state-
of-the-art error bound theory of polynomial systems. A general result for polynomial
system is given in Sect. 4.2 first, which is of independent interest and has potential
applications in elsewhere.With the general result, a standard polynomial reduction and
a reduction based on sparsity of the underlying third-order tensor in the QCP are given
in Sect. 4.3. Section 4.4 uses tensor decomposition, and it is a sparsity exploration from
a geometric perspective. We will see that the error bounds established by polynomial
reduction (with exponents of order 1

63n
) improve significantly the ground standard

results in Sect. 4.1. Some final remarks are given in the last section.

2 Preliminaries

Given a QCP [5], in whose problem settingA ∈ R
n×n×n is a given third-order tensor,

B ∈ R
n×n a given matrix, and c ∈ R

n a given vector, the solution set of this QCP,
denoted also by sol(A, B, c), is

S := {x : x ≥ 0, Ax2 + Bx + c ≥ 0, xT(Ax2 + Bx + c) = 0}, (1)

where Ax2 is an n-vector with its i-th entry being
∑n

j,k=1 ai jk x j xk for all i ∈
{1, . . . , n}. Let ΠR

n+(x) denote the projection of x onto R
n+, the nonnegative orthant

in R
n+. Then, with F(x) := Ax2 + Bx + c, x ∈ S is equal to (cf. [2])

x ∈ {
x ∈ R

n : x = ΠR
n+(x − F(x))

}
,

1 Actually, an arbitrary system of polynomial equalities and inequalities can be reduced to a system of
quadratic polynomial equalities and inequalities via polynomial reduction. This technique will be presented
in Sect. 4.
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the set of fixed points of the mapping x �→ ΠR
n+(x − F(x)). The natural residual

function of the QCP (1) is then defined as

r(x) := ‖x − ΠR
n+(x − F(x))‖ for all x ∈ R

n .

It is well known and easily checked that an x ∈ R
n is in S, if and only if r(x) = 0.

Assuming S is nonempty, we are interested in whether there exist scalars κ > 0 and
β > 0 such that the bound dist(x, S) ≤ κr(x)β holds for all x ∈ R

n or all x ∈ K
with some subset K of R

n . Actually, this follows easily from Łojasiewicz’s inequality
for semialgebraic functions [20], since both the distance function dist(x, S) and the
natural residual function are semialgebraic. However, though powerful as it is, the
classical result only guarantees the existence of the exponent β, not an explicit value
for it. It is often difficult to determine the corresponding exponent β in Łojasiewicz’s
gradient equality, and it is typically unknown [25]. Our first concern in this article is
giving an explicit exponent β for the error bound via the natural residual function.

From another perspective, the solution sets for QCPs can be interpreted as the
solution sets for systems of polynomial inequalities and equalities

gi (x) ≤ 0, i ∈ {1, . . . , r}, and h j (x) = 0, j ∈ {1, . . . , s},

where gi , h j : R
n → R for i ∈ {1, . . . , r} and j ∈ {1, . . . , s} are real-valued

polynomial functions on R
n . For γ ∈ R, it is defined [γ ]+ := max{0, γ } and extends

component-wisely to vectors in R
n , and [x]− := x − [x]+. It is easy to see that

[x]+ = ΠR
n+(x). One of the advances in studying error bounds for polynomial systems

is the following result by Li, Mordukhovich and Pham [26, Theorem 3.5].2

Lemma 2.1 Let r and s be nonnegative integers, and

T := {x ∈ R
n : gi (x) ≤ 0, i ∈ {1, . . . , r}, and h j (x) = 0, j ∈ {1, . . . , s}},

where gi and h j are real polynomials on R
n with degree at most d. Let x̄ ∈ T . Then,

there are numbers c, ε > 0 such that

dist(x, T ) ≤ c

⎛

⎝
r∑

i=1

[gi (x)]+ +
s∑

j=1

|h j (x)|
⎞

⎠

1
R(n+r+s,d+1)

(2)

for all x such that ‖x − x̄‖ ≤ ε, where the quantity R is defined as

R(n, d) :=
{
1, if d = 1,
d(3d − 3)n−1, if d ≥ 2.

(3)

2 During the second revision, one referee kindly pointed out that an improvement can be given, if instead
using Theorem 3.3 in the recent monograph by Hà and Pham [27]. The exponent in (2) can be improved to

1
R(n+r+s−1,d+1)
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If K ⊂ R
n is compact, then there exists c̄ > 0 such that

dist(x, T ) ≤ c̄

⎛

⎝
r∑

i=1

[gi (x)]+ +
s∑

j=1

|h j (x)|
⎞

⎠

1
R(n+r+s,d+1)

for all x ∈ K .

The exponent in Lemma 2.1 involves the number of equality and inequality con-
straints. Actually, we can combine all the equalities into one with the sacrifice of the
degree being doubly increased [26, Theorem 3.6].

Lemma 2.2 Let T be as that in Lemma 2.1 and x̄ ∈ T . Then, there are numbers
c, ε > 0 such that

dist(x, T ) ≤ c

⎛

⎝
r∑

i=1

[gi (x)]+ +
s∑

j=1

|h j (x)|
⎞

⎠

2
R(n+r ,2d)

(4)

for all x such that ‖x − x̄‖ ≤ ε, where the quantity R is defined as (3). If K ⊂ R
n is

compact, then there exists c̄ > 0 such that

dist(x, T ) ≤ c̄

⎛

⎝
r∑

i=1

[gi (x)]+ +
s∑

j=1

|h j (x)|
⎞

⎠

2
R(n+r ,2d)

for all x ∈ K .

3 Error Bound via Natural Residual Function

In this section, we study error bound via the natural residual function with explicit
exponent. Recall that F(x) := Ax2 + Bx + c =: ( f1(x), . . . , fn(x))T, and S = {

x ∈
R
n : x = ΠR

n+(x−F(x))
}
. The projectionΠR

n+(x−F(x)) can be equivalently written
as the unique z ∈ R

n such that

(
z − x + F(x)

)
i ≥ 0 and zi = 0 for all i ∈ I (x), (5)

zi ≥ 0 and
(
z − x + F(x)

)
i = 0 for all i /∈ I (x), (6)

where

I (x) := {
i ∈ {1, . . . , n} : xi − fi (x) ≤ 0

} = {
i ∈ {1, . . . , n} : [

ΠR
n+(x − F(x))

]
i = 0

}
.

An index subset I ⊂ {1, . . . , n} is active at a vector x ∈ R
n , if I ⊆ I (x). If I is

active at x, then (x, z = ΠR
n+(x − F(x))) satisfies the systems (5) and (6) with I (x)

being replaced by I .
In the following, for some ε > 0, we first discuss the boundedness of the set

V (ε) := {x ∈ R
n : ‖x − ΠR

n+(x − F(x))‖ ≤ ε}. (7)
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For a tensor A ∈ R
n×n×n , its i-th slice [ai ··] is an n × n matrix, denoted as Ai , for

all i ∈ {1, . . . , n}. The next definition can be found in [11].

Definition 3.1 A tensor A ∈ R
n×n×n is called an R0 tensor, if the system

xTAix ≥ 0, if xi = 0,
xTAix = 0, if xi > 0,

does not have a solution in R
n+ \ {0}.

Proposition 3.1 If A is an R0 tensor, then the set V (ε0) is bounded for some ε0 > 0.

Proof Suppose on the contrary that there is a sequence {xk : xk ∈ V ( 1k )} with k =
1, 2, . . . such that ‖xk‖ → ∞ as k → ∞. Without loss of generality, we assume that
x̃k := xk‖xk‖ → x̃. As ΠR

n+(xk − F(xk)) ≥ 0, it follows that

0 �= x̃ ≥ 0. (8)

Actually, if x̃i < 0, then (xk)i → −∞ as k → ∞. Thus, when k is sufficiently large,

1

k
≥ ‖x − ΠR

n+(x − F(x))‖ ≥ ∣
∣(xk)i − [(xk)i − fi (xk)]+

∣
∣ ≥ ∣

∣(xk)i
∣
∣,

which is a contradiction. We also have that for each i ∈ {1, . . . , n}, the sequence
{(xk)i }∞k=1 is bounded from below, i.e., there exists a constant M such that

(xk)i ≥ M (9)

for all k = 1, 2, . . . .
Next, we show that fi (xk) is bounded from −∞ for each i ∈ {1, . . . , n}. Actually,

if fi (xk) → −∞ (take a subsequence if necessary), then with (9) we must have that

∣
∣(xk)i − [(xk)i − fi (xk)]+

∣
∣ ≥ | fi (xk)| − 2M → ∞ as k → ∞,

which is a contradiction. Therefore, there exists a constant K such that

F(xk) ≥ K e (10)

for all k = 1, 2, . . . , where e is the vector of all ones. Thus, we must have that

lim
k→∞

Ax2k
‖xk‖2 = Ax̃2 ≥ 0. (11)

If x̃i > 0, then we must have that (xk)i → ∞ as k → ∞. It follows from

∣
∣(xk)i − [(xk)i − fi (xk)]+

∣
∣

‖xk‖ ≤ 1

k‖xk‖
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and (10) that fi (xk)
‖xk‖ → 0. Consequently, we have x̃TAi x̃ = 0. Thus, this, together with

(8) and (11), implies that the system

xTAix ≥ 0, if xi = 0,
xTAix = 0, if xi > 0,

has a solution x̃. This is a contradiction to the hypothesis that A is an R0 tensor.
Therefore, the set V (ε0) should be bounded for some ε0 > 0. �
Lemma 3.1 Let A be an R0 tensor and sol(A, B, c) �= ∅. Then, there exists a scalar
ε > 0 such that for any x ∈ {x ∈ R

n : ‖x − ΠR
n+(x − F(x))‖ ≤ ε}, I (x) is active at

some x∗ ∈ sol(A, B, c).

Proof Let ε0 > 0 be a scalar such that V (ε0) is bounded by Proposition 3.1. There
exists some ε ≤ ε0 satisfies the conclusion. Suppose on the contrary that there exist
an I ⊆ {1, . . . , n} and a sequence {x(1), x(2), . . . } satisfying I (x(i)) = I for all
i = 1, 2, . . . , and x(i) − ΠR

n+(x(i) − F(x(i))) → 0, and no x∗ ∈ sol(A, B, c) for at
which I is active.

For each i = 1, 2, . . . , denote by z(i) := ΠR
n+(x(i) − F(x(i))). It follows from the

assumption that the sequence {(x̂(i), ẑ(i))} is bounded.
By continuity, every limit point (x◦, z◦) of this sequence satisfies

(
z◦ − x◦ + F(x◦)

)
i ≥ 0 and z◦i = 0 for all i ∈ I ,

z◦i ≥ 0 and
(
z◦ − x◦ + F(x◦)

)
i = 0 for all i /∈ I , and x◦ − z◦ = 0.

Consequently, x◦ = ΠR
n+(x◦ − F(x◦)), or equivalently x◦ ∈ S, and I is active at x◦,

which is an immediate contradiction to the contradictory hypothesis. �
Theorem 3.1 Suppose that the solution set S is nonempty andA is an R0 tensor. Then,
for any nonempty compact set K ⊂ R

n, there exists a scalar κ > 0 such that

dist(x, S) ≤ κ‖x − ΠR
n+(x − F(x))‖max{ 1

3·65n−1 , 1
2·93n−1 }

(12)

for all x ∈ K.3

Proof Let ε ∈]0, 1[ be a scalar smaller than the scalar feasible to Lemma 3.1. If we
can show that there exists a scalar κ1 > 0 such that

dist(x, S) ≤ κ1‖x − ΠR
n+(x − F(x))‖max{ 1

3·65n−1 , 1
2·93n−1 }

(13)

for all x ∈ V (ε) = {x ∈ R
n : ‖x − ΠR

n+(x − F(x))‖ ≤ ε}, then (12) will follow.
Actually, given (13) for x ∈ V (ε), it remains to show that (12) holds for all x ∈
3 The first version only gave the proof for x ∈ V (ε). One referee suggested the current version.
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K \ V (ε). If V (ε) ⊆ K , we are done. In the following, we assume that V (ε) � K .
Define

M := sup
x∈K

dist(x, S).

As the function dist(·, S) is continuous and K is compact, we have M < ∞. Let
α := max{ 1

3·65n−1 ,
1

2·93n−1 }. Then, we have

dist(x, S) ≤ M ≤ M

εα
εα ≤ M

εα
‖x − ΠR

n+(x − F(x))‖α

for all x ∈ K \ V (ε). Taking κ to be the maximum of κ1 and M
εα , the conclusion then

follows. Therefore, in the following, we establish (13) for all x ∈ V (ε).
For any given x ∈ {x ∈ R

n : ‖x − ΠR
n+(x − F(x))‖ ≤ ε}, we define z :=

ΠR
n+(x − F(x)). It follows from (5) and (6) that

(
z − x + F(x)

)
i ≥ 0 and zi = 0 for all i ∈ I (x),

and zi ≥ 0 and
(
z − x + F(x)

)
i = 0 for all i /∈ I (x). (14)

It follows from Lemma 3.1 that the following system in (x◦, z◦) is consistent:
(
z◦ − x◦ + F(x◦)

)
i ≥ 0 and z◦i = 0 for all i ∈ I (x), and

z◦i ≥ 0 and
(
z◦ − x◦ + F(x◦)

)
i = 0 for all i /∈ I (x), and x◦ − z◦ = 0,(15)

since there exists a solution of QCP (i.e., a point in S) at which I (x) is active. Thus,
the set of solutions to the system (15), denoted by T , is nonempty. It is also easy to
see that every solution (x◦, z◦) of this system satisfies x◦ ∈ S. Note that system (15) is
a polynomial system with 2n equalities and n inequalities with the maximum degree
being 2. It then follows from Lemmas 2.1 and 2.2 that

dist((x, z), T ) ≤ κ2‖x − z‖max{ 1
3·65n−1 , 1

2·93n−1 }

for some κ2 > 0. Since T is a closed set, there exists (x̄, z̄) ∈ T such that

dist((x, z), T ) = ‖(x, z) − (x̄, z̄)‖.

As x̄ ∈ S, we thus have

dist(x, S) ≤ dist((x, z), T ) ≤ κ2‖x − ΠR
n+(x − F(x))‖max{ 1

3·65n−1 , 1
2·93n−1 }

.

Note that κ2 in the above inequality depends on x (actually on I (x)), since it depends
on the system (15). While the set V (ε) is bounded and thus compact for each given
ε > 0, there are only finitely many index sets I (x)’s. Thus, there are only finitely
many systems of the form (15) determined by the index sets. For each one of such
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systems, an application of Lemmas 2.1 and 2.2 to the compact set V (ε) will yield a
κ2, which is valid for all points in V (ε) with this given index set; and then taking a
maximum of these finitely many κ2’s will give a universal κ1 which is valid for each
x ∈ V (ε). The proof is complete. �

4 Error Bounds via Polynomial Reduction

In this section, we first give the ground standing error bound for QCPs from [26], then
study a general case on polynomial systems, and finally apply it to the solution sets of
QCPs.

4.1 First Result of Error Bound for QCP

Since the solution set of a QCP can bewritten down as a system of polynomial equality
and inequalities, Lemmas 2.1 and 2.2 can apply to the solution set of a QCP directly,
and give a ground standing error bound immediately.

Proposition 4.1 Let S be given in (1) and nonempty, and x̄ ∈ S. There are positive
κ > 0 and ε > 0 such that

dist(x, S) ≤ κ

(

[−x]+ + [−Ax2 − Bx − c]+ + ∣
∣xT(Ax2 + Bx + c)

∣
∣
)β

for all x such that ‖x − x̄‖ ≤ ε, where

β := max

{
1

4 · 93n ,
1

3 · 153n−1

}

. (16)

It is not hard to find that the maximum in the exponent (16) always takes 1
4·93n ,

since for n ≥ 2 it holds 1
4·93n > 1

3·153n−1 . From this perspective, the error bound given
in [26, Theorem 3.5] (cf. Lemma 2.1) is more applicable to the solution sets of QCPs
than [26, Theorem 3.6] (cf. Lemma 2.2).

Despite the significance of 1
4·93n over 1

3·153n−1 , the denominator is of order 93n ,
which increases rapidly. On the one hand, we cannot expect to derive an error bound
for a polynomial system avoiding the order dn for a denominator in general (cf. [26,
Example 3.2]); on the other hand, we hope to reduce the denominator as much as
possible. Note that the base 9 in 93n comes from 3× (d + 1) − 3 (cf. (3)) with d = 3
for the defining polynomial system of QCP (1). Toward a closer look at this system (1),
we see that there is only one polynomial equality with degree 3, the other polynomial
inequalities have degree one or two. Thus, one expects that a careful study on the
system will result in a denominator of order 6n . This will be discussed in the sequel,
and some results will be established.
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4.2 Polynomial Reduction

Let

T :=
{

x ∈ R
n :

pt (x) ≤ 0 for t ∈ {1, . . . , r},

fi (x) = ∑ni
j=1gi, j (x)hi, j (x) = 0 for i ∈ {1, . . . , s}

}

(17)

be the solution set of a system of polynomial inequalities and equalities with positive
integers ni ’s, r , s, and max{deg(pt ) : t ∈ {1, . . . , r}} = w for some nonnegative
integerw, max{deg(gi, j ) : j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}} = p, andmax{deg(hi, j ) :
j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}} = q, for some nonnegative integers p, q. We assume
that q + 1 ≤ p, and max{deg( fi ) : i ∈ {1, . . . , s}} = pq. Then, a direct application
of Lemmas 2.1 and 2.2 to T yields a local error bound with an explicit exponent

max

{
1

R(n + r + s,max{pq, w} + 1)
,

2

R(n + r , 2max{pq, w})
}

. (18)

We can establish another local error bound for T via polynomial reduction as the next
result.

Theorem 4.1 Let T �= ∅ be given in (17) and x̄ ∈ T . There are positive κ > 0 and
ε > 0 such that

dist(x, T ) ≤ κ

( r∑

t=1

[pt (x)]+ +
∑

i

| fi (x)|
)γ

,

for all x such that ‖x − x̄‖ ≤ ε, where Ns = n1 + · · · + ns and

γ := max

{
1

R(n + 2Ns + r + s,max{p, w} + 1)
,

2

R(n + Ns + r , 2max{p, w})
}

.

(19)

Proof Let

V :=

⎧
⎪⎪⎨

⎪⎪⎩
(x, u) ∈ R

n × R
Ns :

pt (x) ≤ 0 for all t ∈ {1, . . . , r},
ni∑

j=1
ui, j hi, j (x) = 0

gi, j (x) − ui, j = 0
for all j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}

⎫
⎪⎪⎬

⎪⎪⎭
.

Note that for the defining equalities and inequalities in V , the polynomials all have
degrees being not greater than max{q + 1, p, w} ≤ max{p, w}.

Obviously, V �= ∅ whenever T �= ∅. Actually, let x ∈ T . Then, (x,u) ∈ V with

ui, j := gi, j (x) for all j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}.
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Note that the defining system in V has r inequalities, s + Ns equalities in n + Ns

variables. Consequently, by Lemmas 2.1 and 2.2, there exist κ > 0 and ε1 > 0 such
that

dist((x,u), V ) ≤ κ

⎛

⎝
r∑

t=1

[pt (x)]+ +
∑

i

∣
∣
∣
∣

∑

j

ui, j hi, j (x)

∣
∣
∣
∣ +

∑

i, j

|gi, j (x) − ui, j |
⎞

⎠

γ

for all (x,u) such that ‖(x,u) − (x,u)‖ ≤ ε1 with γ given by (19).
Since gi, j ’s are polynomials, there exists ε > 0 such that for allx such that‖x−x‖ ≤

ε, we have

‖x − x‖2 +
∑

i, j

(gi, j (x) − ui, j )
2 = ‖x − x‖2 +

∑

i, j

(gi, j (x) − gi, j (x))2 ≤ ε21 .

Therefore, for any x such that ‖x − x‖ ≤ ε, we have that ‖(x,u) − (x,u)‖ ≤ ε1 with

ui, j = gi, j (x) for all j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}. (20)

Since V is a closed set, the distance function to V is always attainable. It follows that
for all x such that ‖x − x‖ ≤ ε with u as in (20), there exists (x̂, û) ∈ V such that

‖(x,u) − (x̂, û)‖ ≤ κ

⎛

⎝
r∑

t=1

[pt (x)]+ +
∑

i

∣
∣
∑

j

ui, j hi, j (x)
∣
∣ +

∑

i, j

|gi, j (x) − ui, j |
⎞

⎠

γ

= κ

⎛

⎝
r∑

t=1

[pt (x)]+ +
∑

i

∣
∣
∑

j

gi, j (x)hi, j (x)
∣
∣

⎞

⎠

γ

= κ

(
r∑

t=1

[pt (x)]+ +
∑

i

| fi (x)|
)γ

.

On the other hand, (x̂, û) ∈ V implies that

ûi, j := gi, j (x̂) for all j ∈ {1, . . . , ni }, i ∈ {1, . . . , s}.

Thus, x̂ ∈ T . Hence,

dist(x, T ) ≤ ‖x − x̂‖ ≤ ‖(x,u) − (x̂, û)‖ ≤ κ

( r∑

t=1

[pt (x)]+ +
∑

i

| fi (x)|
)γ

,

which is the claimed local error bound for the set T . �
The technique in Theorem 4.1 is polynomial reduction, i.e., by reducing the equality

constraints in (17) into equalities with lower degrees with the cost of the increased
number of equalities.
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By polynomial reduction, the maximum degree of polynomial equalities is reduced
from pq to p, while with the sacrifice of the total number of variables and equalities
being increased by 2Ns . Let both s and 2Ns be fixed. Suppose that pq > w = p.
Then, it follows that

R(n + r + s,max{pq, w} + 1) = (pq + 1)qn+r+s−1(3p)n+r+s−1

and

R(n + 2Ns + r + s,max{p, w} + 1) = (p + 1)(3p)2Ns (3p)n+r+s−1.

When n is sufficiently large, we immediately see that the error bound in Theorem 4.1 is
significantly better than that in Lemma 2.1. For instance, consider the case of n = 15,
r = 7, s = 1, n1 = 2, w = 10, p = 10, q = 9, then

1

R(n + r + s,max{pq, w} + 1)
= 1

R(23, 91)
= 1

91 × 27022

and

1

R(n + 2Ns + r + s,max{p, w} + 1)
= 1

R(27, 11)
= 1

11 × 3026
.

We see that the latter is approximately 917 times of the former. We have a similar
conclusion for Lemma 2.2.

4.3 Standard Reduction and Sparsity

In this section, we apply the general result in Sect. 4.2 to QCPs. Let a tensor A =
(ai1i2i3) ∈ R

n×n×n , then Ax3 :=
n∑

i, j,k=1
ai jk xi x j xk . The reduction is focused on the

equality Ax3 + xTBx + cTx = 0 (cf. (1)). A standard reformulation is

n∑

i=1

xi (Ax2 + Bx + c)i = xT(Ax2 + Bx + c) = 0,

i.e., representing it by a sum of products of linear polynomials and quadratic poly-
nomials. With this, a direct application of Theorem 4.1 will give the following local
error bound, which improves Proposition 4.1 in certain cases.

Proposition 4.2 Let S be the solution set of QCP given by (1) and x ∈ S. Then, there
are positive κ > 0 and ε > 0 such that

dist(x, S) ≤ κ
([−x]+ + [−Ax2 − Bx − c]+ + |Ax3 + xTBx + cTx|)γ
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for all x such that ‖x − x̄‖ ≤ ε with

γ := max

{
1

3 × 65n
,

1

2 × 94n−1

}

. (21)

Note that the ingredient of the polynomial reduction technique in Sect. 4.2 is reduc-
ing a polynomial equality of higher degree into a few polynomial equalities of lower
degrees. As for the QCP (1), the emphasis should be put on the term Ax3, which is
the only cubic part. The discussions in the rest and the next section are in the same
category from this perspective.

We write ys := x j xk where s = {( j, k) : j, k ∈ {1, . . . , n}}. Assume that the
nonzero components of A are indexed by the set

S := {(i, j, k) : ai jk �= 0},

and the cardinality of S is K ≥ 0. Then, the polynomial Ax3 + xTBx + cTx = 0 can
be equivalently written as the following system

∑

(i,s)=(i, j,k)∈S
ai jk xi ys + xTBx + cTx = 0,

ys = x j xk for all (i, s) = (i, j, k) ∈ S.

(22)

Using the polynomial reduction technique, and replacing the polynomial equality
Ax3 + xTBx + cTx = 0 with the above system of equalities, the solution set can be
equivalently written as

U :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
n × R

K :

x ≥ 0, Ax2 + Bx + c ≥ 0,

∑

(i,s)=(i, j,k)∈S
ai jk xi ys + xTBx + cTx = 0,

ys = x j xk for all (i, s) = (i, j, k) ∈ S

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (23)

Therefore, with r = 2n, s = 1 and n1 = K , a direct application of Theorem 4.1
gives the following local error bound.

Proposition 4.3 Let S �= ∅ be the solution set of QCP given by (1) and x ∈ S. There
are positive κ > 0 and ε > 0 such that

dist(x, S) ≤ κ
([−x]+ + [−Ax2 − Bx − c]+ + |Ax3 + xTBx + cTx|)γ

for all x such that ‖x − x̄‖ ≤ ε with

γ =: max

{
1

3 × 63n+2K ,
1

2 × 93n+K−1

}

. (24)
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The error bound in Proposition 4.3 is better than that in Proposition 4.1, when the
tensor A is sparse, i.e., K � n. In particular, when K is of a constant magnitude and
n is increasing to large, the exponent in (24) (dominated by 63n) is much larger than
the exponent in (16) (dominated by 93n).

The next example is in the spirit of [26, Example 3.2], showing that the sparsity of
the tensor indeed plays a role.

Example 4.1 Let A ∈ R
n×n×n be diagonal with aiii = 1 for all i ∈ {1, . . . , K }

with K < n and all the other entries be zero. Let B ∈ R
n×n be the matrix with the

nonzero elements being bi,i+1 = −1 for all i ∈ {1, . . . , K } and bi,i = −1 for all
i ∈ {K + 1, . . . , n}, and c = 0. It can be verified that the solution set S of the QCP is
the singleton {0}. Let ε > 0. We take x ∈ R

n with

xi := ε2
i−1

for all i ∈ {1, . . . , K + 1} and xi = 0 for the others.

Then, we have dist(x, S) =
√∑K+1

i=1 ε2
i = O(ε), and

[−x]+ + [−Ax2 − Bx − c]+ + |Ax3 + xTBx + cTx| = ε2
K + ε2

K+1
.

Thus,

dist(x, S) = O

(

[−x]+ + [−Ax2 − Bx − c]+ + |Ax3 + xTBx + cTx|
) 1

2K

.

4.4 Rank Decomposition

In the following, we present another method to reduce the degree of the polynomial
Ax3 + xTBx + cTx = 0 using tensor decomposition. Actually, this is a much more
intrinsic approach for exploring sparsity ofA. A similar result as Proposition 4.3 will
be established.

Given a third-order tensor A ∈ R
n×n×n , we can flatten it as an n × n2 matrix M

by combining its second and third indices as

mis = ai jk with s = ( j − 1)n + k for all j, k ∈ {1, . . . , n}.

As a matrix in R
n×n2 , we can decompose it into a sum of t = rank(M) rank one

matrices as

M =
t∑

i=1

uivTi

with ui ∈ R
n and vi ∈ R

n2 . Obviously, t = rank(M) ≤ n. We can then fold a
long vector v ∈ R

n2 into an n × n matrix V by chopping the n2-vector v into n
n-vectors consecutively and putting them accordingly as column vectors of V . The
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reverse operation is more clear: by stacking the column vectors of V one by one into
an n2-vector. Thus, in a more compact form, we can decompose a tensorA ∈ R

n×n×n

as

A =
t∑

s=1

us ⊗ Ts, us ∈ R
n, Ts ∈ R

n×n, where t ≤ n.

It is also a direct calculation to see that

Ax3 =
t∑

s=1

(uTsx)(x
TTsx).

Denote ys := xTTsx. Then, the polynomial equality Ax3 + xTBx + cTx = 0 can be
represented as

t∑

s=1
(uTsx)ys + xTBx + cTx = 0,

ys := xTTsx for all s ∈ {1, . . . , t}.
(25)

And the corresponding solution set can be written as

W :=

⎧
⎪⎪⎨

⎪⎪⎩
(x, y) ∈ R

n × R
t :

x ≥ 0, Ax2 + Bx + c ≥ 0,
t∑

s=1
(uTsx)ys + xTBx + cTx = 0,

ys = xTTsx, s ∈ {1, . . . , t}.

⎫
⎪⎪⎬

⎪⎪⎭
(26)

Through the above transformation, the degree of the polynomial system W is 2, and
the number of the equality constraints is reduced to t + 1 ≤ n + 1.

Summarizing the above analysis, the key ingredient is flattening the tensor A into
an n × n2 matrix, and reformulating the cubic polynomial Ax3 as a sum of products
of linear and quadratic polynomials. Note that there are three sub-indices in the tensor
components ai jk’s, and they are of symmetric roles inAx3. The above flattening is by
grouping the second and the third indices. This matrix flattening is mode-1 flattening.
Likewise, we have mode-2 (i.e., grouping the first and the third indices) and mode-3
(i.e., grouping the first and the second indices) matrix flattenings. Unlike the matrix
case, surprisingly, the three n × n2 matrices derived from the three ways of matrix
flattenings can be of different ranks [6]. These ranks are calledmultilinear ranks in the
literature, denoted as rank1(A), rank2(A) and rank3(A), respectively, for the mode-1,
mode-2 and mode-3 matrix flattenings ofA. For each mode matrix flattening, similar
reformulation as (26) can be derived.

Let

mrank(A) := min{rank1(A), rank2(A), rank3(A)}.

With the parameters in Theorem 4.1 being r = 2n, s = 1, Ns = 2mrank(A),
p = w = 2 and q = 1, we have the next result.
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Proposition 4.4 Let S �= ∅ be given in (1) and x̄ ∈ S. There are positive κ > 0 and
ε > 0 such that

dist(x, S) ≤ κ

(

[−x]+ + [−Ax2 − Bx − c]+ + |Ax3 + xTBx + cTx|
)γ

for all x such that ‖x − x̄‖ ≤ ε, where

γ := max

{
1

3 × 63n+2mrank(A)
,

1

2 × 93n+mrank(A)−1

}

. (27)

It is easy to see that Proposition 4.4 generalizes Proposition 4.3.

In the generic case, mrank(A) = n, we have γ = max

{
1

3×65n
, 1
2×94n−1

}

, which is

the conclusion of Proposition 4.2.
Likewise, the merit of Proposition 4.4 is for tensors A with low multilinear ranks,

i.e., when mrank(A) is small or even a constant when n varies. We can see that when
mrank(A) is small or a constant as n varies, the exponent (27) is much better than that
in (16).

5 Conclusions

In this article, error bound analysis for the solution set of a QCP is investigated. A local
error bound via the natural residual function with explicit fractional exponent is firstly
established. Then, local error bounds via the sparsity, from both the algebraic and
geometric perspectives, of the third-order tensor in the underlying QCP are derived,
which improve the ground standard result for QCP from the state-of-the-art error
bound theory for general polynomial systems. The latter conclusions are established
with the aim of a general polynomial reduction technique for polynomial systems,
which should be of independent interest and have great potential applications in a
variety of situations, including TCPs studies.

Several further study topics can be drawn. Firstly, algorithms with explicit con-
vergence rate can be established upon the error bound results given in this article.
Secondly, it is of great interest as well as importance to study at which solution of
a QCP, the local Lipschitz error bound holds. Whenever this is built, a locally linear
convergent algorithm for solving QCP shall be given. Lastly, extensions to TCPs and
general polynomial complementarity problems, as well as error bounds with constant
fractional exponents for structured QCPs, are also of interest. Note that all the results
can be extended to general polynomial case analogously. However, the reduction tech-
nique as in Sect. 4.2 gives only a slight reduction of the base in the exponent but an
increase in the number of equalities. Further studies are therefore necessary for the
general case.
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