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Abstract
This paper provides new Farkas-type results characterizing the inclusion of a given
set, called contained set, into a second given set, called container set, both of them
are subsets of some locally convex space, called decision space. The contained and
the container sets are described here by means of vector functions from the decision
space to other two locally convex spaces which are equipped with the partial ordering
associated with given convex cones. These new Farkas lemmas are obtained via the
complete characterization of the conic epigraphs of certain conjugate mappings which
constitute the core of our approach. In contrast with a previous paper of three of
the authors (Dinh et al. in J Optim Theory Appl 173:357–390, 2017), the aimed
characterizations of the containment are expressed here in terms of the data.
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1 Introduction

Classical Farkas-type results deal with the characterization of the inclusion of a so-
called contained set into a second set called container set, assuming that the contained
and the container sets are subsets of some locally convex space called decision space
and are described by means of inequality systems. More general Farkas-type results
characterize the mentioned inclusions for pairs of sets which are described by means
of functions, but not necessarily in terms of inequality systems. This family of results
has been used to characterize solutions and strong duality of different classes of opti-
mization, equilibrium problems, and variational inequalities.

Many papers (see, e.g., [1–5], etc.) provide Farkas lemmas focused on infinite
programming, where the contained set (called feasible set in this setting) is a subset
of an infinite-dimensional decision space and is described by means of some vector
functionwhile the container set is a sublevel set of some extended real-valued function.
This type of scalar Farkas lemmas do not apply either to vector optimization and
equilibrium problems or to vector variational inequalities. The limitation of the scalar
nature of the function defining the container has been overcome in different ways in
[6], where the decision space is Banach while the contained and the container sets
are the images of two given convex cones by given convex set-valued functions, in
[7], where the contained set is the solution set of a finite linear system while the
container set is a given half-space of certain linearly ordered vector space, and also
in [8], where the scalar function describing the container set was replaced by the
restriction of some vector function to certain subset of the decision space, the so-
called constraint set. This paper can be seen as a second part of [8], whose Farkas
lemmas characterize the inclusion of the contained set into the container in terms of
the constraint set, the vector function defining the container and the contained set,
while here the characterization is expressed in terms of the data: the constraint set
and the vector functions defining the contained and the container sets. So, the crucial
difference between the Farkas-type results in this paper and the previous one [8] lies
in the fact that the new characterizations of the inclusion are more easily checkable
than the available ones. For this reason, the corresponding Farkas lemmas are called
abstract and non-abstract, respectively. To do this, we extend, to the vector setting, the
classical way of obtaining optimality conditions for scalar programs: reformulating
the given constrained problem as an unconstrained one by summing up to the objective
vector function the indicator function of the feasible set and, using the epigraph of the
conjugate of this sum, to obtain non-abstract optimality conditions via Farkas-type
results.

In contrast with scalar optimization, different kinds of optimal solutions can be
considered in vector optimization, each one having its own set of advantages and dis-
advantages (see, e.g., [9, Section 3.2] and [10, Section 15.3]). In particular, regarding
multiobjective optimization (when the involved spaces are finite-dimensional), it is
usually admitted that weakly efficient solutions, efficient solutions, and super efficient
solutions are preferable from the computational, practical, and stability perspectives,
respectively (see, e.g., [9,11–13], and references therein). On the other hand, weak
orders allow us to apply the elegant conjugate duality machinery. So, computability
and mathematical elegance are the main reasons for having oriented our new Farkas-
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type results to the characterization of the weakly minimal elements of the image of
the feasible set by the objective vector function.

Let us describe the structure of the paper. Section 2 introduces notations and the
concepts of weak infimum (supremum) and weak minimum (maximum) in partially
ordered spaces, together with the fundamentals of the theory of conjugate vector-
valued functions. Section 3 provides some technical results to be used later. The main
results in this paper are the representations of the epigraph of the conjugate of the sum
of the objective vector functionwith the indicator of the feasible set obtained in Sect. 4,
andwhose consequences are the non-abstract Farkas-type results established in Sect. 5.
The representations in Sect. 4 can be seen as extensions of scalar versions (as those in
[14, Theorem 8.2], [15, p. 683], and [16, Section 4] ), whose terminology we adopt,
calling them asymptotic, when they involve a limiting process (typically, in the form
of the closure of some set depending on the data), and non-asymptotic otherwise.
Similarly, the vector Farkas-type results given in Sect. 5 are called asymptotic or
non-asymptotic depending on the nature of the involved conditions. These results
are called Farkas lemmas, when they characterize the inclusion of the contained set
into the container one under certain assumption (typically the identity of two sets or
the closedness of one of them) and characterizations of Farkas lemma, when they
establish the equivalence of the mentioned assumption with some characterization of
the inclusion. The final Sect. 6 provides the conclusions.

2 Preliminaries

Let Y be a locally convex Hausdorff topological vector space (lcHtvs in brief)
with topological dual space denoted by Y ∗. For a set U ⊂ Y , we denote by clU ,
bd U , convU , cl convU , linU , riU , and sqriU the closure, the boundary, the con-
vex hull, the closed convex hull, the linear hull, the relative interior, and the strong
quasi-relative interior ofU , respectively. Note that cl convU = cl (convU ). The null
vector in Y is denoted by 0Y .

Let K ⊂ Y be a closed, pointed, convex conewith nonempty interior, i.e., intK �= ∅.
Then,

K + intK = intK , (1)

or equivalently,

y ∈ K
y + y′ /∈ intK

}
�⇒ y′ /∈ intK . (2)

The cone K generates on Y an ordering “�K ” and a weak ordering defined as [y1 �K

y2 ⇐⇒ y2 ∈ y1 + K ] and [y1 <K y2 ⇐⇒ y1 − y2 ∈ −intK ], respectively. We
enlarge Y by attaching to Y a greatest element +∞Y and a smallest element −∞Y

with respect to<K , which donot belong toY , andwedenoteY • := Y∪{−∞Y ,+∞Y }.
We assume the usual convention rules (see, e.g., [8, (5)] ). It is obvious that the order
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�K also can be extended to Y • with the convention that −∞Y �K y �K +∞Y for
any y ∈ Y • together with the mentioned rules.

We now recall the following basic definitions regarding a set M such that ∅ �= M ⊂
Y • (see, e.g., [14], [9, Definition 7.4.1], [10,17–19], etc.). More details can be found
in [8, Section 2].

• An element v̄ ∈ Y • is said to be a weakly infimal element of M if for all v ∈ M
we have v �<K v̄ and if for any ṽ ∈ Y • such that v̄ <K ṽ, there exists some v ∈ M
satisfying v <K ṽ. The set of all weakly infimal elements of M is denoted by
WInfM and is called the weak infimum of M .

• An element v̄ ∈ Y • is said to be a weakly supremal element of M if for all v ∈ M
we have v̄ �<K v and if for any ṽ ∈ Y • such that ṽ <K v̄, there exists some v ∈ M
satisfying ṽ <K v. The set of all weakly supremal elements of M is denoted by
WSupM and is called the weak supremum of M .

• The weak minimum of M is the set WMinM = M ∩ WInfM and its elements
are the weakly minimal elements of M . The definition of weak maximum of M is
similar.

• An element v ∈ M is called a stronglymaximal element ofM if it holds v �K v for
all v ∈ M . The set of all strongly maximal elements of M is denoted by SMaxM .

Concerning the weak supremum, as shown in [9, Remark 7.4.2] ,

+∞Y ∈ WSupM ⇐⇒ WSupM = {+∞Y }
⇐⇒ ∀ṽ ∈ Y , ∃v ∈ M : ṽ <K v. (3)

Additionally, if ∅ �= M ⊂ Y andWSupM �= {+∞Y }, by [8, Proposition 2.1] and [19,
Proposition 2.4], one has

WSupM = cl(M − intK )\(M − intK ), (4)

WSupM − intK = M − intK , (5)

and

Y = (M − intK ) ∪ (WSupM) ∪ (WSupM + intK ). (6)

Regarding the strong maximum, if M ⊂ Y , then

SMaxM = {v̄ ∈ M : M ⊂ v̄ − K }. (7)

Moreover, in this case, if SMaxM �= ∅ then SMaxM is a singleton, i.e., the strongly
maximum element of the set M in this case, if exists, will be unique. In such a case,
we write v = SMaxM instead of SMaxM = {v}.

Given a second lcHtvs X , we denote by L(X ,Y ) the space of linear continuous
mappings from X to Y , and by 0L ∈ L(X ,Y ) the zero mapping (i.e., 0L(x) = 0Y
for all x ∈ X ). Obviously, L(X ,Y ) = X∗ whenever Y = R. We consider L(X ,Y )

equippedwith theweak topology, that is, the one defined by the pointwise convergence.
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In other words, given a net (Li )i∈I ⊂ L(X ,Y ) and L ∈ L(X ,Y ), Li → L means that
Li (x) → L(x) in Y for all x ∈ X .

Given a vector-valued mapping F : X → Y •, the domain of F is defined by

dom F := {x ∈ X : F (x) �= +∞Y },

and F is proper when dom F �= ∅ and−∞Y /∈ F(X). The K -epigraph of F , denoted
by epiK F , is defined by

epiK F := {(x, y) ∈ X × Y : F(x) �K y}
= {(x, y) ∈ X × Y : y ∈ F(x) + K }.

The conjugate map of F is the mapping F∗ : L(X ,Y ) ⇒ Y • such that

F∗(L) := WSup{L(x) − F(x) : x ∈ X} = WSup{(L − F)(X)}.

The domain and the (strong) “max-domain” of F∗ are defined, respectively, as

dom F∗ := {
L ∈ L(X ,Y ) : F∗(L) �= {+∞Y }},

and

domM F∗ := {
L ∈ L(X ,Y ) : F∗(L) ⊂ Y and SMaxF∗(L) �= ∅},

while the K -epigraph of F∗ is

epiK F∗ := {
(L, y) ∈ L(X ,Y ) × Y : y ∈ F∗(L) + K

}
.

Let S be a nonempty convex cone in a third lcHtvs Z and �S be the ordering on Z
induced by the cone S. We also enlarge Z by attaching a greatest element +∞Z and
a smallest element −∞Z (with respect to �S) which do not belong to Z , and define
Z• := Z ∪ {−∞Z , +∞Z } with the usual convention rules.

The cone of positive operators (see [20,21]) is

L+(S, K ) := {T ∈ L(Z ,Y ) : T (S) ⊂ K }.

We also define the cone of weakly positive operators as

Lw+(S, K ) := {T ∈ L(Z ,Y ) : T (S) ∩ (−intK ) = ∅}.

It is clear thatL+(S, K ) ⊂ Lw+(S, K ). Indeed, for any T ∈ L+(S, K ), one has T (S) ⊂
K and so T (S) ∩ (−intK ) = ∅ (as K is a pointed cone), and hence, T ∈ Lw+(S, K ).
Examples 2.2 and 2.1 below, where X is finite-dimensional and infinite-dimensional,
respectively, will be used for illustrative purposes along the paper. For instance, they
show that the inclusion L+(S, K ) ⊂ Lw+(S, K ) is generally strict. In Sect. 4, we
interpret both cones in terms of domains of indicator functions.
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It is worth noting that, when Y = R and K = R+, the conjugate, the domain
and the K -epigraph of a proper function f : X → R∪ {±∞} are nothing else but the
ordinary conjugate, the domain, and the epigraph of the scalar function f . Moreover,
since

T (S) ∩ (−intR+) = ∅ ⇐⇒ T (S) ⊂ R+,

we have

Lw+(S, R+) = L+(S, R+) = S∗ := {z∗ ∈ Z∗ : 〈z∗, s〉 ≥ 0 for all s ∈ S},

which means that in the scalar case (when Y = R, K = R+, and f is proper), the
cones L+(S, K ) and Lw+(S, K ) collapse to the usual (positive) dual cone S∗ of S.

The K -epigraph of F∗ might be not convex, as is shown in the next example, and
it is so even in the case where Y is a finite-dimensional space as in Example 2.2.

Example 2.1 Take X = Z = R, Y = C[0, 1] equipped with the topology of the
uniform convergence, S = R+, and K := {x ∈ C[0, 1] : x(t) ≥ 0,∀t ∈ [0, 1]}, the
cone of all nonnegative functions on C[0, 1]. Then it is easy to check that:

• intK = {x ∈ C[0, 1] : x(t) > 0,∀t ∈ [0, 1]},
• L(X ,Y ) = L(Z ,Y ) ≡ C[0, 1], L+(S, K ) ≡ K , and
Lw+(S, K ) = {z ∈ C[0, 1] : z(t) ≥ 0 for some t ∈ [0, 1]} .

• If ∅ �= M ⊂ C[0, 1] and WSupM ⊂ C[0, 1] then

WSupM =
{
v ∈ C[0, 1] : ∀x ∈ M, ∃tx ∈ [0, 1] : v(tx ) ≥ x(tx ) and

∀ε > 0, ∃xε ∈ M : v(t) − ε < xε(t),∀t ∈ [0, 1]
}

,

• As a consequence of the last equality, we have, for ∅ �= M ⊂ C[0, 1] with
WSupM ⊂ C[0, 1],

WSupM + K = {y ∈ C[0, 1] : ∀x ∈ M, ∃tx ∈ [0, 1] s.t. y(tx ) ≥ x(tx )}. (8)

We now take F : R → C[0, 1] such that, for all α ∈ R, F(α) : [0, 1] → R is the
function F(α)(t) = t2 + α2. We will give a representation for epiK F∗ and show
that this set is closed but not a convex one in C[0, 1] × C[0, 1].

• Take arbitrarily x ∈ C[0, 1]. By definition, F∗(x) = WSup{αx − F(α) : α ∈ R}.
Take w0 : [0, 1] → R defined by w0(t) = [x(0)]2

4 for any t ∈ [0, 1]. Then for any
α ∈ R one has

w0(0) = [x(0)]2
4

≥ αx(0) − α2 = αx(0) − F(α)(0),
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which means that w0 �<K αx − F(α) for any α ∈ R, and so, by (3), F∗(x) �=
{+∞Y }. It is also clear that F∗(x) �= {−∞Y }. Applying (8), one gets

F∗(x) + K = {y ∈ Y : ∀α ∈ R, ∃tα ∈ [0, 1] s.t. y(tα) ≥ αx(tα) − (tα)2 − α2},

and hence,

epiKF
∗={(x, y)∈(C[0, 1])2 :∀α ∈ R, ∃tα ∈ [0, 1]s.t. y(tα) ≥ αx(tα) (9)

−(tα)2 − α2}.

• The K -epigraph of F∗, epiK F∗, is closed in C[0, 1] × C[0, 1]. Indeed, let
(xn, yn)n∈N be a sequence in epiK F∗ such that (xn, yn) → (x, y) ∈ C[0, 1] ×
C[0, 1] (i.e., the sequences (xn)n∈N and (yn)n∈N uniformly converge to x and y,
respectively). Fix an α ∈ R. Since (xn, yn) ∈ epiK F∗ we get, for each n ∈ N ,
there is tnα ∈ [0, 1] satisfying

yn(t
n
α) ≥ αxn(t

n
α) − (tnα)2 − α2.

As (tnα)n∈N ⊂ [0, 1], without loss of generality, we can assume that tnα → tα
with some tα ∈ [0, 1]. Now since xn and yn uniformly converge to x and y,
respectively, one gets yn(tnα) → y(tα) and xn(tnα) → x(tα). It then follows that
y(tα) ≥ αx(tα) − (tα)2 − α2, showing that (x, y) ∈ epiK F∗.

• The K -epigraph of F∗, epiK F∗, is not a convex set. Indeed, consider the two pairs
(θ, y1) and (θ, y2) where θ is the zero function (i.e., θ(t) = 0 for all t ∈ [0, 1]) in
C[0, 1] and y1, y2 : [0, 1] → R defined by y1(t) = 2t2−2 and y2(t) = −4t2 . It is
easy to check that (θ, y1), (θ, y2) ∈ epiK F∗. However, (θ, 1

2 y1+ 1
2 y2) /∈ epiK F∗.

Indeed, we have y(t) := 1
2 y1(t) + 1

2 y2(t) = −t2 − 1, and with α = 0, one gets
αθ(t) − (t)2 − α2 = −t2 and hence, with α = 0

y(t) := 1

2
y1(t) + 1

2
y2(t) = −t2 − 1 < −t2, ∀t ∈ [0, 1].

This shows that (θ, 1
2 y1 + 1

2 y2) /∈ epiK F∗ (see (9)), and epiK F∗ is not a convex
subset of C[0, 1] × C[0, 1].

Example 2.2 Take X = Z = R, Y = R
2, K = R

2+, S = R+, F : R → R
2

the null mapping, and G : R → R such that G (x) = −x for all x ∈ R. In this
case, it is easy to see that L(Z ,Y ) ≡ R

2, L+(S, K ) = R
2+, and Lw+(S, K ) ={

(t1, t2) ∈ R
2 : t1 ≥ 0 ∨ t2 ≥ 0

}
. Moreover, given (α, β) ∈ R

2,1

F∗ (α, β) = WSup{R (α, β)} =

⎧⎪⎨
⎪⎩

[
(−R+) × {0}] ∪ [{0} × (−R+)

]
, if α = β = 0,{+∞

R2
}
, if αβ > 0,

R (α, β) , otherwise.
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Thus, epiK F∗ =
4⋃

i=1

Ni , where

N1 = {(0, 0, y1, y2) : y1 ≥ 0 ∨ y2 ≥ 0} ,

N2 =
{
(α, β, y1, y2) : αβ < 0 ∧ y2 ≥ β

α
y1
}

,

N3 = {(α, 0, y1, y2) : α �= 0 ∧ y2 ≥ 0} ,

N4 = {(0, β, y1, y2) : β �= 0 ∧ y1 ≥ 0} .

It is also easy to verify that epiK F∗ is closed. However, epiK F∗ is not convex as
its image by the projection mapping (α, β, y1, y2) �→ (α, β) is the domain of F∗,
dom F∗ = {(α, β) ∈ R

2 : αβ ≤ 0}, which is obviously non-convex.

3 Fundamental Tools

Let the spaces X ,Y , Z and the cones K , S be as in Sect. 2. The results given below
are used as fundamental tools in the next sections.

Lemma 3.1 Given ∅ �= M ⊂ Y •, the following statements hold true:
(i) If +∞Y /∈ M and M ∩ intK = ∅, then WSupM �= {+∞Y },
(ii) If there exists v0 ∈ intK such thatλv0 ∈ M for allλ > 0, thenWSupM = {+∞Y },
(iii) If M ⊂ −K and 0Y ∈ M then WSupM = WSup(−K ) = bd(−K ).

Proof (i) Assume that M ∩ intK = ∅. Then, 0Y �<K v for all v ∈ M and it follows
from (3) that WSupM �= {+∞Y }.

(ii) Assume that there is v0 ∈ intK such that λv0 ∈ M for all λ > 0. If WSupM �=
{+∞Y }, then by (3), there exists ṽ ∈ Y such that ṽ �<K v for any v ∈ M . We get

ṽ �<K λv0, ∀λ > 0 ⇐⇒ λv0 − ṽ /∈ intK , ∀λ > 0

⇐⇒ v0 − 1

λ
ṽ /∈ intK , ∀λ > 0.

Letting λ → +∞ we get v0 /∈ intK , a contradiction.
(iii) Assume that M ⊂ −K and 0Y ∈ M . Then M − intK = −intK . Indeed, M −

intK ⊂ −K − intK = −intK . Since 0Y ∈ M , we also have−intK ⊂ M− intK .
On other hand, because K is a pointed cone, M ⊂ −K yields M ∩ intK = ∅. So
we get from (i) that WSupM �= {+∞}. According to (4),

WSupM = cl(M − intK ) \ (M − intK )

= cl(−intK ) \ (−intK ) = WSup(−K ) = bd(−K ),

and we are done. ��
Lemma 3.2 Assume ∅ �= M ⊂ Y ,WSupM ⊂ Y , and there exist v0 ∈ Y \ (−K ) such
that λv0 ∈ M for all λ > 0. Then SMax(WSupM) = ∅.
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Proof Let us suppose by contradiction that SMax(WSupM) �= ∅ and take v̄ =
SMax(WSupM) (note that SMax(WSupM) is a singleton as WSupM ⊂ Y ). Since
WSupM ⊂ Y , one has WSupM ⊂ v̄ − K (see (7)). It follows from (4) and (5) that

M ⊂ cl(M − intK ) = [cl(M − intK ) \ (M − intK )] ∪ (M − intK )

= WSupM ∪ (WSupM − intK )

⊂ WSupM − K ,

and consequently, M ⊂ v̄ − K − K = v̄ − K . Thus, from the assumption λv0 ∈ M
for all λ > 0, one has

λv0 ∈ v̄ − K , ∀λ > 0 ⇐⇒ v0 − 1

λ
v̄ ∈ −K , ∀λ > 0.

Letting λ → +∞ we get v0 ∈ −K which contradicts the assumption that
v0 ∈ Y \ (−K ) and the proof is complete. ��

In order to obtain suitable interpretations of L+(S, K ) and Lw+(S, K ), we must
extend the concept of indicator function from scalar to vector functions: the indicator
map ID : X → Y • of a set D ⊂ X is defined by

ID(x) =
{
0Y , if x ∈ D,

+∞Y , otherwise.

In the case Y = R, ID is the usual indicator function iD .

Proposition 3.1 One has

Lw+(S, K ) = dom I ∗−S and L+(S, K ) = domM I ∗−S .

Proof • Taking an arbitrary T ∈ L(Z ,Y ), one has

I ∗−S(T ) = WSup{T (z) : z ∈ −S} = WSupT (−S), (10)

and so, T ∈ dom I ∗−S if and only if WSupT (−S) �= {+∞Y }. Two cases are
possible.

(a) If T ∈ Lw+(S, K ), T (S)∩(−intK ) = ∅, and consequently, T (−S)∩intK = ∅.
So, it follows from Lemma 3.1(i) that WSupT (−S) �= {+∞Y }.

(b) If T ∈ L(Z ,Y ) \ Lw+(S, K ), there exists v0 ∈ T (S) ∩ (−intK ). Then,
−v0 ∈ intK and λ(−v0) ∈ T (−S) for all λ > 0 because S is a cone.
So, by Lemma 3.1(ii), WSupT (−S) = {+∞Y }. Consequently, dom I ∗−S =
Lw+(S, K ).

• Take an arbitrary T ∈ L+(S, K ). Then one has T (S) ⊂ K , or equiva-
lently, T (−S) ⊂ −K . It is clear that 0Y = T (0Z ) ∈ T (−S). According to
Lemma 3.1(iii), I ∗−S(T ) = WSupT (−S) = WSup(−K ). So, SMaxI ∗−S(T ) =
{0Y } �= ∅, and consequently, T ∈ domM I ∗−S .
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Now take an arbitrary T ∈ L(Z ,Y )�L+(S, K ). One has T (S) �⊂ K , or equiv-
alently, there exists s0 ∈ −S such that T (s0) /∈ −K . Thus, applying Lemma 3.2
with M = T (−S) and v0 = T (s0), we get that, if WSupT (−S) ⊂ Y , then
SMax

[
WSupT (−S)

] = ∅. So, T /∈ domM I ∗−S and we are done. ��
Lemma 3.3 Let ∅ �= M ⊂ Y , ȳ ∈ Y , and y∗ ∈ Y ∗ and assume that

y∗(u) < y∗(ȳ), ∀u ∈ M − intK . (11)

Then, the following statements hold:
(i) y∗(v) ≤ y∗(ȳ), ∀v ∈ M,
(ii) y∗(k) > 0 for all k ∈ intK and, consequently, y∗ ∈ K ∗.

Proof (i) Take k0 ∈ intK . Then, for any v ∈ M , it follows from (11) that

y∗(v − λk0) < y∗(ȳ), ∀λ > 0,

and by letting λ → 0, we get y∗(v) ≤ y∗(ȳ).
(ii) Take arbitrarily k ∈ intK . We firstly show that there exists λ > 0 such that

ȳ−λk ∈ M−intK . Indeed, take anm0 ∈ M . Because of the continuity of themapping
t �→ (m0 − ȳ)t + k at t = 0, there exists ε > 0 such that (m0 − ȳ)ε + k ∈ intK .
Taking λ = 1

ε
, we obtain m0 − ȳ + λk ∈ λintK , and consequently,

ȳ − λk ∈ m0 − λintK ⊂ M − intK

It now follows from (11) that y∗(ȳ − λk) < y∗(ȳ), which yields y∗(k) > 0. Since
K = cl(intK ), y∗(k) ≥ 0 for all k ∈ K , showing that y∗ ∈ K ∗ . ��

We conclude this section with the two additional lemmas. The first onex gives a
useful characterization of epiK F∗ and the second one shows the closedness of this
set.

Lemma 3.4 If F : X → Y ∪ {+∞Y } is a proper mapping, then

epiK F∗ = {(L, y) ∈ L(X ,Y ) × Y : y + F(x) − L(x) /∈ −intK , ∀x ∈ X} .

Proof It follows from [8, Theorem 3.1] by taking f = F , C = X , and g such that
g(x) = 0Z for all x ∈ X . ��
Lemma 3.5 If F : X → Y ∪ {+∞Y } is a proper mapping, then epiK F∗ is a closed
subset of L(X ,Y ) × Y .

Proof Let {(Li , yi )}i∈I ⊂ epiK F∗ be a net such that (Li , yi ) → (L, y). Wewill show
that (L, y) ∈ epiK F∗. Let us suppose the contrary, that is (L, y) /∈ epiK F∗. Then,
by Lemma 3.4, there exists x̄ ∈ dom F such that

y − L(x̄) + F(x̄) ∈ −intK .
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As yi − Li (x̄) + F(x̄) → y − L(x̄) + F(x̄), there is a i0 ∈ I such that for all i ∈ I ,
i � i0 (where � is the net order),

yi − Li (x̄) + F(x̄) ∈ −intK ,

which, again by Lemma 3.4, (Li , yi ) /∈ epiK F∗ for all i � i0, a contradiction. ��

4 Representing epiK (F + IA)∗

We are now in a position to obtain asymptotic and non-asymptotic representations of
the set epiK (F + IA)∗. The importance of these representations is twofold. From one
side, they justify the qualification conditions introduced in the next section in order
to establish non-asymptotic Farkas-type results for systems associated with vector
functions (see also [8]). Secondly, they supply key tools for deriving refined asymptotic
vector Farkas-type results which, to the best of the authors knowledge, are given for
the first time in the next section of this paper.

Throughout this section X , Y , Z are as in Sect. 3, K is a closed, pointed, convex
cone in Y with nonempty interior, and S is a convex cone in Z . Assume further that
F : X → Y ∪ {+∞Y } and G : X → Z• are proper mappings while C is a subset of
X such that A := C ∩ G−1(−S) �= ∅.

4.1 Asymptotic Representation of epiK(F + IA)∗

We say that F is K -convex (K -epi closed) if epiK F is a convex set (a closed set
in X × Y equipped with the product topology, respectively). If F is K -convex, it is
evident that dom F is a convex set in X .We also say that F is positively K -lsc if y∗ ◦F
is lsc for all y∗ ∈ K ∗ \ {0Y ∗}.
Remark 4.1 It is easy to prove that, if F : X → Y • is a K -convex mapping and A is a
convex set satisfying A ∩ dom F �= ∅, then F(A ∩ dom F) + intK is a convex subset
of Y .

The next result, which is a natural extension of a similar scalar result (see
Lemma 4.1), involves composite functions T ◦ G : X → Y •, with T ∈ L(Z ,Y )

and G : X → Z ∪ {+∞Z }, which are defined as follows:

(T ◦ G)(x) :=
{
T (G(x)), if G(x) ∈ Z ,

+∞Y , if G(x) = +∞Z .

Theorem 4.1 (1st asymptotic representation of epiK (F + IA)∗) Let C be a convex
and closed subset of X, F be a K -convex and positively K -lsc mapping, and G be an
S-convex and S-epi closed mapping. Assume that A ∩ dom F �= ∅. Then

epiK (F + IA)∗ = cl

⎡
⎣ ⋃
T∈L+(S,K )

epiK (F + IC + T ◦ G)∗
⎤
⎦ . (12)
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Proof [“⊃”] According to [8, Lemma 4.1], we have

epiK (F + IA)∗ ⊃
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗, (13)

and as epiK (F + IA)∗ is closed (by Lemma 3.5 ),

epiK (F + IA)∗ ⊃ cl

⎡
⎣ ⋃
T∈L+(S,K )

epiK (F + IC + T ◦ G)∗
⎤
⎦ . (14)

[“⊂”] For this, take arbitrarily (L, y) ∈ epiK (F + IA)∗ and let us show that

(L, y) ∈ cl

⎡
⎣ ⋃
T∈L+(S,K )

epiK (F + IC + T ◦ G)∗
⎤
⎦ . (15)

Observe that if (L, y) ∈ epiK (F + IA)∗ then, by Lemma 3.4,

y /∈ L(x) − F(x) − intK , ∀x ∈ A ∩ dom F,

or equivalently, y /∈ (L − F)(A ∩ dom F) − intK .

• Now, sinceG is S-convex,G−1(−S) is a convex set, and hence, A = C∩G−1(−S)

is convex, too. Moreover, F − L is a K -convex mapping (as F is K -convex), and
we get fromRemark 4.1 that (F−L)(A∩dom F)+intK is convex, or equivalently,
(L − F)(A ∩ dom F) − intK is convex.

• On the one hand, as y /∈ (L − F)(A ∩ dom F) − intK , the separation theorem
[22, Theorem 3.4] ensures the existence of y∗ ∈ Y ∗ satisfying

y∗(u) < y∗(y), ∀u ∈ (L − F)(A ∩ dom F) − intK .

It then follows from Lemma 3.3 that

y∗ ◦ (L − F)(x) ≤ y∗(y), ∀x ∈ A ∩ dom F, (16)

y∗ ∈ K ∗ and y∗(k) > 0 for all k ∈ intK . (17)

• On the other hand, since y∗ ◦ F is a proper convex lsc function, applying [14,
Theorem 8.2] to the scalar function y∗ ◦ F, one gets

epi(y∗ ◦ F + i A)∗ = cl

[ ⋃
z∗∈S∗

epi(y∗ ◦ F + iC + z∗ ◦ G)∗
]

. (18)

Note that (16) is equivalent to y∗(y) ≥ (y∗ ◦ F + i A)∗(y∗ ◦ L) or, equivalently,
(y∗ ◦ L, y∗(y)) ∈ epi(y∗ ◦ F + i A)∗. Hence, by (18), there exist nets {z∗i }i∈I ⊂ S∗,
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{x∗
i }i∈I ⊂ X∗ and {ri }i∈I ⊂ R such that x∗

i → y∗ ◦ L , ri → y∗(y) and

(x∗
i , ri ) ∈ epi(y∗ ◦ F + iC + z∗i ◦ G)∗, ∀i ∈ I . (19)

• Take an arbitrary k0 ∈ intK . Then y∗(k0) > 0 (see (17)). Now for each i ∈ I , set

yi := y + ri − y∗(y)
y∗(k0)

k0,

and define the mapping Li : X → Y by

Li (x) := L(x) + x∗
i (x) − (y∗ ◦ L) (x)

y∗(k0)
k0, ∀x ∈ X .

It is easy to check that

y∗(yi ) = ri , Li ∈ L(X ,Y ), y∗ ◦ Li = x∗
i , ∀i ∈ I , and (yi , Li ) → (y, L).

(20)

• We now claim that

(Li , yi ) ∈
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗, ∀i ∈ I . (21)

Indeed, for each i ∈ I , combining (19) and (20) we get

y∗(yi ) ≥ (y∗ ◦ F + iC + z∗i ◦ G)∗(y∗ ◦ Li ),

or equivalently,

y∗(yi ) ≥ (
y∗ ◦ Li

)
(x) − (

y∗ ◦ F
)
(x) − (

z∗i ◦ G
)
(x), ∀x ∈ C ∩ dom F .

(22)

For each i ∈ I , define Ti : Z → Y by

Ti (z) = z∗i (z)
y∗(k0)

k0, ∀z ∈ Z .

Then Ti ∈ L(Z ,Y ). Moreover, if z ∈ S, then z∗i (z) ≥ 0 (as z∗i ∈ S∗) and so,
Ti (z) ∈ K (as k0 ∈ intK and y∗(k0) > 0). Consequently, Ti ∈ L+(S, K ).

• Since y∗ ◦ Ti = z∗i , with the help of the mappings Ti ∈ L+(S, K ), i ∈ I , (22) can
be rewritten as

y∗(yi ) ≥ (
y∗ ◦ Li

)
(x) − (

y∗ ◦ F
)
(x) − (y∗ ◦ Ti ◦ G)(x), ∀x ∈ C ∩ dom F,
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or equivalently,

y∗ (Li (x) − F(x) − (Ti ◦ G)(x) − yi ) ≤ 0, ∀x ∈ C ∩ dom F .

The last inequality, together with (17), implies that

yi /∈ Li (x) − F(x) − (Ti ◦ G) (x) − intK , ∀x ∈ C ∩ dom F,

which together with Lemma 3.4 yields (Li , yi ) ∈ epiK (F + IC + Ti ◦G)∗, which
is (21).

• Finally, (15) follows from (20) and (21). So, we are done.

��
We now introduce an alternative asymptotic representation of epiK (F+ IA)∗ where

Lw+(S, K ) replaces L+(S, K ) as index set at the right-hand side union of sets.

Theorem 4.2 (2nd asymptotic representation of epiK (F + IA)∗) Assume that all the
assumptions of Theorem 4.1 hold. Then,

epiK (F + IA)∗ = cl

⎧⎪⎨
⎪⎩

⋃
T∈Lw+(S,K )

⎡
⎢⎣ ⋂

v∈I∗−S (T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]
⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (23)

Proof • We first show that

epiK (F + IA)∗ ⊃
⋂

v∈I ∗−S (T )

[
epiK (F + IC + T ◦ G)∗ + (0L, v)

]
, ∀T ∈ L(Z , Y ). (24)

Take an arbitrary T ∈ L(Z ,Y ) and

(L, y) ∈
⋂

v∈I ∗−S(T )

[
epiK (F + IC + T ◦ G)∗ + (0L, v)

]
.

Then,

(L, y − v) ∈ epiK (F + IC + T ◦ G)∗, ∀v ∈ I ∗−S(T ),

and, by Lemma 3.4, (10), and (5), the last inclusion is equivalent to

y − v − L(x) + F(x) + (T ◦ G) (x) /∈ −intK , ∀x ∈ C, ∀v ∈ I ∗−S(T )

⇐⇒ y − L(x) + F(x) + (T ◦ G) (x) /∈ I ∗−S(T ) − intK , ∀x ∈ C

⇐⇒ y − L(x) + F(x) + (T ◦ G) (x) /∈ WSupT (−S) − intK , ∀x ∈ C

⇐⇒ y − L(x) + F(x) + (T ◦ G) (x) /∈ T (−S) − intK , ∀x ∈ C

⇐⇒ y − L(x) + F(x) /∈ u − (T ◦ G) (x) − intK , ∀u ∈ T (−S), ∀x ∈ C .

(25)

123



18 Journal of Optimization Theory and Applications (2019) 182:4–29

Now, for any x ∈ A, taking u = (T ◦ G)(x) in (25) (note that x ∈ A yields
G(x) ∈ −S), we get y − L(x) + F(x) /∈ −intK . Hence, again by Lemma 3.4,
(L, y) ∈ epiK (F + IA)∗ and (24) follows.

• We now claim that, for each T ∈ L+(S, K ), one has

epiK (F + IC + T ◦ G)∗ =
⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)].

(26)

In fact, as 0Y ∈ T (−S) (note that 0Y = T (0X )), by Lemma 3.1(iii) and (10),
0Y ∈ bd(−K ) = I ∗−S(T ). Hence, epiK (F + IC + T ◦ G)∗ is a member of the
collection in the right-hand side of (26) and we get

⋂
v∈I ∗−S(T )

[
epiK (F + IC + T ◦ G)∗ + (0L, v)

]
⊂ epiK (F + IC + T ◦ G)∗.

Conversely, take (L, y) ∈ epiK (F + IC + T ◦G)∗. Since I ∗−S(T ) = bd(−K ) ⊂ −K ,

we get

(L, y − v) ∈ epiK (F + IC + T ◦ G)∗, ∀v ∈ I ∗−S(T ),

equivalently

(L, y) ∈ epiK (F + IC + T ◦ G)∗ + (0L, v), ∀v ∈ I ∗−S(T ),

and we are done.

• Combining (24), the inclusion L+(S, K ) ⊂ Lw+(S, K ) and (26), we get

epiK (F + IA)∗ ⊃
⋃

T∈Lw+(S,K )

⎡
⎣ ⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]
⎤
⎦

⊃
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗. (27)

• The conclusion follows from the closedness of epiK (F + IA)∗ (see Lemma 3.5),
(27) and Theorem 4.1. ��

4.2 Non-asymptotic Representation of epiK(F + IA)∗

In this subsection, we show that the closure of the sets in the right-hand side of the
representations of epiK (F + IA)∗ in Theorems 4.1 and 4.2 can be removed under
certain regularity conditions. The resulting expressions are then called non-asymptotic
representations of epiK (F + IA)∗, and they will be used as key tools in establishing
versions of non-asymptotic vector Farkas lemmas in the next section. We will need
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the following lemma on scalar functions, where we make explicit all the assumptions
on the data ( f ,G,C).

Lemma 4.1 Let C be a nonempty and convex subset of X, f : X → R ∪ {+∞} be a
proper convex function, and G : X → Z ∪ {+∞Z } be a proper S-convex mapping.
Let D := G (C ∩ dom f ∩ domG) + S. Assume that A ∩ dom f �= ∅ and that at
least one of the following conditions is fulfilled:

(C′1) There exists x̂ ∈ C ∩ dom f such that G (̂x) ∈ −intS;
(C′2) X , Z are Fréchet spaces, C is closed, f is lsc, G is S-epi closed and 0Z ∈

sqriD;
(C′3) dim linD < +∞ and 0Z ∈ riD.

Then

epi( f + i A)∗ =
⋃
z∗∈S∗

epi( f + iC + z∗ ◦ G)∗.

Proof It is a direct consequence of [14, Theorem 3.4]. ��
Theorem 4.3 (1st non-asymptotic representation of epiK (F + IA)∗) Let C be a
nonempty and convex subset of X, F : X → Y ∪ {+∞Y } be a proper K -convex
mapping, and G : X → Z ∪ {+∞Z } be a proper S-convex mapping. Consider the set
E := G (C ∩ dom F ∩ domG) + S. Assume that A ∩ dom F �= ∅ and that at least
one of the following conditions holds:

(C1) There exists x̂ ∈ C ∩ domF such that G (̂x) ∈ −intS;
(C2) X , Z are Fréchet spaces, C is closed, F is positively K -lsc, G is S-epi closed

and 0Z ∈ sqriE;
(C3) dim linE < +∞ and 0Z ∈ riE.

Then,

epiK (F + IA)∗ =
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗. (28)

Comment before the proof Observe that the set D and the function f in Lemma 4.1
coincide with the set E and the vector-valued function F here whenever Y = R.

Proof The proof goes in parallel with the one of Theorem 4.1, applying Lemma 4.1.
For completeness, the proof is sketched below.

• As in the proof of Theorem 4.1, it follows from [8, Lemma 4.1] that

epiK (F + IA)∗ ⊃
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗.

So, to prove (28), it suffices to show that

epiK (F + IA)∗ ⊂
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗. (29)
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• Take (L, y) ∈ epiK (F + IA)∗. Then, by the same argument as the one in the proof
of Theorem 4.1, using Lemma 3.4, Remark 4.1, [22, Theorem 3.4], and Lemma 3.3
consecutively, there exists y∗ ∈ Y ∗ such that (16) and (17) hold. Observe also that
(16) is equivalent to y∗(y) ≥ (y∗ ◦ F + i A)∗(y∗ ◦ L), which accounts for

(y∗ ◦ L, y∗(y)) ∈ epi(y∗ ◦ F + i A)∗. (30)

• Because y∗ ∈ K ∗ and F is a K -convex mapping, y∗ ◦ F is a convex function. If
one of the qualification conditions (C1), (C2) and (C3) holds then, by Lemma 4.1,
one has

epi(y∗ ◦ F + i A)∗ =
⋃
z∗∈S∗

epi(y∗ ◦ F + iC + z∗ ◦ G)∗. (31)

Statements (30) and (31) ensure the existence of z∗ ∈ S∗ satisfying
(y∗ ◦ L, y∗(y)) ∈ epi(y∗ ◦ F + iC + z∗ ◦ G)∗, which means that

y∗(y) ≥ (
y∗ ◦ L

)
(x) − (

y∗ ◦ F
)
(x) − (

z∗ ◦ G
)
(x), ∀x ∈ C ∩ dom F .

(32)

• Now, pick k0 ∈ intK and consider the linear operator T : Z → Y such that

T (z) = z∗(z)
y∗(k0)

k0, ∀z ∈ Z .

Then T ∈ L+(S, K ) and y∗ ◦ T = z∗. Hence, (32) can be rewritten as

y∗(y) ≥ (
y∗ ◦ L

)
(x) − (

y∗ ◦ F
)
(x) − (y∗ ◦ T ◦ G)(x), ∀x ∈ C ∩ dom F,

or equivalently,

y∗ (L(x) − F(x) − (T ◦ G) (x) − y) ≤ 0, ∀x ∈ C ∩ dom F .

So, by (17),

L(x) − F(x) − (T ◦ G) (x) − y /∈ intK , ∀x ∈ C ∩ dom F,

which in turn yields, by Lemma 3.4, (L, y) ∈ epiK (F + IC + T ◦ G)∗. Hence,
(29) has been proved and the proof is complete. ��
We now show that the inclusion

epiK (F + IA)∗ ⊂
⋃

T∈Lw+(S,K )

epiK (F + IC + T ◦ G)∗ (33)

might be strict under the assumptions of Theorem 4.3.
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Example 4.1 (Example 2.2 revisited) Let X , Y , Z , F, and G be as in Example 2.2.
Let C = R. Due to the extreme simplicity of A = C ∩ G−1(−S) = R+ in this
case, epiK (F + IA)∗ can be calculated directly. In fact, since (F + IA)∗ (α, β) =
WSup{R+(α, β)}, one gets

(F + IA)∗ (α, β) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{+∞
R2
}
, if α > 0 and β > 0,[

(−R+) × {0}] ∪ [{0} × (−R+)
]
, if α ≤ 0 and β ≤ 0,

R (α, β) , if αβ = 0 and α + β > 0,

R+ (α, β) ∪ [
(−R+) × {0}] , if α > 0 and β < 0,

R+ (α, β) ∪ [{0} × (−R+)
]
, if α < 0 and β > 0.

Thus, epiK (F + IA)∗ =
5⋃

i=1

Pi , where

P1 = {(α, β, y1, y2) : α ≤ 0 ∧ β ≤ 0 ∧ (y1 ≥ 0 ∨ y2 ≥ 0)} ,

P2 = {(0, β, y1, y2) : β > 0 ∧ y1 ≥ 0} ,

P3 = {(α, 0, y1, y2) : α > 0 ∧ y2 ≥ 0} ,

P4 =
{
(α, β, y1, y2) : α > 0 ∧ β < 0 ∧ y2 ≥ min

{
0, β

α
y1
}}

,

P5 =
{
(α, β, y1, y2) : α < 0 ∧ β > 0 ∧ y1 ≥ min

{
0, α

β
y2
}}

.

Since dom(F+ IA)∗ = {
(α, β) ∈ R

2 : α ≤ 0 ∨ β ≤ 0
}
is not convex, epiK (F+ IA)∗

cannot be convex while its closedness follows from Lemma 3.5 applied to the proper
vector function F + IA = IA.

According to Theorem 4.3, as the Slater condition (C1) is satisfied by any positive
number, we can also express

epiK (F + IA)∗ =
⋃

(t1,t2)∈R2+

epiK ((t1, t2) ◦ G)∗,

where

((t1, t2) ◦ G)∗ (α, β) = WSup{R (α + t1, β + t2)} = F∗ (α + t1, β + t2) .

So, epiK ((t1, t2) ◦ G)∗ =
4⋃

i=1

Qi (t1, t2) , with

Q1 (t1, t2) = {(−t1,−t2, y1, y2) : y1 ≥ 0 ∨ y2 ≥ 0} ,

Q2 (t1, t2) =
{
(α, β, y1, y2) : (α + t1) (β + t2) < 0 ∧ y2 ≥

(
β+t2
α+t1

)
y1
}

,

Q3 (t1, t2) = {(α,−t2, y1, y2) : α �= −t1 ∧ y2 ≥ 0} ,

Q4 (t1, t2) = {(−t1, β, y1, y2) : β �= −t2 ∧ y1 ≥ 0} .
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From Theorem 4.3 and the inclusion L+(S, K ) ⊂ Lw+(S, K ), one has

epiK (F + IA)∗ ⊂
⋃

T∈Lw+(S,K )

epiK (F + IC + T ◦ G)∗.

Next we show that this inclusionmight be strict under the assumptions of Theorem 4.3.
Indeed,

(1, 0, 0,−1) ∈ Q1 (−1, 0) �

(
5⋃

i=1

Pi ,

)

⊂
[ ⋃
T∈Lw+(S,K )

epiK (F + IC + T ◦ G)∗
]

� epiK (F + IA)∗.

Example 4.2 (Example 2.1 revisited) Let X , Y , Z , S, K and F be as in Example 2.1
(i.e., X = Z = R, Y = C[0, 1], S = R+, K := {x ∈ C[0, 1] : x(t) ≥ 0,∀t ∈ [0, 1]}
and F(α)(t) = t2 + α2 for all t, α ∈ R). Let C = R and take G : R → R defined
by G (α) = −α for all α ∈ R. Then A = C ∩ G−1(−S) = R+. Recall that from
Example 2.1, we have L(X ,Y ) = L(Z ,Y ) ≡ C[0, 1], L+(S, K ) ≡ K and

Lw+(S, K ) = {z ∈ C[0, 1] : z(t) ≥ 0 for some t ∈ [0, 1]} .

Then for any x ∈ C[0, 1], (F + IA)∗(x) = WSup{αx − F(α) : α ∈ R+}, and it
follows from (8) that, for all x ∈ L(X ,Y ) = C[0, 1],

(F + IA)∗(x) + K

= {y ∈ C[0, 1] :∀α ∈ R+, ∃tα ∈ [0, 1] s.t. y(tα) ≥ αx(tα) − (tα)2 − α2},

and hence,

epiK(F + IA)∗ =
{
(x, y)∈(C[0, 1])2 :∀α∈R+, ∃tα ∈[0, 1] s.t.

y(tα) ≥ αx(tα) − (tα)2 − α2
}
. (34)

By Theorem 4.3, as in our setting the Slater condition (C1) is satisfied (by any positive
number), we can also express

epiK (F + IA)∗ =
⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗ =
⋃
z∈K

epiK (F + z ◦ G)∗.

(35)

On the other hand, for all x ∈ L(X ,Y ) = C[0, 1] and z ∈ Lw+(S, K ),
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(F + z ◦ G)∗(x) = WSup{αx − F(α) − z ◦ G(α) : α ∈ R}
= WSup{α(x + z) − F(α) : α ∈ R}
= F∗(x + z),

and hence,

epiK (F+z ◦ G)∗=
{
(x, y) ∈ (C[0, 1])2 : ∀α ∈ R, ∃tα ∈ [0, 1] s.t.

y(tα) ≥ αx(tα) + αz(tα) − (tα)2 − α2

}
.

From (35) and the inclusion K = L+(S, K ) ⊂ Lw+(S, K ), one has

epiK (F + IA)∗ ⊂
⋃

z∈Lw+(S,K )

epiK (F + z ◦ G)∗.

We now show that the inclusion (33) is strict even though one of the assumptions
of Theorem 4.3 holds. Indeed, take the functions x0, y0, z0 : [0, 1] → R defined by
x0(t) = 2t2 − 1

2 , y0(t) = t2 − 2, and z0(t) = 1
2 − 2t2. For any α ∈ R, we can take

tα = 1 to get y0(tα) = −1 ≥ −1 − α2 = αx0(tα) + αz0(tα) − (tα)2 − α2, which
shows that (x0, y0) ∈ epiK (F + z0 ◦ G)∗. On the other hand, for α = 1, one has

y0(t) = t2 − 2 < t2 − 3

2
= α(x0(t)) − t2 − α2, ∀t ∈ [0, 1],

and so, (x0, y0) /∈ epiK (F + IA)∗ by (34).

Theorem 4.4 (2nd non-asymptotic representation of epiK (F + IA)∗) Assume that all
the assumptions of Theorem 4.3 hold. Then one has

epiK (F + IA)∗ =
⋃

T∈Lw+(S,K )

⎡
⎣ ⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]
⎤
⎦ .

(36)

Proof It follows from (27) and Theorem 4.3. ��
It is worth noting that the conditions (28) and (36) can be seen as qualification

conditions. The first one was introduced in [8] while the other (which is weaker) is
new.

5 Farkas-Type Results for Vector-Valued Functions

Let the spaces X ,Y , Z , and the cones K , S be as in Sect. 4. Regarding the data
(C, F,G) , we still assume that F : X → Y ∪ {+∞Y } and G : X → Z• are proper
mappings. As in Sect. 4, we assume that A∩ domF �= ∅, where A := C ∩G−1(−S).
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This section provides stable reverse Farkas-type results for systems involving
vector-valued functions, as well as some Farkas lemma principles in asymptotic form
(without any regularity condition) and in non-asymptotic form (under various regular-
ity conditions). The results are established based on the key tools: the representations of
epigraphs of conjugatemappings inSect. 4.Concretely, on theonehand, the asymptotic
Farkas-type results, Theorem 5.1 and Theorem 5.2, are new and significantly different
from the main asymptotic versions of Farkas-type results (Theorem 3.1, Theorem 3.2)
in [8]. The conditions (ii) or (iii) in these Theorems 5.1, 5.2 are expressed explicitly in
terms of F , the constraint functionG and the constraint setC instead of the relation of
the form (L, y) ∈ epiK (F+IA)∗ as in [9]. This justifies the specification “ non-abstract
approach” in the title of the present paper. On the other hand, non-asymptotic versions
of vector Farkas lemmas presented in this section consist of Proposition 5.1 and Corol-
laries 5.2, 5.3, 5.4. The first conclusion of Proposition 5.1, i.e., (a) ⇐⇒ (c), extends
both Theorem 4.1 and Theorem 4.2 in [8] while the second conclusion (b) ⇐⇒ (d) is
new. Each of the Corollaries 5.2, 5.3, 5.4 is a specific version of vector Farkas lemmas
for convex setting under various regularity conditions. These results are new and their
proofs are based on Proposition 5.1 and the nice representations of epiK (F + IA)∗
proved in Sect. 4.

In the case where Y = R, the results extend or recover many known Farkas-type
results in the literature which are stable in the sense that they are preserved by arbitrary
linear perturbations of the function defining the set B (see e.g., [1–3,8,14,15,23], and
the references therein).

Theorem 5.1 (1st asymptotic vector Farkas lemma) Let C be a closed and convex
subset of X, F be a K -convex and positively K -lsc mapping, and G be an S-convex
and S-epi closed mapping. Then for any y ∈ Y and any L ∈ L(X ,Y ), the following
assertions are equivalent:
(i) G(x) ∈ −S, x ∈ C �⇒ F(x) − L(x) + y /∈ −intK ;
(ii) ∃{(Li , yi )}i∈I ⊂ L(X ,Y ) × Y , ∃{Ti }i∈I ⊂ L+(S, K ) such that (Li , yi ) −→
(L, y) and

F(x) + (Ti ◦ G)(x) − Li (x) + yi /∈ −intK , ∀x ∈ C, ∀i ∈ I .

Proof Take (L, y) ∈ L(X ,Y ) × Y . Observing that A = C ∩ G−1(−S) and applying
Lemma 3.4 to F + IA, we have

(i) ⇐⇒ (L, y) ∈ epiK (F + IA)∗. (37)

It now follows from (37) and Theorem 4.1 that

(i) ⇐⇒ (L, y) ∈ cl

⎡
⎣ ⋃
T∈L+(S,K )

epiK (F + IC + T ◦ G)∗
⎤
⎦

⇐⇒ ∃{(Li , yi )}i∈I ⊂
⋃

T∈L+(S,K )

epiK(F + IC + T ◦ G)∗ s.t. (Li , yi ) → (L, y)
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⇐⇒ ∃{(Li , yi )}i∈I ⊂ L(X ,Y ) × Y , ∃{Ti }i∈I ⊂ L+(S, K )

s.t. (Li , yi ) → (L, y) and (Li , yi ) ∈ epiK (F + IC + Ti ◦ G)∗ ∀i ∈ I ,

which is (ii) and the proof is complete. ��
Theorem 5.2 (2nd asymptotic vector Farkas lemma) Assume that all the assumptions
of Theorem 5.1 hold. Then for any y ∈ Y and any L ∈ L(X ,Y ), the following
assertions are equivalent:
(i) G(x) ∈ −S, x ∈ C �⇒ F(x) − L(x) + y /∈ −intK ;
(iii) ∃{(Li , yi )}i∈I ⊂ L(X ,Y )×Y , ∃{Ti }i∈I ⊂ Lw+(S, K ) such that (Li , yi ) → (L, y)
and

F(x) + (Ti ◦ G)(x) − Li (x) + yi /∈ Ti (−S) − intK , ∀x ∈ C, ∀i ∈ I .

Proof The conclusion follows by the same argument as in the proof of Theorem 5.1,
using (25) and Theorem 4.2 (instead of Theorem 4.1). ��

In the special casewhenY = R, bothTheorems 5.1 and 5.2 collapse to the following
scalar stable asymptotic Farkas lemmawhich extends [24, Corollary 3.4] (see also [2]).

Corollary 5.1 (Scalar asymptotic convex Farkas lemma) Let C be a closed and convex
subset of X, f : X → R ∪ {+∞} be a proper lsc convex function, and G be an
S-convex and S-epi closed mapping. Assume that A ∩ dom f �= ∅. Then, for any
(x∗, α) ∈ X∗ × R, the following statements are equivalent:
(iv) G(x) ∈ −S, x ∈ C �⇒ f (x) − 〈x∗, x〉 ≥ α,

(v) There exists a net
{
z∗i
}
i∈I ⊂ S∗ such that

f (x) − 〈x∗, x〉 + lim inf
i

(
z∗i ◦ G

)
(x) ≥ α, ∀x ∈ C .

Proof In the case where Y = R, Theorem 5.1 (applied to f and y = −α ∈ R) asserts
that (iv) is equivalent to

∃{(x∗
i , αi )}i∈I ⊂ X∗ × R, ∃{z∗i }i∈I ⊂ S∗ such that (x∗

i , αi ) −→ (x∗, α),

and

f (x) + (z∗i ◦ G)(x) − 〈x∗
i , x〉 ≥ αi , ∀x ∈ C, ∀i ∈ I . (38)

Thus, (v) follows by taking the liminf of the inequality (38), and considering that
(x∗

i , αi ) −→ (x∗, α). The implication [(v) ⇒ (iv)] is obvious and the proof is com-
plete. ��

We are now in a position to obtain different versions of stable non-asymptotic
vector Farkas lemmas (Corollaries 5.2, 5.4 , 5.3, and 5.5) based on the principles
gathered in the following proposition, whose first statement, [(a) ⇐⇒ (c)] generalizes
[8, Theorem 4.1].
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Proposition 5.1 (1st non-asymptotic vector Farkas lemma principles) Let V ⊂
L(X ,Y ) and W ⊂ Y . Consider the following statements:
(a) epiK (F + IA)∗ ∩ (V × W) = ⋃

T∈L+(S,K )

epiK (F + IC + T ◦ G)∗ ∩ (V × W),

(b) epiK (F + IA)∗ ∩ (V × W)

=
⎧⎨
⎩

⋃
T∈Lw+(S,K )

⎡
⎣ ⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]
⎤
⎦
⎫⎬
⎭
⋂

(V × W) ,

(c) For any y ∈ W and any L ∈ V , the following assertions are equivalent:

(c1) G(x) ∈ −S, x ∈ C �⇒ F(x) − L(x) + y /∈ −intK ,

(c2) ∃T ∈ L+(S, K ) : F(x) + (T ◦ G)(x) − L(x) + y /∈ −intK , ∀x ∈ C,

(d) For any y ∈ W and any L ∈ V , the following assertions are equivalent:

(c1) G(x) ∈ −S, x ∈ C �⇒ F(x) − L(x) + y /∈ −intK ,

(d1) ∃T ∈ Lw+(S, K ):F(x) + (T ◦ G) (x) − L(x) + y /∈ T (−S) − intK , ∀x ∈ C .

Then (a) ⇐⇒ (c) and (b) ⇐⇒ (d).

Proof [(b) ⇐⇒ (d)] For all (L, y) ∈ V × W , observe that

(L, y) ∈
⋃

T∈Lw+(S,K )

⎡
⎣ ⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]
⎤
⎦

⇐⇒ ∃T ∈ Lw+(S, K ) : (L, y) ∈
⋂

v∈I ∗−S(T )

[epiK (F + IC + T ◦ G)∗ + (0L, v)]

⇐⇒ (d1) (see (25)). (39)

The conclusion follows from (37) and (39). ��
We now combine Proposition 5.1 with the representation theorems of Sect. 4 to

derive some useful Farkas lemmas and Farkas lemma principles for vector functions.

Corollary 5.2 (2nd non-asymptotic vector Farkas lemma principle)Assume that all the
assumptions of Theorem 5.1 hold. Then, the following statements are equivalent:
(e)

⋃
T∈L+(S,K )

epiK (F + IC + T ◦ G)∗ is closed,

(c′) ∀(L, y) ∈ L(X ,Y ) × Y , (c1) ⇐⇒ (c2).

Proof It follows from Theorems 4.1 and 5.1 with V = L(X ,Y ) and W = Y . ��
Corollary 5.3 (3rd non-asymptotic vector Farkas lemma principle) Assume that all the
assumptions of Theorem 5.1 hold. Then the following statements are equivalent:

123



Journal of Optimization Theory and Applications (2019) 182:4–29 27

(f)
⋃

T∈Lw+(S,K )

[ ⋂
v∈I ∗−S(T )

epiK (F + IC + T ◦ G)∗ + (0L, v)

]
is closed,

(d′) ∀(L, y) ∈ L(X ,Y ) × Y , (c1) ⇐⇒ (d1).

Proof It follows from Theorems 4.1 and 5.1 with V = L(X ,Y ) and W = Y . ��
Corollary 5.4 (Non-asymptotic vector Farkas lemma) Let C be a convex subset of X,
F be a K -convex mapping, and G be a proper S-convex mapping. Assume that at
least one of the conditions (C1), (C2) and (C3) in Theorem 4.3 holds. Then the two
statements (c) and (d) in Proposition 5.1 hold true for any V ⊂ L(X ,Y ) andW ⊂ Y .

Proof It follows from Theorems 4.2 and 5.1. ��
We have seen that in the special case where Y = R, the asymptotic vector Farkas

lemmas (i.e., Theorem 5.1 and Theorem 5.2) collapse to a scalar stable asymptotic
Farkas lemma (Corollary 5.1), which extends some known results in the literature. It
should be worth mentioning here that the Farkas-type results of the forms [(c1) ⇐⇒
(c2)] or [(c1) ⇐⇒ (d1)] in Corollaries 5.2-5.4 when they are specified to the case Y =
R, give scalar stable non-asymptotic Farkas lemmas which extend (or at least cover)
many Farkas-type results and their stable forms in the literature, such as [1–3,14], and
many others. As an illustration, we finally establish a scalar stable non-asymptotic
Farkas-type result which is a direct consequence of Corollary 5.2.

Corollary 5.5 (Scalar convex Farkas lemma principle) [15, Theorem 3.1] Assume that
all the assumptions of Corollary 5.1 hold. Assume that A∩ dom f �= ∅. Then, for any
(x∗, α) ∈ X∗ × R, the following statements are equivalent:
(g)

⋃
z∗∈S∗

epi( f + iC + z∗ ◦ G)∗ is a closed subset of X∗ × R,

(h) For all (x∗, α) ∈ X∗ × R, the following statements are equivalent:

(h1) G(x) ∈ −S, x ∈ C �⇒ f (x) − 〈x∗, x〉 ≥ α,

(h2) ∃z∗ ∈ S∗ : f (x) − 〈x∗, x〉 + (z∗ ◦ G)(x) ≥ α, ∀x ∈ C .

6 Conclusions

Let the spaces X ,Y , Z , the cones K , S and the mappings F : X → Y ∪ {+∞Y } and
G : X → Z• be as in Sect. 4. This paper provides a variety of characterizations of the
inclusion A := C ∩ G−1(−S) ⊂ B, where B depends on F, which are expressed in
terms of the data (C, F,G).

• The key tools to obtain the characterizations of A ⊂ B are the representations of
epiK (F + IA)∗ in Sect. 4, which can be either asymptotic (Theorems 4.1 and 4.2)
or non-asymptotic (Theorems 4.3 and 4.4).

• Two different representations of epiK (F + IA)∗ are given, a first one based on the
known concept of cone of positive operators and a second one based on the new
one of cone of weakly positive operators.
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• These representations have been used to establish, in Sect. 5, asymptotic stable vec-
tor Farkas lemmas (Theorems 5.1 and 5.2, and Corollary 5.1) and non-asymptotic
stable vector Farkas principles (Proposition 5.1 and Corollaries from 5.2 to 5.5).

• All Farkas-type results in Sect. 5 are stable, in the sense that they characterize
the inclusion of A in perturbations of the container set B produced by continuous
affine perturbations of the form L− y,with y ∈ Y and L ∈ L(X ,Y ), of the vector
function F defining B.By setting L = 0L and y = 0Y , one gets the corresponding
characterization of A ⊂ B.

• Similar to [8], the non-abstract vector Farkas lemmas obtained in this paper can
be used to establish optimality conditions and duality theorems (including stable
ones) for vector optimization problems, and this will be published somewhere else.

• All the results in this paper are established under the condition that the interior
of the cone K is nonempty. In the case when intK = ∅ but its quasi(-relative)
interior is nonempty, we can define weakly minimal/maximal elements by means
of quasi(- relative) interior (see, e.g., [25,26]), or by means of any other set E
satisfying E + K = E (called free disposal set , by Debreu [27]) and it is possible
that some of the main results in this paper can be extended to this case, and this
will be done in another work.

Acknowledgements The authors wish to thank an anonymous referee for his/her valuable comments which
helped to improve the manuscript. This research was supported by the National Foundation for Science &
Technology Development (NAFOSTED) of Vietnam, Project 101.01-2015.27, Generalizations of Farkas
lemma with applications to optimization, by theMinistry of Economy and Competitiveness of Spain and the
European Regional Development Fund (ERDF) of the European Commission, Project MTM2014-59179-
C2-1-P, and by the Australian Research Council, Project DP160100854.

References
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