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Abstract
Difference-of-Convexprogramming and related algorithms,which constitute the back-
bone of nonconvex programming and global optimization, were introduced in 1985
by PhamDinh Tao and have been extensively developed by Le Thi Hoai An and Pham
Dinh Tao since 1994 to become now classic and increasingly popular. That algo-
rithm is a descent method without linesearch and every limit point of its generated
sequence is a critical point of the related Difference-of-Convex program. Determining
its convergence rate is a challenging problem. Its knowledge is crucial from both the-
oretical and practical points of view. In this work, we treat this problem for the class of
Difference-of-Convex programs with subanalytic data by using the nonsmooth form
of the Lojasiewicz inequality. We have successfully proved that the whole sequence
is convergent, if it is bounded, provided that the objective function is subanalytic
continuous on its domain and one of the two Difference-of-Convex components is
differentiable with locally Lipschitz derivative. We also established a result on the
convergence rate, which depended on the Lojasiewicz exponent of the objective func-
tion. Finally, for both classes of trust-region subproblems and nonconvex quadratic
programs,we showed that the Lojasiewicz exponentwas one half, and thereby, our pro-
posed algorithms applied to these Difference-of-Convex programs were Root-linearly
convergent.
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1 Introduction

Difference-of-Convex functions (DC) programming and DC algorithm (DCA) consti-
tute the backbone of nonconvex programming and global optimization. They play a
key role in these research areas because most real-world nonconvex programs are DC
programs. Based on local optimality conditions and DC duality, DCA is one of rare
effective and efficient algorithms in the nonsmooth nonconvex programming frame-
work.Due to its local character, it cannot guarantee the globality of computed solutions
for general DC programs. However, we observe that, with a suitable starting point,
it converges quite often to a global one. The original key idea of DCA relies on the
DC structure of objective and constraint functions in nonconvex programs, which are
explored and exploited in a deep and suitable way. The resulting DCA introduces the
nice and elegant concept of approximating a nonconvex (DC) program by a sequence
of convex ones: each iteration of DCA requires solution of a convex program. Interest-
ingly, with appropriate DC decompositions, DCA permits to recover, as special cases,
all (resp. most) existing algorithms in convex (resp. nonconvex) programming, e.g.,
the proximal and (sub)gradient algorithms (see [1–6] and references therein).

Being a descent method without linesearch (greatly appreciated in the large-scale
setting), with global convergence (i.e., from an arbitrary starting point), DCA was
successfully applied to lots of nonconvex optimization problems in many fields of
Applied Sciences: Transport Logistics, Telecommunications, Genomics, Finance,
Data Mining-Machine Learning, Cryptology, Computational Biology, Computational
Chemistry, Combinatorial Optimization, Mechanics, Image Processing, Robotics &
Computer Vision, Petrochemicals, Optimal Control and Automatic, Inverse Prob-
lems and Ill-posed Problems,Multiobjective Programming, Game Theory, Variational
Inequalities Problems (VIP), Mathematical Programming with Equilibrium Con-
straints (MPEC), to cite but a few (see the list of references in [5,6]). The popularity of
DC programming and DCA resides in their rich and deep mathematical foundations,
simplicity, flexibility and efficiency of DCAs, their adaptation to specific structures
of addressed problems and their ability to solve real-world large-scale nonconvex
programs.

The purpose of the present paper is to study the convergence of the DCA via the
Łojasiewicz gradient inequality. This celebrated inequality is a key tool in subanalytic
geometry as well as in its applications to subanalytic continuous/discrete dynamical
systems, which has been discovered by Łojasiewicz for differentiable subanalytic
functions, and generalized to nonsmooth subanalytic functions by Bolte–Daniilidis–
Lewis in 2007 [7] . The notion of subanalyticity and its basic properties necessary
for our work will be given in the next section. The class of subanalytic functions,
containing analytic functions, was first introduced by Łojasiewicz [8–10] and then
has been extensively studied by many authors (see, e.g., [7,11,12] and references
therein). It has numerous interesting properties and is rich enough to cover a lot of
practical optimization problems. In [13], the Łojasiewicz subgradient inequality has
been applied to formulate the convergence result for the gradient method. Later, in the
papers [14,15], by using the nonsmooth version of this inequality, the authors have
proved the convergence results of the proximal type methods.
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Based on the aforementioned works, we established the convergence result of DCA
for DC programming with subanalytic data. It is known (see, e.g., [2–4,16]) that the
proximal algorithm in DC programming can be regarded as a special case of DCA;
hence, the convergence result in this paper generalizes and completes some results in
[13–15].

The rest of the paper is organized as follows. Section 2 presents preliminaries and a
backgroundof ourmotivation: somebasic tools of convex andnonsmooth analysis con-
cerning duality, criticality, directional stationarity and local optimality inDC program-
ming, which serves to design the DCA and to prove its sequential convergence. More-
over, the subanalyticity notion, its essential properties, and theŁojasiewicz subgradient
inequality are briefly indicated. Section 3 describes the main results of the paper: the
convergence rate of the DCA. At last, the final section points out the explicit computa-
tion of Łojasiewicz exponents for both classes of trust-region subproblems/quadratic
programs. They are all equal to 1/2. It follows the Root-linear convergence of the DCA
for these DC programs. To the best of our knowledge, these results seem to be the first
in the literature related to the calculation of the Łojasiewicz exponents.

2 Preliminaries

Let us first recall some notions from convex analysis and nonsmooth analysis, which
will be needed hereafter [17–19] for the presentation of the nonsmooth Łojasiewicz
inequality and the statement of the DCA’s convergence rate for DC programs with
subanalytic data. In the sequel, the space X :=R

n is equipped with the canonical inner
product 〈·, ·〉. Its dual space Y is identified with X itself. By definition, the effective
domain of a function f : X → R ∪ {+∞}, denoted by dom f , is

dom f :={x ∈ X : f (x) < +∞}.

It is called proper, iff dom f 	= ∅. S(X) represents the set of lower semicontinuous
proper functions f : X → R∪{+∞}. The open ball with the center x ∈ X and radius
ε > 0 is denoted by B(x, ε), while the unit ball (i.e., the closed ball with the center at
the origin and unit radius) is denoted by B.

Let ρ ≥ 0 and C be a nonempty and convex set contained in the effective domain
of a function θ : C → R. One says that the function θ is ρ-convex on C , iff for all x ,
u ∈ C, λ ∈ [0, 1] one has

θ(λx + (1 − λ)u) ≤ λ(x) + (1 − λ) f (u) − ρ

2
λ(1 − λ)‖x − u‖2.

It amounts to saying that θ − (ρ/2)‖ · ‖2 is convex on C . The modulus of strong
convexity of θ on C , denoted by ρ(θ, C) or ρ(θ) if C = X , is given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}. (1)
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Clearly, the ρ-convexity implies the convexity. One says that θ is strongly convex on
C , iff ρ(θ, C) > 0. The supremum of all ρ ≥ 0 such that the above inequality is
verified is called the convexity modulus of f , while it is strongly convex if ρ > 0.

For a proper function f : X → R ∪ {+∞}, the Fréchet subdifferential of f at
x ∈ dom f is defined by

∂ F f (x) =
{

y ∈ Y : lim inf
h→0

f (x + h) − f (x) − 〈y, h〉
‖h‖ ≥ 0

}
.

For x /∈ dom f , we set ∂ F f (x) = ∅. If f is a convex function, then ∂ F f coincides
with the subdifferential ∂ f in the sense of convex analysis. A point x0 ∈ X is called
a (Fréchet) critical (or stationary) point for the function f , if 0 ∈ ∂ F f (x0).

If f is locally Lipschitz at x ∈ X , then the Clarke directional derivative f C (x; .)

at x and the Clarke subdifferential ∂C f (x) of f at x are defined by

f C (x; d):= lim
(t,u)→(0+,x)

f (u + td) − f (u)

t
,

and

∂C f (x):={y ∈ Y : 〈y, d〉 ≤ f C (x; d),∀d ∈ X}.
If f is continuously differentiable at x , then ∂C f (x) = {∇ f (x)} (the Fréchet

derivative of f at x). When f is a convex function, then ∂C f coincides with the
subdifferential ∂ f .

For given two locally Lipschitz functions f , g at a given x ∈ X , one has

∂C (− f )(x) = −∂C f (x), ∂C ( f + g)(x) ⊂ ∂C f (x) + ∂C g(x),

where the equality in the latter inclusion holds if f is continuously differentiable at x .
Moreover, given a DC-function f , i.e., f :=g − h, where g and h are convex

functions, if h is continuous at x , then

∂ F f (x) ⊂ ∂g(x) − ∂h(x).

Especially, if h is differentiable at x, then one has the equality:

∂ F f (x) = ∂g(x) − ∇h(x).

We now briefly recall the notion of subanalytic sets and functions and some basic
properties [8–10].

Definition 2.1 (i) A subset C of X is said to be semianalytic, iff each point of X
admits a neighborhood V such that

C ∩ V =
p⋃

i=1

q⋂
j=1

{x ∈ V : fi j (x) = 0, gi j (x) > 0},
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where fi j , gi j : V → R (1 ≤ i ≤ p, 1 ≤ j ≤ q) are real-analytic functions.
(ii) A subset C of X is called subanalytic, iff each point of X admits a neighborhood

V such that

C ∩ V = {x ∈ X : ∃y ∈ R
m, (x, y) ∈ D},

where D is a bounded semianalytic subset of X × R
m with m ≥ 1.

(iii) A function f : X → R ∪ {+∞} is subanalytic, iff its graph is a subanalytic
subset of X × R.

Evidently, the class of subanalytic sets (resp. functions) contains all analytic
sets (resp. functions). Subanalytic sets and subanalytic functions enjoy interest-
ing properties. For instance, the class of subanalytic sets is closed under locally
finite unions/intersections, relative complements, and the usual projection. The dis-
tance function to a subanalytic set is subanalytic; the sum/difference of continuous
and subanalytic functions is also subanalytic. For further properties of subanalytic
set/functions, the readers are referred to [9,11,12] and the references therein.

The following proposition gives the subanalyticity of the conjugate of strongly
convex functions.

Proposition 2.1 If f : X → R ∪ {+∞} is a lower semicontinuous, subanalytic and
strongly convex function, then its conjugate f ∗ is a C1,1 (the class of functions whose
derivatives are Lipschitz), subanalytic, and convex function.

Proof It is well known that the conjugate of a lower semicontinuous and strongly
convex function is of the class C1,1. It suffices to show that f ∗ is subanalytic. Let
ρ > 0 be the modulus of the strong convexity of f . Take ρ1 ∈ ]0, ρ[ and define
h(x):= f (x) − ρ1

2 ‖x‖2, x ∈ X . Then, h is strongly convex. By the definition of the
conjugate,

f ∗(y) = − inf x∈X {h(x) + ρ1
2 ‖x‖2 − 〈x, y〉}

= − inf y∈Rn {h(y) + ρ1
2 ‖x/ρ1 − y‖2} + 1

2ρ1
‖x‖2

= −ϕ(y) + 1
2ρ1

‖y‖2,

with

ϕ(y) = inf
x∈X

{
h(x) + ρ1

2

∥∥∥∥x − y

ρ1

∥∥∥∥
2
}

, y ∈ Y .

According to Proposition 2.9 in [7], the function ϕ is subanalytic. Hence, f ∗, being
the difference of two subanalytic functions, is subanalytic too. ��

Let us recall next the Łojasiewicz subgradient inequality, established by Bolte–
Daniilidis–Lewis [7], which plays a key role in our convergence analysis of the DCA.

Theorem 2.1 (Theorem 3.1, [7]) Let f : X → R ∪ {+∞} be a subanalytic function
such that: its domain dom f is closed; f |dom f is continuous. Let x0 be a Fréchet
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critical point of f . Then, there exist θ ∈ [0, 1[, L > 0 and a neighborhood V of x0
such that

| f (x) − f (x0)|θ ≤ L‖x∗‖ for all x ∈ V , x∗ ∈ ∂ F f (x),

where the convention 00 = 1 is used.

The number θ in the theorem is called a Łojasiewicz exponent of the function f at
the critical point x0.

3 Convergence Analysis of DCA

This main section is devoted to the statement of DCA’s convergence rate for DC pro-
grams with subanalytic data. It requires some basic tools of DC programming and
DCA indispensable for achieving this objective.

Introduction to DC Programming and DCA
Let �0(X) denote the convex cone of all lower semicontinuous, proper, and convex

functions on X . The indicator function χC of a nonempty, closed, and convex set
C ⊂ X is defined by χC (x) = 0, if x ∈ C , +∞, otherwise. One has χC ∈ �0(X).
The vector space of DC functions is denoted by DC(X):=�0(X) − �0(X). It is well
known that this class of DC functions is quite large to contain almost real-life objective
functions, and is closed under all the usual operations encountered in optimization.

We consider the standard DC program of the form:

α:= inf{ f (x):=g(x) − h(x) : x ∈ X} (Pdc)

with g, h ∈ �0(X). The function f is called a DC-function on X , while g and h are
its DC components. By replacing the convex functions g and h with g + ρ

2 ‖ · ‖2 and
h + ρ

2 ‖ · ‖2, ρ being a positive scalar, one can, without loss of generality, assume the
strong convexity of both functions g and h in (Pdc).

Clearly, a DC-function f has infinitely many DC decompositions (each of which
gives rises to its own DCA), which could strongly impact on practical performances
(optimality, quality of computed solutions, convergence rate, efficiency, and scala-
bility, etc) of the DCA [2–6,20,21]. Note that any closed and convex constraint set
C ⊂ dom g can be incorporated in the objective function of (Pdc) by using the
indicator function χC :

inf{ f (x):=g(x) − h(x) : x ∈ C} = inf{χC (x) + g(x) − h(x) : x ∈ X}. (2)

From the literature of subanalytic geometry, under some suitable conditions, the func-
tion f + χC is subanalytic, if both f and C are subanalytic. Recall that, under the
usual convention +∞ − (+∞) = +∞, the finiteness of the optimal value α implies

dom f = dom (g + χC ) = dom g ∩ dom χC = C ⊂ dom h.
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The dual DC program (Ddc ) of (Pdc) is defined by

α = inf{h∗(y) − g∗(y) : y ∈ Y }. (Ddc)

Here g∗ and h∗ are the conjugate functions of g and h, respectively, i.e.,

g∗(y):= sup{〈x, y〉 − g(x) : x ∈ X}.

Critical and strongly critical points of g − h
A point x∗ is a critical point of (Pdc) (or f = g − h), iff ∂g(x∗) ∩ ∂h(x∗) 	= ∅, or

equivalently 0 ∈ ∂g(x∗) − ∂h(x∗), while it is called strongly critical point of (Pdc)

(or f = g − h), iff ∅ 	= ∂h(x∗) ⊂ ∂g(x∗). The sets of critical (resp. strongly critical)
points of g − h are denoted by Pc (resp. Psc), and Pl is the set of local minimizers of
g − h. Likewise, replacing (Pdc) by (Ddc) gives the similar notations for h∗ − g∗.

Necessary local optimality conditions for the primal DC program (Pdc) were devel-
oped as follows (by symmetry those relating to dual DC program (Ddc) are trivially
deduced) [2–5].

The notion of DC criticality is close to Clarke/Fréchet stationarity in the following
sense:

First, by definition, x∗ is Clarke/Fréchet subdifferential ∂C f (resp. ∂ F f ) of f
= g − h, iff

0 ∈ ∂C f (x∗) (3)

(resp.

0 ∈ ∂ F f (x∗)). (4)

On the other hand, it is well known that

∂C f (x) ⊂ [∂g(x) − ∂h(x)],
∂ F f (x) ⊂ [∂g(x) − ∂h(x)] (5)

with equality under technical assumptions. Hence, Clarke stationarity of x∗ or its
Fréchet stationarity impliesDC criticality of x∗.Their equivalence occurs if the related
equality holds in the corresponding inclusion.

DC Strong Criticality and Directional Stationarity for DC Programs
As remarked above, DC criticality and strong criticality depend on DC decompo-

sitions g − h of DC objective function f = g − h. Since a DC-function has infinitely
many DC decompositions, it is important to find relations between DC criticality and
the commonly used directional stationarity (d-stationarity, for short) defined below,
which depends only on f but not on DC components g and h.

For the sake of completeness, let us recall and complete themajor results concerning
these different criticalities. They rely on somemain results, in modern convex analysis
[18,22], related to the subdifferential, the directional derivative of a convex function,
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and the support function of a convex set in X . Let ϕ : X → R ∪ {+∞} be a proper
function on X and x ∈ dom ϕ.

The directional derivative ϕ′(x; ·) of ϕ at x is defined by

ϕ′(x; u):= lim
t↓0

ϕ(x + tu) − ϕ(x)

t
.

If ϕ is convex, then it becomes

ϕ′(x; u):= inf
t>0

ϕ(x + tu) − ϕ(x)

t
.

Let us recall the following relations between the subdifferential ∂ϕ(x) of ϕ at x
and the directional derivative ϕ′(x; ·) of ϕ at x :

Assume that the function ϕ : X → R ∪ {+∞} is proper convex on X , then for
x ∈ dom ϕ:

a) ϕ′(x; u) is convex and positively homogeneous as a function of u,

b) y ∈ ∂ϕ(x) iff ϕ′(x; u) ≥ 〈u, y〉 for every u ∈ X , i.e.,

ϕ′(x; u) ≥ sup{〈u, y〉 : y ∈ ∂ϕ(x)} = χ∗
∂ϕ(x)(u).

In fact, the closure of ϕ′(x; u), as a convex function of u, is the support function of
the closed and convex set ∂ϕ(x)

cl(ϕ′(x; u)) = χ∗
∂ϕ(x)(u).

Moreover, if x ∈ ri(dom ϕ), then ∂ϕ(x) is nonempty andϕ′(x; u) is semicontinuous
and proper on X as a function of u such that

ϕ′(x; u) = sup{〈u, y〉 : y ∈ ∂ϕ(x)} = χ∗
∂ϕ(x)(u).

Let C be a nonempty, closed, and convex set in X . Then, for x ∈ C ,

∂χC (x) = {y ∈ Y : 〈u − x, y〉 ≤ 0 ∀u ∈ C} = N (C, x),

where N (C, x) is the (closed and convex) normal cone to C at x .

c) Let C1 and C2 be two closed and convex sets in X . Then,

C1 ⊂ C2 ⇔ χ∗
C1

≤ χ∗
C2

.

The d-Stationarity of a Proper Function ϕ : X → R ∪ {+∞}
A vector x ∈ dom ϕ is d-stationary of ϕ, iff ϕ′(x; u) ≥ 0 for every u ∈ X .
The following result shows the key relations between d-stationarity and strong

criticality, whose proof is a direct consequence of the properties a), b), and c) afore-
mentioned, and is omitted here.
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Theorem 3.1 Let f :=g − h be the DC objective function of the primal DC program
(Pdc) whose optimal value α is finite. Then, the following properties hold:

(i) f ′(x; u) = g′(x; u) − h′(x; u) for all u ∈ X .

(ii) The vector x ∈ dom f is d-stationary of f (or for (Pdc)), iff g′(x; u) ≥ h′(x; u)

for all u ∈ X . Hence, for x ∈ dom f , if both equalities g′(x; u) = χ∗
∂g(x)(u)

and h′(x; u) = χ∗
∂h(x)(u) hold for all u ∈ X , then there is an identity between

the d-stationarity of x and the strong criticality of x.
(iii) If x ∈ ri(dom g) ∩ ri(dom h), then the d-stationarity of x is equivalent to the

strong criticality of x .

(iv) If x ∈ ri(dom g), then the d-stationarity of x implies the strong criticality of x .

(v) If x ∈ ri(dom h), then the strong criticality of x implies the d-stationarity of x .

(vi) If the affine hulls of dom g and of dom h are identical, then
ri(dom g) ⊂ ri(dom h), and for x ∈ ri(dom g), the d-stationarity of x is
equivalent to the strong criticality of x.

Duality and Local Optimality Conditions in DC Programming
Let us summarize some basic properties about duality and local optimality in DC

programming [2–6] that will be used in the following for the construction of the DCA.

Theorem 3.2 (i) If x∗ is a local minimizer of g − h, then x∗ ∈ P�.
(ii) Let x∗ be a critical point of g − h and y∗ ∈ ∂g(x∗) ∩ ∂h(x∗). Let U be a

neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈ U ∩ dom g
there is y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗), then x∗ is a local
minimizer of g − h. More precisely,

g(x) − h(x) ≥ g(x∗) − h(x∗),∀x ∈ U ∩ dom g.

Corollary 3.1 (Sufficient local optimality)Let x∗ be a point that admits a neighborhood
U such that ∂h(x) ∩ ∂g(x∗) 	= ∅,∀x ∈ U ∩ dom g. Then, x∗ is a local minimizer of
g − h. More precisely,

g(x) − h(x) ≥ g(x∗) − h(x∗),∀x ∈ U ∩ dom g.

Corollary 3.2 (Sufficient strict local optimality) If x∗ ∈ int(dom h) verifies ∂h(x∗) ⊂
int(∂g(x∗)), then x∗ is a strict local minimizer of g − h.

Corollary 3.3 (DC duality transportation of a local minimizer) Let x∗ ∈ dom ∂h be a
local minimizer of g − h and let y∗ ∈ ∂h(x∗) (i.e., ∂h(x∗) is nonempty, and x∗ admits
a neighborhood U such that

g(x) − h(x) ≥ g(x∗) − h(x∗),∀x ∈ U ∩ dom g). (6)

If

y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U (7)
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((7) holds if g∗ is differentiable at y∗), then y∗ is a local minimizer of h∗ − g∗.

DCA Scheme and Its Convergence Properties
Philosophy of DCA The DCA is based on local optimality conditions and duality

in DC programming. The main idea of DCA is quite simple: at each iteration k, DCA
approximates the second DC component h by its affine minorization hk(x):=h(xk)+
〈x − xk, yk〉, with yk ∈ ∂h(xk), and minimizes the resulting convex function.

Basic DCA scheme
Initialization: Let x0 ∈ dom ∂h.
For k = 0, 1, . . . until convergence of {xk}:

Step 1: Compute yk ∈ ∂h(xk).
Step 2: Compute xk+1 ∈ argmin{g(x) − hk(x) : x ∈ X} (Pk).

Recall the core results on DCA’s convergence [2–5].

Theorem 3.3 The DCA is a descent method without linesearch, but with global con-
vergence, which enjoys the following properties: (C and D are two convex sets in X ,

containing the sequences {xk} and {yk} respectively)

(i) The sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are decreasing and con-
vergent to the same limit, and

• g(xk+1) − h(xk+1) = g(xk) − h(xk) iff [ρ(g, C) + ρ(h, C)]‖xk+1 − xk‖ = 0,
yk ∈ ∂g(xk) ∩ ∂h(xk), and yk ∈ ∂g(xk+1) ∩ ∂h(xk+1). Moreover if g or h is
strictly convex on C, then xk = xk+1. In such a case, the DCA terminates at the
kth iteration (finite convergence of DCA).

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) iff xk+1 ∈ ∂g∗(yk) ∩ ∂h∗(yk), xk+1 ∈
∂g∗(yk+1) ∩ ∂h∗(yk+1), and [ρ(g∗, D) + ρ(h∗, D)]‖yk+1 − yk‖ = 0. Moreover
if g∗ or h∗ is strictly convex on D, then yk+1 = yk . In such a case, the DCA
terminates at the kth iteration (finite convergence of DCA).

(ii) If ρ(g, C) + ρ(h, C) > 0 (resp. ρ(g∗, D) + ρ(h∗, D) > 0), then the series
{‖xk+1 − xk‖2} (resp. {‖yk+1 − yk‖2}) is convergent.

(iii) If the optimal value α of problem (Pdc) is finite and the sequences {xk} and {yk}
are bounded, then every limit point x̃ (resp. ỹ) of the sequence {xk} (resp. {yk})
is a critical point of g − h (resp. h∗ − g∗).

(iv) For polyhedral DC program (i.e., a DC program in which at least one of the
functions g and h is polyhedral), the sequences {xk} and {yk} contain finitely
many iterates and hence they have finite convergence (i.e., after a finite number
of iterations).

Remark 3.1 By using the optimal choice of subgradients [2–4] in the construction of
{xk} and {yk}, the modified DCA (called the complete DCA in the works just men-
tioned above) sequentially converges to strongly critical points of (Pdc) and (Ddc),
respectively. The convergence result for the DCA is stated in the following theorem.
The main idea of its proof, inspired from [13,14], is based on the Łojasiewicz original
inequality (see also [15] in which the Kurdyka-Łojasiewicz inequality, a general ver-
sion of the Łojasiewicz one, is used). It can be described roughly as follows. Given
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a sequence {xk} defined by the DCA, the series
∑∞

k=0 ‖xk − xk+1‖2 is convergent
according to Theorem 3.3. The help of the Łojasiewicz subgradient inequality is to
guarantee the convergence of the series

∑∞
k=0 ‖xk − xk+1‖ and, as a result, the con-

vergence rate of DCA for DC programs with subanalytic data.

Theorem 3.4 Let {xk} and {yk} be two sequences generated by the DCA. Then the
following properties hold:

(i) Suppose that the DC-function f :=g−h is subanalytic; dom f is closed; f |dom f is
continuous; and around every critical point of (Pdc), either g or h is differentiable
with locally Lipschitz derivative. Assume that ρ:=ρ(g) + ρ(h) > 0. If either the
sequence {xk} or {yk} is bounded, then {xk} and {yk} are convergent to critical
points of (Pdc) and (Ddc), respectively.

(ii) Similarly, the dual problem has its counterpart: suppose that h∗ − g∗ is subana-
lytic; dom(h∗ − g∗) is closed; (h∗ − g∗) |dom(h∗−g∗) is continuous; and around
critical points of (Ddc), either g∗ or h∗ is differentiable with locally Lipschitz
derivative. If ρ(g∗)+ρ(h∗) > 0 and either the sequence {xk} or {yk} is bounded,
then {xk} and {yk} are convergent to critical points of (Pdc) and (Ddc), respec-
tively.

Proof In view of theDC duality in Theorem 3.3 [2–6], it suffices to prove the statement
(i). Due to Proposition 2.1, either g∗ or h∗ is of the class C1,1. Since xk+1 ∈ ∂g∗(yk)

and xk ∈ ∂h∗(yk), then {xk} is bounded iff {yk} is bounded. Moreover, since either g
or h is differentiable, {xk} is convergent iff {yk} is convergent. Thus, without loss of
generality, we can assume that {xk} is bounded.

If xk+1 = xk for some k, then xk is a critical point of (Pdc) as shown inTheorem3.3.
Assume now that xk+1 	= xk for all k. Also from Theorem 3.3, one has

f (xk) − f (xk+1) ≥ ρ

2
‖xk − xk+1‖2, for k = 0, 1, . . . , (8)

and any limit point of {xk} is a critical point of (g − h).

Inequality (8) implies immediately that { f (xk)} is decreasing, and as {xk} is a
bounded sequence, yielding the convergence of the sequence { f (xk)}. Therefore,
limk→∞ ‖xk − xk+1‖ = 0. Considering the function f − limk→∞ f (xk) instead of
f , we can assume that limk→∞ f (xk) = 0. Then, f (xk) > 0 for all k ∈ N. Denote
by C the set of all limit points of {xk}. Then, every point belonging to C is a critical
point of (Pdc), and moreover, the boundedness of the sequence {xk} implies that the
set C is compact.

For each x ∈ C, by our assumption, there exist κ(x), ε(x) > 0 such that one of the
following two cases occurs:

– g is differentiable on B(x, ε(x)) and

‖∇g(u) − ∇g(v)‖ ≤ κ(x)‖u − v‖ ∀u, v ∈ B(x, ε(x)). (9)

In this case, x is a Fréchet critical point of the function (− f ), and since domg ⊂
domh, (− f ) is finite, continuous, and subanalytic on B(x, ε(x)). According to

123



114 Journal of Optimization Theory and Applications (2018) 179:103–126

the Łojasiewicz inequality applied to the subanalytic function − f , by shrinking
ε(x) if necessary, we can find L(x) > 0 and θ(x) ∈ [0, 1[ such that

| f (u)|θ(x) ≤ L(x)‖u∗‖ for all u ∈ B(x, ε(x)), u∗ ∈ ∂ F (− f )(u). (10)

– h is differentiable on B(x, ε(x)) and

‖∇h(u) − ∇h(v)‖ ≤ κ(x)‖u − v‖ ∀u, v ∈ B(x, ε(x)). (11)

Applying the Łojasiewicz inequality to the subanalytic function f around the
Fréchet critical point x yields the existence of L(x) > 0 and θ(x) ∈ [0, 1[ such
that

| f (u)|θ(x) ≤ L(x)‖u∗‖ for all u ∈ B(x, ε(x)), u∗ ∈ ∂ F f (u). (12)

Due to the compactness of C, there are z1, z2, . . . , z p ∈ C such that

C ⊂
p⋃

i=1

B(zi , ε(zi )/2).

Relabeling if necessary, assume, without loss of generality, that

xk ∈
p⋃

i=1

B(zi , ε(zi )/2) and ‖xk − xk+1‖ < ε/2, k = 0, 1, . . . ,

where ε = min{ε(zi )/2 : i = 1, . . . , p}.
Define

θ = max{θ(zi ) : i = 1, . . . , p}, κ = min{κ(zi ) : i = 1, . . . , p},
L = min{L(zi ) : i = 1, . . . , p}.

For each k = 0, 1, . . . , let ik ∈ {1, . . . , p} such that xk ∈ B(zik , ε(zik )/2). By this,
xk+1∈ B(zik , ε(zik )). Let us consider the following cases:

Case 1 g is differentiable and its derivative is locally Lipschitz on B(zik , ε(zik )).

From (9) and (10), we derive that

‖∇g(xk) − ∇g(xk+1)‖ ≤ κ‖xk − xk+1‖,
| f (xk)|θ ≤ L‖xk∗‖ for k = 0, 1, . . . , xk∗ ∈ ∂ F (− f )(xk).

(13)

As g is differentiable on B(zik , ε(zik )) and by the definition of {xk}, there holds

∇g(xk+1) − ∇g(xk) = yk − ∇g(xk) ∈ ∂h(xk) − ∇g(xk) = ∂ F (− f )(xk).
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Hence, according to (13), one gets

| f (xk)|θ ≤ L‖∇g(xk) − ∇g(xk+1)‖ ≤ Lκ‖xk − xk+1‖ for all k = 0, 1, . . .

(14)

Thanks to the concavity of the function t ∈ R �→ t1−θ on ]0,+∞[, and by f (xk) > 0
together with relations (8) and (14), one has the estimate

f (xk)1−θ − f (xk+1)1−θ

≥ (1 − θ) f (xk)−θ ( f (xk) − f (xk+1))

≥ (1 − θ)

Lκ‖xk − xk+1‖
ρ

2
‖xk − xk+1‖2 = (1 − θ)ρ

2Lκ
‖xk − xk+1‖.

(15)

Case 2 The function h is differentiable and its derivative is locally Lipschitz on
B(zik , ε(zik )).

Then, according to (11) and (12), there hold

‖∇h(xk) − ∇h(xk−1)‖ ≤ κ‖xk − xk−1‖,
| f (xk)|θ ≤ L‖xk∗‖ for all k = 0, 1, . . . , xk∗∈ ∂ F f (xk). (16)

Since

∇h(xk−1) − ∇h(xk) = yk−1 − ∇h(xk) ∈ ∂g(xk) − ∇h(xk) = ∂ F f (xk),

the relations (16) give

| f (xk)|θ ≤ L‖∇h(xk) − ∇h(xk−1)‖ ≤ Lκ‖xk − xk−1‖ for all k = 0, 1, . . .

(17)

Similarly, it follows from (15) that

f (xk)1−θ − f (xk+1)1−θ ≥ (1 − θ) f (xk)−θ ( f (xk) − f (xk+1))

≥ (1 − θ)ρ‖xk − xk+1‖2
2Lκ‖xk − xk−1‖ .

Therefore, the inequality a ≤ a2
b + b/4 for any a, b > 0 implies that

‖xk − xk+1‖ ≤ ‖xk − xk+1‖2
‖xk − xk−1‖ + ‖xk − xk−1‖/4

≤ 2Lκ

ρ(1 − θ)

(
f (xk)1−θ − f (xk+1)1−θ

) + ‖xk − xk−1‖/4. (18)
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In both cases, the formulas (15) and (18) show that for all k = 1, 2, . . . ,

‖xk − xk+1‖ ≤ ‖xk − xk−1‖/4 + 2Lκ

ρ(1 − θ)

(
f (xk)1−θ − f (xk+1)1−θ

)
.

Consequently, by adding these inequalities, one has

∞∑
k=1

‖xk − xk+1‖ ≤ ‖x1 − x0‖
3

+ 8Lκ

3ρ(1 − θ)
f (x0)1−θ ,

which yields the convergence of the sequence {xk}, and the proof is completed. ��

Corollary 3.4 Suppose that g − h and h∗ − g∗ are subanalytic functions with closed
domains such that (g−h) |dom(g−h) and (h∗−g∗) |dom(h∗−g∗) are continuous. Assume
that ρ(g) + ρ(h) > 0 and ρ(g∗) + ρ(h∗) > 0. If either the sequence {xk} or {yk} is
bounded, then these sequences converge to critical points of (Pdc) and (Ddc), respec-
tively.

Proof Since the conjugate of a strongly convex function is differentiablewithLipschitz
derivative, the conclusion follows directly from Theorem 3.4. ��

The next theorem provides the convergence rate of the sequence {xk} that depends
on the Łojasiewicz exponent of the objective function at its limit point.

Theorem 3.5 Suppose that the assumptions of Theorem 3.4 (i) are satisfied. Let x∞
be the limit point of {xk} at which the Łojasiewicz exponent θ ∈ [0, 1[ of the function
f is given. Then, there exist constants τ1, τ2 > 0 such that

‖xk − x∞‖≤
∞∑
j=k

‖x j − x j+1‖≤τ1‖xk − xk−1‖ + τ2‖xk − xk−1‖ 1−θ
θ , k = 1, 2, . . .

(19)

As a result, one has

– If θ ∈]1/2, 1[, then ‖xk − x∞‖ ≤ ck
1−θ
1−2θ for some c > 0.

– If θ ∈]0, 1/2], then ‖xk − x∞‖ ≤ cqk for some c > 0 and q ∈]0, 1[.
– If θ = 0, then {xk} is convergent in a finite number of iterations.

Proof The first inequality in (19) is obvious. For the second, set

rk =
∞∑
j=k

‖x j − x j+1‖, k = 0, 1, . . .
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If g is differentiable with Lipschitz derivative, then by virtue of (14) and (15), one has

rk =
∞∑
j=k

‖x j − x j+1‖ ≤ 2Lκ

ρ(1 − θ)
f (xk)1−θ ≤ 2Lκ

ρ(1 − θ)
f (xk−1)1−θ

≤ 2(Lκ)
1
θ

(1 − θ)ρ
‖xk − xk−1‖ 1−θ

θ .

Suppose now that h is differentiable with Lipschitz derivative. Relations ( 17) and
(18) imply

rk ≤ rk + ‖xk − xk−1‖
4

+ 2Lκ

(1 − θ)ρ
f (xk)1−θ

≤ rk + ‖xk − xk−1‖
4

+ 2(Lκ)
1
θ

(1 − θ)ρ
‖xk − xk−1‖ 1−θ

θ .

Hence,

rk ≤ ‖xk − xk−1‖
3

+ 8(Lκ)
1
θ

3(1 − θ)ρ
‖xk − xk−1‖ 1−θ

θ

and (19) is proved. ��
As limk→∞ ‖xk − xk+1‖ = 0, we can assume that ‖xk − xk+1‖ < 1 for all

k = 0, 1, . . . By setting τ = τ1 + τ2 in ( 19), one has

– If θ ∈]1/2, 1[, then rk ≤ τ(rk−1−rk)
1−θ
θ .Hence, by the convexity of the function

t �→ t
1−2θ
1−θ on ]0,+∞[,

r
1−2θ
1−θ

k − r
1−2θ
1−θ

k−1 ≥ 1 − 2θ

1 − θ
r

−θ
1−θ

k (rk − rk−1) ≥ 2θ − 1

(1 − θ)τ
.

Thus,

r
1−2θ
1−θ

k = r
1−2θ
1−θ

0 +
k∑

j=1

(
r

1−2θ
1−θ

k − r
1−2θ
1−θ

k−1

)
≥ r

1−2θ
1−θ

0 + 2θ − 1

(1 − θ)τ
k.

Consequently, rk ≤ ck
1−θ
1−2θ , for some c > 0.

– If θ ∈]0, 1/2], then rk ≤ τ(rk−1 − rk), k = 1, 2, . . . Therefore rk ≤ τ
τ+1rk−1,

which implies right away rk ≤ cqk , where q = τ/(τ + 1) and c = r0.
– If θ = 0, then ‖xk − xk+1‖ ≥ 1/L for xk 	= xk+1 with k sufficiently large. The
inequality

f (xk) − f (xk+1) ≥ ρ

2
‖xk − xk+1‖2 ≥ ρ

2L2
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for xk 	= xk+1 shows that DCA terminates after a finite number of iterations.

4 Applications to Trust-Region Subproblems andQuadratic Programs

Theorem 3.5 provides the convergence rate of DCA depending on the Łojasiewicz
exponent at critical points of the objective function. Unfortunately, showing the exis-
tence of the Łojasiewicz exponent and computing it are, in general, two challenging
problems. In this final section, we consider the two classes of usefully important DC
programs: trust-region problems and quadratic programs with polyhedral convex con-
straints. The numerical computations for these two special problems were reported in
the papers [4–6,20,23–26], which showed the high efficiency of the DCAs. We will
prove that the Łojasiewicz exponent is 1/2 for both DC programs and, as a result, state
the Root-linear convergence rate of the DCAs applied to them.

4.1 Trust-Region Subproblems

Trust-region subproblems constitute a nice and useful class of important nonconvex
programs, more exactly DC programs

min

{
1

2
xT Qx + 〈b, x〉 : x ∈ X , ‖x‖ ≤ r

}
, (20)

or equivalently,

min

{
f (x):=1

2
xT Qx + 〈b, x〉 + χC (x) : x ∈ X

}
, (21)

where Q is an n ×n real symmetric matrix, b ∈ X , r is a positive scalar, and C :={x ∈
X : ‖x‖ ≤ r}.

They play a key role in the trust-region method [27], which consists in solving a
sequence of trust-region subproblems [2–5,28–30]. It can be considered as an improved
Newton type method and is recognized to be among the most robust, stable and effi-
cient method in nonlinear programming (see [27] where a chapter is devoted to DC
programming and DCA for solving (TRSP)). It enjoys the following properties:

(i) TRSP is one of rare nonconvex programs which possess verifiable global optimal-
ity conditions (quite close toKKTconditions). TRSPhas only one local-nonglobal
solution.

(ii) The set of KKT points for TRSP is contained in at most 2m+2 disjunctive subsets,
where the objective function has the same value andm is the number of the distinct
negative eigenvalues of the symmetric matrix defining the quadratic function of
TRSP. These properties should promote inexpensive local descent methods which
can perform finitely many restartings to converge to global solutions of TRSP. In
[4,23], we investigated the DCA to solve TRSP. Thanks to its particular structure,
the DCA is very simple: it consists of computing, at each iteration, the projection
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of a point on a Euclidean ball, which is explicit and requires only matrix-vector
products. In practice, the DCA converges to the global solution of TRSP. The
inexpensive implicitly restarted Lanczos method of Sorensen is used to check the
optimality of solutions provided by the DCA.When a nonglobal solution is found,
a simple numerical procedure is introduced both to find a feasible point having
a smaller objective value and to restart the DCA at this point. It is shown that in
the nonconvex case, the DCA converges to the global solution of the trust-region
subproblem, using only matrix-vector products and requiring at most 2m + 2
restarts. Numerical simulations proved the robustness and efficiency of the DCA
compared to related standard methods, especially for large-scale problems. It is
also worth noting that TRSP plays an important role in BB (Branch-and-Bound)
algorithms, using ellipsoidal outer approximation techniques for lower bounding,
and this method has been applied successfully in many global algorithms [5,6,24–
26].

The next theorem provides, under one suitable assumption, a Łojasiewicz exponent
of some critical points of the objective function f and, as a result, the convergence rate
of the DCA applied to (21). First, we recall the following lemma from ([31], Lemma
4.1).

Lemma 4.1 Let Q be an n × n real symmetric matrix. Then, there exists a constant
M > 0 such that the following inequality holds

|〈Qx, x〉|1/2 ≤ M‖Qx‖ for all x ∈ X .

Consequently, we have:

Lemma 4.2 Let g(x):= 1
2 〈x, Qx〉 + 〈b, x〉 be a quadratic function defined on X . If x̄

is a critical point of g, that is, ∇g(x̄) = Qx̄ + b = 0, then there is M > 0 such that

|g(x) − g(x̄)| ≤ M‖Qx + b‖2 for all x ∈ X .

Proof As ∇g(x̄) = Qx̄ + b = 0, one has

g(x) − g(x̄) = 1

2
〈Q(x − x̄), x − x̄〉 for all x ∈ X .

The conclusion follows directly from Lemma 4.1 by noting Qx + b = Q(x − x̄). ��
Theorem 4.1 Suppose x̄ ∈ C is a critical point of the problem (21). That is, there
exists λ̄ ≥ 0 such that

Qx̄ + b + λ̄x̄ = 0, λ̄(‖x̄‖ − r) = 0. (22)

In addition, assume that either ‖x̄‖ < r or ‖x̄‖ = r and

〈v, Qv + λ̄v〉 > 0 for all v ∈ X with 〈x̄, v〉 = 0, ‖v‖ = 1. (23)

Then, the Łojasiewicz exponent of the function f at the critical point x̄ is 1/2.
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Proof Obviously, one has

∂ F f (x) =
{ {Qx + b + λx : λ ≥ 0}, if ‖x‖ = r ,

{Qx + b}, if ‖x‖ < r .
(24)

Let x̄ ∈ C be a critical point of the function f satisfying (22). If ‖x̄‖ < r , then
Qx̄ + b = 0. According to Lemma 4.1, there exists M > 0 such that for all x ∈ C,

one has

M‖Qx + b‖ = M‖Q(x − x̄)‖ ≥ 1

2
|(x − x̄)T Q(x − x̄)|1/2 = | f (x) − f (x̄)|1/2.

Suppose now ‖x̄‖ = r such that (23) is satisfied. Then, there exists λ̄ ≥ 0 such that
Qx̄ + b + λ̄x̄ = 0. By using again Lemma 4.1, we can find M > 0 such that for all
x ∈ C, there holds

M‖Qx + b + λ̄x‖ = M‖Q(x − x̄) + λ̄(x − x̄)‖
≥ |(x − x̄)T Q(x − x̄) + λ̄‖x − x̄‖2|1/2.

On the other hand, the Taylor expansion gives

f (x) − f (x̄) = 1

2
(x − x̄)T Q(x − x̄) + 〈Qx̄ + b, x − x̄〉

= 1

2
(x − x̄)T Q(x − x̄) − λ̄〈x̄, x − x̄〉.

The last two relations imply

M‖Qx + b + λ̄x‖ ≥ | f (x) − f (x̄) + λ̄(‖x‖2 − ‖x̄‖2)|1/2. (25)

Let x ∈ C with ‖x‖ < r . If λ̄ = 0, then by (25)

M‖Qx + b‖ ≥ | f (x) − f (x̄)|1/2,

otherwise, λ̄ > 0, then for x sufficiently near to x̄, one also has

M‖Qx + b‖ ≥ M λ̄‖x‖ − M‖Qx + b + λ̄x‖ ≥ | f (x) − f (x̄)|1/2.

Let us show that there exist m, ε > 0 such that for all λ ∈]λ̄−ε, λ̄+ε[, x ∈ B(x̄, ε)

with ‖x‖ = r ,

‖Qx + b + λx‖ ≥ m‖Qx + b + λ̄x‖. (26)

Indeed, assuming the contrary implies the existence of two sequences {xk} and {λk}
such that xk → x̄ , λk → λ̄ with ‖xk‖ = r , λk 	= λ̄, and Qxk + b + λ̄xk 	= 0 for all
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k ∈ N such that

lim
k→∞

‖Qxk + b + λk xk‖
‖Qxk + b + λ̄xk‖ = 0.

Bysettinguk = xk−x̄, assume that

{
uk

‖uk‖
}
converges tov, then‖v‖ = 1; 〈x̄, v〉 = 0,

and one obtains

lim
k→∞

‖Qxk + b + λk xk‖
‖Qxk + b + λ̄xk‖ = lim

k→∞
‖Quk + λkuk + (λk − λ̄)x̄‖

‖Quk + λ̄uk‖ = 0.

Hence, there exists t ∈ R such that Qv + λ̄v = t x̄ . Therefore, 〈v, Qv + λ̄v〉 = 0,
which contradicts (23).

By virtue of (25) and (26), one obtains, for some L, ε > 0,

L‖Qx + b + λx‖ ≥ | f (x) − f (x̄)|1/2, ∀λ ∈ (λ̄ − ε, λ̄ + ε);
∀x ∈ B(x̄, ε), ‖x‖ = r . (27)

Finally, for any λ ∈ R with |λ − λ̄| ≥ ε and for all x near to x̄, one has

M‖Qx + b + λx‖ ≥ M |λ − λ̄|‖x‖ − M‖Qx + b + λ̄x‖ ≥ | f (x) − f (x̄)|1/2.

The proof is completed. ��
Remark 4.1 If the critical point x̄ satisfies (23), then it is either a local-nonglobal
minimizer or a global minimizer of the problem (21) (see, e.g., [4]).

4.2 Nonconvex Quadratic Programs with Polyhedral Convex Constraints

Finally, we consider nonconvex quadratic programs of the form

min

{
1

2
xT Qx + 〈b, x〉 : x ∈ K

}
, (28)

where K is a polyhedral convex set in X , defined by

K = {x ∈ X : 〈ai , x〉 ≤ ri , i = 1, . . . , p},

with ai ∈ X , ri ∈ R, i = 1, . . . , p.

This subclass of DC programs is well known in nonconvex programming and global
optimization from both theoretical and algorithmic points of view [5]. It is known to
be NP-hard except for some special cases [32].

The DCA was intensively investigated in our various works for (28) in the general
case [5,6,20,21,24].Aquadratic function is an attractive example of aDC-functionhav-
ing various DC decompositions which enjoy great effects on resulting DCA schemes.
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We developed in [20] suitable DC decompositions and corresponding DCAs for the
general case of (28). The DCA then consists in the solution of a sequence of convex
quadratic programs.

For solving large-scale problems, we have recourse to (polynomial-time) interior
point methods for solving convex quadratic programs. In [5,6,21], we provided a new
regularization technique based on DC programming and DCA to handle indefinite
Hessians in a primal-dual interior point framework for nonconvex quadratic program-
ming problems. The new regularization leads automatically to a strongly factorizable
quasidefinite matrix in the Newton system. Numerical results for large-scale problems
(up to 400,000 dimensions) showed the robustness and the efficiency of our approach
compared with the powerful software LOQO [33].

As with trust-region subproblems, we will establish below, for the first time in the
literature, the calculation of Łojasiewicz exponent and, consequently, the convergence
rate of the DCA applied to (28).

According to (2), the problem (28) is rewritten equivalently,

min{ f (x) = 1

2
xT Qx + 〈b, x〉 + χK (x) : x ∈ X}. (29)

This problemcanbe formulated as aDCprogramby someDCdecompositions.Various
DCA-based algorithms have been proposed in [5,6,20,21,24,25].

Let x̄ ∈ K be a critical point of the problem (29). That is,

0 ∈ ∂ F f (x̄) = Qx̄ + b + N (K , x̄), (30)

where the normal cone N (K , x̄) to K at x̄ is simply calculated by

N (K , x̄) =
{ p∑

i=1

λi ai : λi ≥ 0, λi (〈ai , x̄〉 − ri ) = 0, i = 1, . . . , p

}
. (31)

Theorem 4.2 Let x̄ ∈ X be a critical point of the problem (29). Then, there are τ > 0
and δ > 0 such that

| f (x) − f (x̄)|1/2 ≤ τ‖x∗‖ ∀x ∈ B(x̄, δ), x∗ ∈ ∂ F f (x).

Proof For x ∈ K , denote by

I (x) = {i ∈ {1, . . . , p} : 〈ai , x〉 − ri = 0}.

Let δ̄ > 0 be such that

I (x) ⊂ I (x̄) for all x ∈ B(x̄, δ̄). (32)
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For each I ⊂ I (x̄), define the quadratic function ΦI : X × R
|I | → R by

ΦI (x,�I ) = 1

2
〈x, Qx〉 + 〈bi , x〉 +

∑
i∈I

λi (〈ai , x〉 − ri ),

(x,�I ) ∈ X × R
|I |,�I :=(λi )i∈I .

Then,

∇ΦI (x,�I ) = (Qx + b +
∑
i∈I

λi ai , (〈ai , x〉 − ri )i∈I ), (x,�I ) ∈ X × R
|I |.

For a given I ⊂ I (x̄), denote by CI the convex cone generated by {ai : i ∈ I }:

CI =
{∑

i∈I

λi ai : λi ≥ 0, i = 1, . . . , p

}
,

and consider the following two cases:
Case 1 −(Qx̄ + b) ∈ CI . That is, there exists �̄I = (λ̄i )i∈I ∈ R

|I |
+ such that

Qx̄ + b +
∑
i∈I

λ̄i ai = 0.

It follows that (x̄, �̄I ) is a critical point of ΦI : ∇ΦI (x̄, �̄I ) = 0. According to
Lemma 4.2, we find MI > 0 such that

|Φ(x,�I ) − Φ(x̄, �̄i )|1/2 ≤ MI ‖∇Φ(x,�I )‖ ∀(x,�I ) ∈ X × R
|I |. (33)

Case 2 −(Qx̄ + b) /∈ CI . Since CI is closed, one has

inf
�I ∈R|I |

+

∥∥∥∥∥Qx̄ + b +
∑
i∈I

λi ai

∥∥∥∥∥ = εI > 0.

Given δI > 0 such that

∣∣∣∣12 (〈x, Qx〉 − 〈x̄, Qx̄〉) + 〈b, x − x̄〉
∣∣∣∣ < ε2I /4, ‖Q(x − x̄)‖ < εI /2 ∀x ∈ B(x̄, δI ).

Then, for all x ∈ K ∩ B(x̄, δI ) �I = (λi )i∈I ∈ R
|I |
+ with

〈ai , x〉 − ri = 0, for i ∈ I ,

one has

| f (x) − f (x̄)|1/2 = ∣∣ 1
2 (〈x, Qx〉 − 〈x̄, Qx̄〉) + 〈b, x − x̄〉∣∣1/2

≤ ∥∥Qx̄ + b + ∑
i∈I λi ai

∥∥ .
(34)
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Set

τ = max {1, MI : I ⊂ I (x̄)} and δ = min{δ̄, δI : I ⊂ I (x̄)}.

Now let x ∈ K ∩ B(x̄, δ) and x∗ ∈ ∂ F f (x) be given. Then, by (32),
I :=I (x) ⊂ I (x̄), and there is �I = (λi )i∈I ∈ R

|I | such that

x∗ = Qx + b +
∑
i∈I

λi ai .

If Case 1 holds, then from (33), one has

| f (x) − f (x̄)|1/2 = |Φ(x,�I ) − Φ(x̄, �̄i )|1/2
≤ τ‖∇Φ(x,�I )‖ = τ‖x∗‖.

If Case 2 holds, then by (34),

| f (x) − f (x̄)|1/2 ≤
∥∥∥∥∥Qx̄ + b +

∑
i∈I

λi ai

∥∥∥∥∥ = ‖x∗‖.

The proof is completed. ��

5 Conclusions

We have proved, in this paper, the convergence of the whole DCA sequence when the
objective function is subanalytic and, at every critical point, at least one of the two DC
components of the considered DC decomposition has locally Lipschitz derivative. We
also established the convergence rate which depended on the Łojasiewicz exponent
at a limit point. In particular, if this Łojasiewicz exponent is 1/2, then the DCA
is Root-linearly convergent. In addition, we showed that, for trust-region problems,
the Łojasiewicz exponent is effectively 1/2 at critical points satisfying the sufficient
second order optimality condition, and for quadratic programs this exponent 1/2 holds
at every critical point of the tackled DC program. Needless to say, the convergence rate
of the DCA, related to both main classes of trust-region subproblems and quadratic
programs, will allow to enhance its efficiency, by adapting DC decompositions to
the specific structures of the studied DC programs with subanalytic data. Further
developmentswill be devoted to computing theŁojasiewicz exponents for other classes
of real-world DC programs.
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