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Abstract
This paper studies the optimal dividend problem with capital injection under the con-
straint that the cumulative dividend strategy is absolutely continuous. We consider an
open problem of the general spectrally negative case and derive the optimal solution
explicitly using the fluctuation identities of the refracted–reflected Lévy process. The
optimal strategy as well as the value function is concisely written in terms of the scale
function. Numerical results are also provided to confirm the analytical conclusions.

Keywords Stochastic control · Scale functions · Refracted–reflected Lévy
processes · Bail-out dividend problem

Mathematics Subject Classification 60G51 · 93E20 · 49J40

1 Introduction

In the bail-out model of de Finetti’s optimal dividend problem, one wants to maximize
the total expected dividends minus the costs of capital injection under the constraint
that the surplus must be kept non-negative uniformly in time. Typically, a spectrally
negative Lévy process (a Lévy process with only downward jumps) is used to model
the underlying surplus process of an insurance company that increases because of
premiums and decreases by insurance payments. Avram et al. [1] showed that it is
optimal to reflect frombelowat zero and also fromabove at a suitably chosen threshold.
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We investigate an extension with the absolutely continuous constraint on dividend
strategies. To be precise, the cumulative dividend process must be absolutely con-
tinuous with respect to the Lebesgue measure with its density bounded by a given
constant. This problem (without bail-out) has been previously considered by [2,3] in
the diffusive case, and [4] for the case of Crámer–Lundberg processes with exponen-
tial jumps. In the classical setting, the set of admissible strategies is too general and
counterintuitive in the context of insurance. Consequently, there have been several
attempts to restrict the solution to more realistic strategies. The absolutely continuous
condition is one way of achieving this goal without losing analytical tractability.

Regarding the version with both bail-out and the absolutely continuous condition,
the dual case (the spectrally positive Lévy case) has recently been solved by [5]. In this
paper, we further consider the spectrally negative case for the underlying process. This
can also be seen as the bail-out version of [6], where they incorporated the absolutely
continuous constraint, however, without capital injections.

Our ultimate aim is to verify the conjecture on the optimality of a refraction–
reflection strategy that reflects the surplus from below at zero in the classical sense
and refracts the process (decreases the drift) at a suitably chosen threshold. The
resulting controlled surplus process becomes the so-called refracted–reflected Lévy
process recently studied in [7]. Indeed, many interesting probabilistic properties of the
refracted–reflected Lévy process have been developed in [7]. However, as an important
application to the optimal dividend problem with capital injection, it is still an open
problem whether the optimal control for the spectrally negative case fits this type of
refraction–reflection. This paper fills the gap and provides the closed-form choice of
the threshold.

As is commonly used in the related literature, we adopt the scale function and
the fluctuation identities so as to follow efficiently the “guess-and-verify” procedure
described below.

1. By focusing on the set of refraction–reflection strategies, we select a judicious can-
didate strategy via the smooth fit principle. In particular, we choose the threshold
value such that the corresponding net present value (NPV) becomes continuously
(resp. twice continuously) differentiable at the threshold for the case of bounded
(resp. unbounded) variation.

2. The optimality of the selected strategy is then confirmed by verifying the varia-
tional inequalities that require the computation of the generators and certain slope
conditions of the value functions.

In general, in the optimal dividend problem and its extensions, the verification of
optimality is significantly more challenging for the spectrally negative case than the
dual case. The difficulty typically lies in the required proof of the properties of the
candidate value function above the barrier/threshold that separates the waiting and
controlling regions. Intuitively speaking, this is difficult because, with negative jumps,
the surplus can jump below from the controlling region to the waiting region as well
as directly to the reflection region below the zero boundary, where the forms of the
value function change. It is demonstrated in the literature that the optimality can fail
by the choice of the Lévy measure (see, e.g., [6] assumes the completely monotone
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Lévy density). However, in the dual model, it is usually not necessary to assume any
property on the Lévy measure (see [8–11]).

Mathematically speaking, in our problem, the major challenge is to show the slope
condition above the selected threshold such that the slope is bounded uniformly by 1.
Nonetheless, we show that the optimality holds for a general spectrally negative Lévy
case. To this end, we use our observation that the slope of the candidate value function
coincides with the Laplace transform of the ruin time of the refracted Lévy process
of [12], which is monotone in the starting value. Other required computations such as
generators and the slopes below the threshold can be performed efficiently by taking
advantage of the analytical properties of the scale function.

The rest of the paper is organized as follows. In Sect. 2, we review the spectrally
negative Lévy process and give the precise formulation of the bail-out optimal div-
idend control problem with the absolutely continuous condition. Section 3 defines
the refraction–reflection strategy and formulates the corresponding NPV of dividends
minus capital injection using the scale function. Section 4 provides the conjectured
candidate threshold and Sect. 5 proves the optimality of the selected strategy. Some
numerical examples are presented in Sect. 6. At last, we give our conclusions in Sect. 7.

2 Preliminaries

2.1 Spectrally Negative Lévy Processes

In this paper, we consider a spectrally negative Lévy process X . For x ∈ R, we denote
the law of X when it starts at x by Px and refer to it as P instead of P0 for convenience.
Ex and E are the associated expectation operators.

Its Laplace exponent ψ(θ) : [0,∞[→ R is defined by eψ(θ)t := E
[
eθ Xt

]
for

t, θ ≥ 0 with the Lévy-Khintchine formula

ψ(θ) := γ θ + σ 2

2
θ2 +

∫

]−∞,0[
(
eθ z − 1 − θ z1{z>−1}

)
Π(dz), θ ≥ 0,

where γ ∈ R, σ ≥ 0, and Π is a measure on ] − ∞, 0[ called the Lévy measure of X
that satisfies

∫
]−∞,0[(1 ∧ z2)Π(dz) < ∞.

It is well known that X has paths of bounded variation if and only if σ = 0 and∫
]−1,0[ |z|Π(dz) is finite. In this case, X = {Xt = ct − St , t ≥ 0}, where c :=

γ − ∫
]−1,0[ zΠ(dz) and {St ; t ≥ 0} is a driftless subordinator. Note that necessarily

c > 0, as we have ruled out the case that X has monotone paths. Its Laplace exponent
is given by ψ(θ) = cθ + ∫

]−∞,0[
(
eθ z − 1

)
Π(dz), for θ ≥ 0.

2.2 Bail-Out Optimal Dividend with the Absolutely Continuous Condition

A strategy is a pair π := (
Lπ

t , Rπ
t ; t ≥ 0

)
of nondecreasing, right-continuous, and

adapted processes (with respect to the filtration generated by X ) starting at zero, where
Lπ is the cumulative amount of dividends and Rπ is that of the injected capital. With
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V π
0− := x , and, V π

t := Xt −Lπ
t +Rπ

t , t ≥ 0, it is required that V π
t ≥ 0 a.s. uniformly in

t . In addition, with δ > 0 fixed, Lπ is required to be absolutely continuous with respect
to the Lebesgue measure of the form Lπ

t = ∫ t
0 	π

s ds, t ≥ 0, with 	π restricted to take
values in [0, δ] uniformly in time. As for Rπ , it is assumed that

∫
[0,∞[ e−qtdRπ

t < ∞,
a.s.

Assuming that β > 1 is the cost per unit injected capital and q > 0 is the discount
factor, the expected NPV of dividends minus the costs of capital injection under a
strategy π becomes

vπ (x) := Ex

(∫ ∞

0
e−qt	π

t dt − β

∫

[0,∞[
e−qtdRπ

t

)
, x ∈ R.

The corresponding stochastic control problem is defined by

v(x) := sup
π∈A

vπ(x), x ∈ R, (1)

where A is the set of all admissible strategies that satisfy the constraints described
above.

Throughout the paper, to exclude the trivial case, we consider the next assumption.

Assumption 1 We assume that EX1 = ψ ′(0+) > −∞.

Moreover, as being commonly imposed in the literature (see [6]), the next assump-
tion is made so that the process Y := {Yt := Xt − δt, t ≥ 0} does not have monotone
paths.

Assumption 2 For the case of bounded variation, let c > δ.

3 Refraction–Reflection Strategies

Our objective is to show the optimality of the refraction–reflection strategy πb =
(L0,b, R0,b, t ≥ 0), with a suitable refraction level b ≥ 0. Namely, dividends are paid
at the maximal rate δ whenever the surplus process is above the pre-specified threshold
b while it is pushed upward by capital injection whenever it attempts to downcross
zero. The resulting surplus process

U 0,b
t := Xt − L0,b

t + R0,b
t

becomes the standard refracted–reflected Lévy process of [7].
In terms of the optimal control theory, we recognize that the candidate dividend

strategy is of the bang–bang type, i.e., dividends should either be paid out at the
maximum rate δ or at the rate 0. On the other hand, the capital injection strategy,
which is the reflection control, fits into the singular control framework. To wit, we can
explicitly write the described cumulative dividend control as L0,b

t = ∫ t
0 δ1{U0,b

s >b}ds,
and for the case of bounded variation, we can write the candidate capital injection
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R0,b
t = ∑

0≤s≤t |U 0,b
s− +	Xs |1{U0,b

s− +	Xs<0}. Here, we define 	ξt := ξt − ξt−, t ≥ 0,

for any càdlàg process ξ . For a formal construction of this process, we refer the reader
to [7].

Clearly, each aforementioned refraction–reflection strategy πb is admissible for
any b ≥ 0. We denote the corresponding expected NPV by

vb(x) := Ex

(∫ ∞

0
e−qtdL0,b

t − β

∫

[0,∞[
e−qtdR0,b

t

)
, x ∈ R. (2)

In order to express (2), we apply the fluctuation identities. Following the same
notations as in [12], we callW (q) andW

(q) the scale functions of X andY , respectively.
These are the mappings from R to [0,∞[ that take the value zero on the negative half-
line, while on the positive half-line, they are strictly increasing functions that are
defined by their Laplace transforms

∫ ∞

0
e−θx W (q)(x)dx = 1

ψ(θ) − q
, θ > Φ(q), (3)

∫ ∞

0
e−θx

W
(q)(x)dx = 1

ψY (θ) − q
, θ > ϕ(q). (4)

Here ψY (θ) := ψ(θ) − δθ , θ ≥ 0, is the Laplace exponent for Y and

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q} and ϕ(q) := sup{λ ≥ 0 : ψY (λ) = q}.

We also define, for x ∈ R,

W
(q)

(x) :=
∫ x

0
W (q)(y)dy, Z (q)(x) := 1 + qW

(q)
(x),

Z
(q)

(x) :=
∫ x

0
Z (q)(z)dz = x + q

∫ x

0

∫ z

0
W (q)(w)dwdz.

Noting that W (q)(x) = 0 for −∞ < x < 0, we have

W
(q)

(x) = 0, Z (q)(x) = 1 and Z
(q)

(x) = x, x ≤ 0. (5)

Analogously, we define W
(q)

, Z
(q) and Z

(q)
for Y . From computations in [7], we

already know

δ

∫ x

0
W

(q)(x − y)W (q)(y)dy = W
(q)

(x) − W
(q)

(x), (6)

δ

∫ x

0
W

(q)(x − y)Z (q)(y)dy = Z
(q)

(x) − Z
(q)

(x) + δW
(q)

(x). (7)
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Remark 3.1 (i) W (q) and W
(q) are differentiable almost everywhere. In particular,

if X is of unbounded variation or the Lévy measure is atomless, it is known that
W (q) and W

(q) are C1(R\{0}); see Theorem 3 of [13].
(ii) As x ↓ 0, by Lemma 3.1 of [14], we have

W (q)(0) =
{
0, if X is of unbounded variation,
c−1, if X is of bounded variation,

and a similar result holds for W
(q).

Using the results in [7], the expected NPV (2) can be written as below.

Lemma 3.1 For q > 0, b ≥ 0 and x ∈ R, we have

vb(x) = −δW
(q)

(x − b) + β
(

Z
(q)

(x) + ψ ′(0+)

q

)

+ βδ

∫ x

b
W

(q)(x − y)Z (q)(y)dy

− f (b)

q

(
Z (q)(x) + qδ

∫ x

b
W

(q)(x − y)W (q)(y)dy
)
,

where f (b) := βZ (q)(b)−1+βq
∫ ∞
0 e−ϕ(q)y W (q)(y+b)dy

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(y+b)dy

.

Proof The result follows by Corollaries 4.4 and 5.5 of [7] and the fact that

∫ ∞

0
e−ϕ(q)y Z (q)(y + b)dy = Z (q)(b)

ϕ(q)
+ q

ϕ(q)

∫ ∞

0
e−ϕ(q)y W (q)(y + b)dy.

��
Remark 3.2 As (3) gives

∫ ∞
0 e−ϕ(q)y W (q)(y)dy = (δϕ(q))−1 for the casewhenb = 0,

we have

f (0) = β − 1 + βq
∫ ∞
0 e−ϕ(q)y W (q)(y)dy

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(y)dy

= δ
(
β − 1 + βq

δϕ(q)

)
. (8)

By this, (6) and (7), we get

v0(x) = −δW
(q)

(x) + β
(

Z
(q)

(x) + ψ ′(0+)

q

)
+ β

(
Z

(q)
(x) − Z

(q)
(x) + δW

(q)
(x)

)

+
(
1 − β − βq

δϕ(q)

) Z (q)(x) + q
(
W

(q)
(x) − W

(q)
(x)

)

q
δ

= δ

q
+ β

(ψ ′(0+)

q
+ Z

(q)
(x) − δ

q
− 1

ϕ(q)
Z

(q)(x)
)
.
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4 Selection of the Candidate Threshold

We shall choose the candidate threshold b∗ so that the corresponding expected NPV
vb∗ can be smooth at b∗. Lemma 3.1 and integration by parts imply that

vb(x) = −δW
(q)

(x − b) + β
(

Z
(q)

(x) + ψ ′(0+)

q

)

+ βδ
(

Z (q)(b)W
(q)

(x − b) + q
∫ x

b
W

(q)
(x − y)W (q)(y)dy

)

− f (b)

q

[
Z (q)(x) + qδ

(
W (q)(b)W

(q)
(x − b)

+
∫ x

b
W

(q)
(x − y)W (q)′(y)dy

)]
.

By differentiating this, we have

v′
b(x) = −δW

(q)(x − b) + βZ (q)(x)

+ βδ
[

Z (q)(b)W(q)(x − b) + q
∫ x

b
W

(q)(x − y)W (q)(y)dy
]

− f (b)
[
W (q)(x) + δ

(
W (q)(b)W(q)(x − b)+

∫ x

b
W

(q)(x − y)W (q)′(y)dy
)]

,

(9)

which is continuous for x �= 0, b.
In particular, for x < b, by (5), we get

v′
b(x) = βZ (q)(x) − W (q)(x) f (b). (10)

It follows that

v′
b(b+) − v′

b(b−) = δW
(q)(0)g(b), (11)

where

g(b) := βZ (q)(b) − 1 − W (q)(b) f (b)

=
(
βZ (q)(b) − 1

) (
1 − W (q)(b)

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(y + b)dy

)
− βqW (q)(b)

ϕ(q)
.

(12)

For the case of bounded variation, where W
(q)(0) > 0 [see Remark 3.1(ii)], it is

straightforward to see that vb is continuously differentiable at b if and only if g(b) = 0.
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For the case of unbounded variation, where W
(q)(0) = 0, by differentiating (9),

we have, for x �= b, that

vb′′(x) = −δW
(q)′(x − b) + βqW (q)(x)

+ βδ
[

Z (q)(b)W(q)′(x − b) + q
∫ x

b
W

(q)′(x − y)W (q)(y)dy
]

− f (b)
[
W (q)′(x) + δ

(
W (q)(b)W(q)′(x − b)

+
∫ x

b
W

(q)′(x − y)W (q)′(y)dy
)]

,

which is continuous for x �= 0, b and hence vb′′(b+) − vb′′(b−) = δW
(q)′(0+)g(b).

These observations, together with the smoothness of the scale function on R\{0}
as in Remark 3.1, are summarized as follows.

Lemma 4.1 Suppose that there exists b > 0 such that g(b) = 0. Then, vb is continu-
ously (resp. twice continuously) differentiable on ]0,∞[ when X is of bounded (resp.
unbounded) variation.

Remark 4.1 (slope at b) The condition g(b) = 0 is equivalent to v′
b(b−) = 1, if b > 0.

Indeed, by (10), (11), and (12), we have

v′
b(b−) = 1 + g(b), b > 0,

v′
b(b+) = 1 + (1 + δW

(q)(0))g(b), b ≥ 0.

Remark 4.2 (Continuity/smoothness at zero)

(i) By Lemma 3.1, we have that vb is continuous at zero for b ≥ 0.
(ii) If b > 0, (10) gives v′

b(0+) = β − W (q)(0) f (b) = β = v′
b(0−) for the case of

unbounded variation.

Let us define our candidate threshold by

b∗ := inf{b ≥ 0 : g(b) ≤ 0}, (13)

with the convention that inf ∅ = ∞.

Lemma 4.2 We have b∗ = 0 if and only if X is of bounded variation and

β − 1 +
(
1 − β − βq

δϕ(q)

)
δ

c
≤ 0. (14)

Proof By the definition of b∗ as in (13), we have that b∗ = 0 if and only if g(0) ≤ 0,

where g(0) = β − 1 +
(
1 − β − βq

δϕ(q)

)
δW (q)(0) by (8) and (12).

For the case of unbounded variation (where W (q)(0) = 0), g(0) = β − 1 > 0 and
hence b∗ > 0. On the other hand, for the case of bounded variation, by Remark 3.1(ii),
b∗ = 0 if and only if (14) holds. ��

To continue, we can further show that b∗ < ∞.
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Lemma 4.3 (i) Define h(b) := 1 − W (q)(b)

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(y+b)dy

, b ≥ 0. Then, for

b ≥ 0,

g(b)

h(b)
= βZ (q)(b) − 1 − βqW (q)(b)

∫ ∞
0 e−ϕ(q)y W (q)(y + b)dy

∫ ∞
0 e−ϕ(q)y W (q)′(y + b)dy

= βEb

[
e−qκ

b,−
0 1{κb,−

0 <∞}
]

− 1, (15)

where κ
b,−
0 := inf{t > 0 : U b

t < 0} and U b is the refracted Lévy process of
[12], which is the unique strong solution to the stochastic differential equation
U b

t = Xt − δ
∫ t
0 1{U b

s >b}ds, for t ≥ 0.
(ii) We have 0 ≤ b∗ < ∞.

Proof (i) We have, by (12), that

g(b) = (βZ (q)(b) − 1)h(b) − βq

ϕ(q)
W (q)(b). (16)

On the other hand, by integration by parts,

h(b)−1 = ϕ(q)

∫ ∞
0 e−ϕ(q)y W (q)(y + b)dy

∫ ∞
0 e−ϕ(q)y W (q)′(y + b)dy

. (17)

Therefore, due to (16) and (17), we obtain the first equality of (15). The second
equality of (15) holds by Theorem 5 (ii) of [12].

(ii) For b ≥ 0, because W (q) is strictly increasing on [0,∞[, we get

h(b) = 1 − W (q)(b)

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(y + b)dy

> 1 − W (q)(b)

ϕ(q)
∫ ∞
0 e−ϕ(q)y W (q)(b)dy

= 0.

Using the fact that U b ≥ Y and hence that κb,−
0 is dominated from below by the

down-crossing time of Y , we have the convergence Eb[e−qκ
b,−
0 1{κb,−

0 <∞}] → 0

as b → ∞. This and (15) imply that limb→∞ g(b)/h(b) = −1. Hence, by the
positivity of h, g(b) must be negative for a sufficiently large b. Consequently, it
follows that 0 ≤ b∗ < ∞. ��

5 Verification of Optimality

In this section, we provide a rigorous verification argument for the choice of b∗ defined
in (13) such that the value function of the stochastic control problem (1) can be
achieved.
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With the selected barrier b∗, by Lemma 3.1, our value function becomes

vb∗(x) = −δW
(q)

(x − b∗) + β
(

Z
(q)

(x) + ψ ′(0+)

q

)

+ βδ

∫ x

b∗
W

(q)(x − y)Z (q)(y)dy

− f (b∗)
q

(
Z (q)(x) + qδ

∫ x

b∗
W

(q)(x − y)W (q)(y)dy
)
. (18)

Here, for the case b∗ > 0, because g(b∗) = 0, by (12) and (15), we derive that

f (b∗) = βZ (q)(b∗) − 1

W (q)(b∗)
= βq

∫ ∞
0 e−ϕ(q)y W (q)(y + b∗)dy

∫ ∞
0 e−ϕ(q)y W (q)′(y + b∗)dy

. (19)

For the case b∗ = 0, vb∗ = v0 is already given in Remark 3.2.
Our goal is to prove the main result of this paper given below.

Theorem 5.1 The strategy πb∗
is optimal and the value function of the stochastic

control problem (1) is given by v = vb∗ .

Let L be the infinitesimal generator associated with the process X applied to a C1

(resp. C2) function F for the case where X is of bounded (resp. unbounded) variation,
i.e., for x ∈ R,

LF(x) := γ F ′(x) + 1

2
σ 2F ′′(x)

+
∫

(−∞,0)

[
F(x + z) − F(x) − F ′(x)z1{−1<z<0}

]
Π(dz).

Further, let LY be that of Yt := Xt − δt . We have LY F(x) = LF(x) − δF ′(x).
To show the optimality, it suffices to verify variational inequalities. The proof of

the next lemma is omitted as it is essentially the same as the spectrally positive case in
Lemma 4.2 of [5]. Here, we slightly relax the assumption on the smoothness at zero,
which can be achieved by applying the Meyer-Itô formula as in Theorem 4.71 of [15].
We refer to [1,6,16,17] for other stochastic control problems and verification lemmas
with spectrally one-sided Lévy processes.

Lemma 5.1 (Verification lemma) Suppose π̂ ∈ A such that vπ̂ is sufficiently smooth
on ]0,∞[, continuous on R, and, for the case of unbounded variation, continuously
differentiable at zero. In addition, we assume that

sup
0≤r≤δ

(
(L − q)vπ̂ (x) − rv′

π̂
(x) + r

) ≤ 0, x > 0,

v′
π̂
(x) ≤ β, x > 0,

inf
x≥0

vπ̂ (x) > −m, for some m > 0. (20)

Then, vπ̂ (x) = v(x) for all x ≥ 0, and hence, π̂ is an optimal strategy.
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We shall first compute the generator parts.

Lemma 5.2 Fix b ≥ 0. (i) If b > 0, we have (L − q)vb(x) = 0 for 0 < x < b.
(ii) We have (LY − q)vb(x) + δ = (L − q)vb(x) + δ(1 − v′

b(x)) = 0 for x > b.

Proof (i) For 0 < x < b, Theorem 2.1 in [8] leads to

(L − q)vb(x) = β(L − q)
(

Z
(q)

(x) + ψ ′(0+)

q

)
− f (b)

q
(L − q)Z (q)(x) = 0.

(ii) On the other hand, for x > b, Theorem 2.1 in [8] implies that

(LY − q)W
(q)

(x − b) = q−1(LY − q)(Z(q)(x − b) − 1) = 1,

(LY − q)
(

Z
(q)

(x) + ψ ′(0+)

q

)
= −δ

∂

∂x

(
Z

(q)
(x) + ψ ′(0+)

q

)
= −δZ (q)(x),

(LY − q)Z (q)(x) = −δZ (q)′(x) = −δqW (q)(x).

In addition, we get (LY − q)
( ∫ x

b W
(q)(x − y)l(y)dy

)
= l(x) by the argument

in the proof of Lemma 4.5 of [18], for l = Z (q), W (q). Applying these in (18),
we have that claim (2) holds.

��
Lemma 5.3 For the threshold b∗ defined by (13), we have β ≥ v′

b∗(x) ≥ 1 for x < b∗,
and 0 ≤ v′

b∗(x) ≤ 1 for x ≥ b∗.

Proof Step (i): Suppose b∗ > 0. By (9) and (19), we have

v′
b∗(x) = −δW

(q)(x − b∗) + βZ (q)(x)

+ βδ
[

Z (q)(b∗)W(q)(x − b∗) + q
∫ x

b∗
W

(q)(x − y)W (q)(y)dy
]

− βZ (q)(b∗) − 1

W (q)(b∗)

[
W (q)(x) + δ

(
W (q)(b∗)W(q)(x − b∗)

+
∫ x

b∗
W

(q)(x − y)W (q)′(y)dy
)]

= βZ (q)(x) + βδq
∫ x

b∗
W

(q)(x − y)W (q)(y)dy

− βq

∫ ∞
0 e−ϕ(q)y W (q)(y + b∗)dy

∫ ∞
0 e−ϕ(q)y W (q)′(y + b∗)dy

(
W (q)(x)

+ δ

∫ x

b∗
W

(q)(x − y)W (q)′(y)dy

)

= βEx

[
e−qκ

b∗,−
0 1{κb∗,−

0 <∞}

]
, (21)
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where the second equality holds by the second equality of (19), and the last equality
holds by Theorem 5 (ii) in [12]. Thanks to (21), we deduce that 0 ≤ v′

b∗(x) ≤ β =
v′

b∗(0−) and v′
b∗(x) is non-increasing for x > 0. This and v′

b∗(b∗) = 1 implied by
Remark 4.1 complete the proof.

Step (ii): Suppose b∗ = 0 (then, necessarily X is of bounded variation by
Lemma 4.2). By Remark 3.2, we have, for x �= 0,

v′
0(x) = β

(
Z

(q)(x) − q

ϕ(q)
W

(q)(x)
)
,

v′′
0 (x+) = βqW

(q)(x)
(
1 − 1

ϕ(q)

W
(q)′(x+)

W(q)(x)

)
.

It is known that x �→ W
(q)′(x+)/W

(q)(x) is monotonically decreasing in x as in
(8.18) and Lemma 8.2 of [19], and it converges to ϕ(q). Hence, v′′

0 (x+) < 0, which
implies that v0 is concave.

On the other hand, we have v′
0(0+) = 1+ (1+ δW

(q)(0))g(0) by Remark 4.1. As
g(0) ≤ 0 (see Lemma 4.2), we have v′

0(0+) ≤ 1. It follows that v′
0(x) ≤ 1 for all

x . Finally, we have v′
0(x)

x↑∞−−−→ 0 because Z
(q)(x) − qW

(q)(x)/ϕ(q) vanishes in the
limit by Theorem 8.1 (ii) of [19]. Hence, we have v′

0(x) ≥ 0. ��

Remark 5.1 By the monotonicity of vb∗ in view of Lemma 5.3 and Assumption 1, we
have infx≥0 vb∗(x) ≥ vb∗(0) > −∞.

Proof of Theorem 5.1 We shall show that vb∗ satisfies all conditions given in Lemma
5.1. First, by Lemma 4.1 and Remark 4.2, the desired continuity/smoothness of vb∗
holds.

It is left to verify the variational inequalities (20). Lemma 5.3 leads to

sup
0≤r≤δ

r
(
1 − v′

b∗(x)
) =

{
δ
(
1 − v′

b∗(x)
) ≤ δ, if x > b∗,

0, if 0 < x ≤ b∗.

This and Lemma 5.2 yield the first item of (20) with equality. The second item holds
by Lemma 5.3. Lastly, the third item holds by Remark 5.1. ��

Remark 5.2 Regardless of the negative jumps of X , our conclusion interestingly indi-
cates that our conjectured threshold strategy is still the optimal strategy. However, as
the term ψ ′(0+) = EX1 = γ + ∫

]−∞,−1] zΠ(dz) appears in the value function, the
negative jumps clearly have direct impacts on the optimal solution.

Another important impact of the jumps can be seen in the bounded variation case,
where the optimal threshold can be b∗ = 0, which implies that it is optimal to always
pay dividends. This outcome does not occur in the classical Brownian motion model.
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6 Numerical Examples

We conclude this paper with a sequence of numerical experiments on the underlying
process modeled by the spectrally negative Lévy process with phase-type jumps of the
form that Xt − X0 = ct + σ Bt −∑Nt

n=1 Zn , for 0 ≤ t < ∞. Here, B = (Bt ; t ≥ 0) is
a standard Brownian motion, N = (Nt ; t ≥ 0) is a Poisson process with arrival rate
κ , and Z = (Zn; n = 1, 2, . . .) is an i.i.d. sequence of phase-type random variables
that approximate the Weibull distribution with shape parameter 2 and scale parameter
1 (see [16] for the parameters of the phase-type distribution and also [20] for the
accuracy of approximation). The processes B, N , and Z are assumed to be mutually
independent. We refer the reader to [14,20] for the forms of the corresponding scale
functions. We consider Case 1 (unbounded variation) with σ = 0.2 and c = 2 and
Case 2 (bounded variation) with σ = 0 and c = 4. For other parameters, let us set
κ = 2, q = 0.05, β = 1.5 and δ = 1 unless stated otherwise.

Recall that the optimal threshold b∗ is given by (13). In Fig. 1, we plot the function
b �→ g(b)/h(b) (recall that h is uniformly positive) for various values of β forCases 1
and 2. For the case g(0) ≤ 0 (and hence g(0)/h(0) ≤ 0), we have b∗ = 0. Otherwise,
g/h is monotonically decreasing and b∗ becomes the value at which g (and g/h)
vanish. As observed in Lemma 4.2, for Case 1 (unbounded variation), b∗ > 0 for any
value of β > 1 while in Case 2 (bounded variation case), b∗ = 0 if β is sufficiently
close to 1. In order to confirm the optimality of the selected threshold strategy πb∗

,
we plot, as shown in Fig. 2 (for β = 1.5), the value function vb∗ together with vb

for b �= b∗. For Case 1, we have b∗ > 0; while for Case 2, we have b∗ = 0. It is
illustrated in the figure that vb∗ satisfactorily dominates vb uniformly in x .

In Fig. 3, we present the sensitivity of the optimal solutions with respect to parame-
ters β and δ focusing on Case 1. On the left panel, we plot vb∗ for β ranging from 1.01
to 3. The graph indicates that the value function decreases in β uniformly in x and that
the optimal threshold b∗ increases as β increases. On the right panel, we show vb∗ for δ
varying from 0.01 to 3 along with results in the case without the absolutely continuous
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Fig. 1 Plots of b �→ g(b)/h(b) for Case 1 (left) and Case 2 (right) for β = 1.01, 1.05, 1.1, 1.5, 2 and 3,
which correspond to curves from bottom to top. The circles indicate the points at b∗
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Fig. 2 (Left) plots of x �→ vb∗ (x) (solid) for Case 1 along with vb (dotted) for b = b∗/3, 2b∗/3 and
4b∗/3, which correspond to dotted curves from bottom to top. (Right) plots of x �→ vb∗ (x) (solid) for
Case 2 along with vb (dotted) for b = 1/4, 1/2, 3/4 and 1, which correspond to dotted curves from top to
bottom. The circles and down-pointing triangles indicate the points at b∗ and b, respectively
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Fig. 3 (Left) plots of x �→ vb∗ (x) for β = 1.01, 1.02, . . ., 1.09, 1.1,1.2, . . ., 2.9 and 3, which correspond
to curves from top to bottom. (Right) plots of x �→ vb∗ (x) (dotted) x �→ vb∗ (x) for δ = 0.01, 0.02, . . .,
0.09, 0.1, 0.2, . . ., 2.9 and 3, which correspond to curves from bottom to top, along with the value function
in [1] (solid). The circles indicate the points at b∗ and the square indicates the point at the optimal barrier
in [1]

assumption as in [1]. It is observed that the value function converges increasingly to
that in [1]. The convergence of b∗ to the optimal barrier in [1] is also confirmed.

7 Conclusions

We solved the dividend problem with capital injection under the constraint that the
cumulative dividend strategy is absolutely continuous. In particular, we proved that
the solution is a refraction–reflection strategy that reflects the surplus from below at
zero and decreases the drift at a suitable threshold.

It is noted that themethods and results in this current paper can potentially be applied
in other related stochastic control problems driven by one dimensional spectrally one-
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sided Lévy processes. In inventory/cash management control problems as in [21], it
is of interest to pursue the optimality of refraction–reflection strategies under suitable
absolutely continuous assumptions. Using the results in [7], smooth fit and verification
are expected to be carried out in an efficient way as in this current paper.
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