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1 Introduction

Let us consider polyconvex integrals of the Calculus of Variations. Partial regularity
results (that is, the regularity ofminimizers up to a subset of the set of definition and the
study of the properties of the singular set; see for example Section 4.2 in [1] and Section
1 in [2]) are contained in [3–10]. Only few everywhere regularity results are available:
[11] where the everywhere continuity is proved in the two-dimensional case, [12]
where Hölder continuity for extremals is dealt with in dimension two, [13] where local
boundedness is proved in the three-dimensional case. Global pointwise bounds are in
[14–19]. Interesting results are contained in [20–25]; see also [26,27]. Let us come
back to [13]; in such a paper, the authors make an important step toward regularity:
they prove boundedness of minimizers in the three-dimensional case; unfortunately,
they make restrictions that rule out the most important polyconvex integral. In the
present paper, we find a different set of assumptions, which allows us to deal with
such a polyconvex integral. In the next section, we write assumptions and results; in
Sect. 3 we collect some preliminaries and, in Sect. 4, we give the proof of the main
theorem.

2 Assumptions and Results

In this paperwe study the regularity of vectorial localminimizers of integral functionals

I (v,Ω) =
∫

Ω

f (x, Dv(x))dx, (1)

where Ω ⊂ R
3 is an open, bounded set, v : Ω ⊂ R

3 → R
3, v = (v1, v2, v3) and Dv

is the Jacobian matrix of its partial derivatives

Dv = (
vα

xi

)α=1,2,3
i=1,2,3

=
⎛
⎝ Dv1

Dv2

Dv3

⎞
⎠ =

⎛
⎝ v1x1 v1x2 v1x3

v2x1 v2x2 v2x3
v3x1 v3x2 v3x3

⎞
⎠ ,

moreover, f : Ω × R
3×3 → [0,+∞[ is a Carathéodory function such that for fixed

x

ξ → f (x, ξ) is polyconvex

that is

f (x, ξ) = g(x, ξ, adj2ξ, detξ) with (ξ, λ, t) → g(x, ξ, λ, t) convex, (2)

see [28,29]. When dealing with models in nonlinear elasticity, f is the stored-energy
function; moreover, ξ, adj2ξ, detξ govern the deformation of line, surface and volume
elements respectively. Our model is

f (x, Dv) = |Dv|p + |adj2Dv|q + |detDv|r , (3)
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where det Dv is the determinant of the matrix Dv, and adj2Dv denotes the adjugate
matrix of order 2, whose components are

(adj2Dv)i j = (−1)i+ j det

(
vα

xk
, vα

x�

v
β
xk , v

β
x�

)
, i, j ∈ {1, 2, 3},

with α, β ∈ {1, 2, 3} \ {i}, α < β, and k, � ∈ {1, 2, 3} \ { j}, k < �. Moreover,
(adj2Dv)α denotes the α−row of adj2Dv, that is

(adj2Dv)α = (
(adj2Dv)α1, (adj2Dv)α2, (adj2Dv)α3

)
.

In paper [13], the authors consider densities f for which the following splitting
holds true

f (x, Dv) =
3∑

α=1

Fα(x, Dvα) +
3∑

β=1

Gβ(x, (adj2Dv)β) + H(x, det Dv) (4)

for suitable nonnegative functions Fα, Gβ, H . Note that model (3), with p �= 2,
cannot be written as (4); see Lemma A.1 in “Appendix A”. In this paper, we succeed
in dealing with model (3) and we prove the following

Theorem 2.1 Let Ω be a bounded and open subset of R3. Assume that 1 ≤ r < q <

p ≤ 3 with 2 < p and

p

p∗ < min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)

}
, if 1 < q ≤ 2,

p

p∗ < min

{
1 − 2p∗

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
, 1 − r p∗

q(p∗ − r)

}
, if 2 < q; (5)

then all the local minimizers u ∈ W 1,p
loc (Ω;R3) of

∫
Ω

(|Du|p + |adj2Du|q + |detDu|r ) (6)

are locally bounded in Ω .

We recall that p∗ is the Sobolev exponent: p∗ = np
n−p = 3p

3−p when p < n = 3;
moreover, p∗ is any number greater than p when p = n = 3, so it can be chosen
large enough that (5) is satisfied by assuming only 1 ≤ r < q < p. We notice that we
have restricted ourselves to the case p ≤ 3 because, when p > 3, every function in
W 1,p

loc (Ω) is trivially in L∞
loc(Ω) by the Sobolev theorem. Note that we have existence

of minimizers for (6) when 2 ≤ p, p
p−1 ≤ q and 1 < r , provided a boundary datum

u ∈ W 1,p(Ω;R3), with finite energy, has been fixed; see Remark 8.32 (iii) in [29]
and Theorem 3.1 in [13]. Condition (5) is satisfied, for example, when p = 14

5 , q = 2,
r = 3

2 and this gives us the following.
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Corollary 2.1 Let Ω be a bounded and open subset of R3 and let u ∈ W
1, 145
loc (Ω;R3)

be a local minimizer of

∫
Ω

(|Du| 145 + |adj2Du|2 + |detDu| 32 ); (7)

then u is locally bounded in Ω .

In the framework of Corollary 2.1, we have p
p−1 = 14

9 < 2 = q, so the existence
of minimizers is guaranteed as in the previous lines. Theorem 2.1 is a particular case
of a more general result. Let us note that model (3) suggests we assume the following
structure

f (x, ξ) = F(x, |ξ |2) + G(x, |adj2ξ |2) + H(x, detξ), (8)

where F , G and H are Carathéodory nonnegative functions. We assume p-growth
with respect to ξ , q-growth with respect to adj2ξ and r -growth with respect to detξ

k1t p/2 − k2 ≤ F(x, t) ≤ k3t p/2 + a(x) (9)

k1tq/2 − k2 ≤ G(x, t) ≤ k3tq/2 + b(x) (10)

0 ≤ H(x, s) ≤ k3|s|r + c(x), (11)

where k1, k2, k3 are constants such that k1, k3 ∈]0,+∞[ and k2 ∈ [0,+∞[ and
a, b, c : Ω → [0,+∞[ are functions in Lσ (Ω), σ > 1; as far as exponents p, q, r
are concerned, we assume that 2 < p ≤ 3 and 1 ≤ r < q < p. Now we need to
control the behavior of F with respect to the sum from below

F(x, t1) + F(x, t2) − k2 ≤ F(x, t1 + t2). (12)

A weaker condition is needed for G:

G(x, t1) − k2 ≤ G(x, t1 + t2). (13)

We also need to control the behavior of F with respect to the sum from above:

F(x, t1 + t2) ≤ F(x, t1) + F(x, t2) + k3t1t
p
2 −1
2 + a(x). (14)

Note that in (14) there is an extra term with the product between t1 and t2. When
q > 2 we assume

G(x, t1 + t2) ≤ G(x, t1) + G(x, t2) + k3t1t
q
2 −1
2 + b(x). (15)

When q ≤ 2 we do not need the product between t1 and t2 any longer; we require
subadditivity

G(x, t1 + t2) ≤ G(x, t1) + G(x, t2) + b(x). (16)
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Functions F verifying the previous assumptions are F(x, t) = γ (x)t p/2 and
F(x, t) = γ (x)(1 + t2)p/4, provided γ (x) is positive and away from both 0 and
+∞; similar examples for G and H : see Remarks 3.2, . . ., 3.7. Our main result is the
following

Theorem 2.2 Let Ω be a bounded and open subset of R3 and let f be as in (8);
assume that conditions (9)–(16) hold with 1 ≤ r < q < p ≤ 3 such that 2 < p and

p

p∗ < min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
, if 1 < q ≤ 2,

p

p∗ < min

{
1 − 2p∗

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
, if 2 < q.

(17)

Then, all the local minimizers u ∈ W 1,p
loc (Ω;R3) of I are locally bounded in Ω .

Note that 1
σ

= 0, if σ = ∞. In our Theorem 2.2, we assume (8); in [13] (4) was in
force: in vectorial problems, some structure conditions are due to minimizers which
can be unbounded: see De Giorgi’s counterexample [30]; see also [31], Section 3 in
[1] and [32]. As far as exponents p, q, r are concerned, (17) is the same as (2.5) in
[13] when 1 < q ≤ 2; if 2 < q then (17) seems to require a bit more than (2.5) in
[13]: see comparison (72).

The integrals we consider show a p̃ growth from below and a q̃ growth from above,
so we are in the class of functionals with p̃, q̃-growth. It is now well known, as in our
result, that a restriction between p̃ and q̃ must be imposed due to counterexamples in
[33–37]; see also [38,39]; we refer to [1] for a detailed survey on the subject.

3 Preliminaries

In this section, we recall some standard definitions and collect several lemmas useful
in our proofs.

First of all, we recall the following

Definition 3.1 A function u ∈ W 1,1
loc (Ω;R3) is a local minimizer of (1) if f (Du) ∈

L1
loc(Ω) and

I (u, suppϕ) ≤ I (u + ϕ, supp ϕ), (18)

for all ϕ ∈ W 1,1(Ω,R3) with suppϕ ⊂⊂ Ω .

All the norms we use on R
3 and R

3×3 will be the standard Euclidean ones
and denoted by | · | in all cases. In particular, for matrices ξ, η ∈ R

3×3 we write

〈ξ, η〉 := trace(ξ T η) for the usual inner product of ξ and η, and |ξ | := 〈ξ, ξ 〉 1
2 for the

corresponding Euclidean norm.

Lemma 3.1 For a, b ≥ 0 we have that

am + bm ≤ (a + b)m, if m ≥ 1, (19)

(a + b)m ≤ am + bm + mabm−1, if 1 ≤ m ≤ 2. (20)
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Proof When m = 1, (19) and (20) are easy. We are left with the case 1 < m. It is
obvious that (19) and (20) hold true both for b = 0. We now assume b > 0 and we let
t = a/b. It suffices to show that for t ≥ 0,

tm + 1 ≤ (t + 1)m, if m > 1, (21)

(t + 1)m ≤ tm + 1 + mt, if 1 < m ≤ 2. (22)

In order to prove (21), we let h(t) = (t + 1)m − tm − 1. Since

h(0) = 0 (23)

and, by m > 1,
h′(t) = m[(t + 1)m−1 − tm−1] ≥ 0, (24)

then h(t) ≥ 0 and (21) follows.
Regarding (22), we let g(t) = (t + 1)m − tm − mt − 1. Since

g(0) = 0, (25)

g′(t) = m[(t + 1)m−1 − tm−1 − 1] ≤ m[tm−1 + 1 − tm−1 − 1] = 0, (26)

where we used 1 < m ≤ 2 and Remark 3.1, then (22) follows. 
�
Remark 3.1 We recall the well-known inequality: for a, b ≥ 0 we have

(a + b)m ≤ am + bm, if 0 < m ≤ 1. (27)

Lemma 3.2 Fix m ∈ [− 1
2 ,+∞[ and consider V : R → R as follows

V (s) =
(
1 + s2

)m
s; (28)

then, V : R → R is strictly increasing.

Proof We compute the first derivative

V ′(s) =
(
1 + s2

)m−1 [(2m + 1)s2 + 1]; (29)

since m ≥ − 1
2 , we have V ′(s) > 0 for every s ∈ R. This ends the proof. 
�

Lemma 3.3 Fix p ∈ [2,+∞[; consider w : R2 → R as follows

w(a, b) = [1 + (a + b)2]p/4 − [1 + a2]p/4 − [1 + b2]p/4. (30)

Then,
a ≥ 0, b ≥ 0 �⇒ w(0, 0) ≤ w(a, b). (31)
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Proof We compute the first partial derivatives:

∂w

∂a
(a, b) = p

4
[1 + (a + b)2](p/4)−12(a + b) − p

4
[1 + a2](p/4)−12a

= p

2
{V (a + b) − V (a)}

and

∂w

∂b
(a, b) = p

4
[1 + (a + b)2](p/4)−12(a + b) − p

4
[1 + b2](p/4)−12b

= p

2
{V (a + b) − V (b)}

where V is given by (28) with m = (p/4) − 1. Note that m ≥ −1/2 since p ≥ 2.
Then, V is increasing so that, when a ≥ 0 and b ≥ 0, we have
V (a + b) − V (a) ≥ 0 and V (a + b) − V (b) ≥ 0. This shows that

a ≥ 0, b ≥ 0 �⇒ ∂w

∂a
(a, b) ≥ 0,

∂w

∂b
(a, b) ≥ 0. (32)

Then, a → w(a, b) increases and b → w(a, b) increases too, if we restrict ourselves
to a ≥ 0 and b ≥ 0; thus,

w(0, 0) ≤ w(0, b) ≤ w(a, b), (33)

provided b ≥ 0 and a ≥ 0. This ends the proof. 
�

Corollary 3.1 Fix p ∈ [2,+∞[; then,

a ≥ 0, b ≥ 0 �⇒ [1 + a2]p/4 + [1 + b2]p/4 − 1 ≤ [1 + (a + b)2]p/4. (34)

Proof We write (31) explicitly and we get (34). 
�

Lemma 3.4 Fix p ∈]2, 3]. If a ≥ 0 and b ≥ 0, then

[1 + (a + b)2]p/4 ≤ [1 + a2]p/4 + [1 + b2]p/4 + p

2
ab(p/2)−1 + 1. (35)

Proof Since p ∈]2, 3] we have p
4 ∈] 12 , 3

4 ] and we can use (27) with m = p
4 :

[1 + (a + b)2]p/4 ≤ [1]p/4 + [(a + b)2]p/4 = 1 + (a + b)p/2; (36)
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now p
2 ∈]1, 3

2 ] and we can use (20) with m = p
2 :

1 + (a + b)p/2 ≤ 1 + a p/2 + bp/2 + p

2
ab(p/2)−1

= 1 + (a2)p/4 + (b2)p/4 + p

2
ab(p/2)−1

≤ 1 + [1 + a2]p/4 + [1 + b2]p/4 + p

2
ab(p/2)−1. (37)

This ends the proof. 
�
Lemma 3.5 Fix q ∈]1, 2]. Then,

a ≥ 0, b ≥ 0 �⇒ [1 + (a + b)2]q/4 ≤ [1 + a2]q/4 + [1 + b2]q/4 + 1. (38)

Proof Since q ∈]1, 2] we have q
4 ∈] 14 , 1

2 ] and we can use (27) with m = q
4 :

[1 + (a + b)2]q/4 ≤ 1q/4 + [(a + b)2]q/4 = 1 + (a + b)q/2; (39)

now q
2 ∈] 12 , 1] and we can use (27) with m = q

2 :

1 + (a + b)q/2 ≤ 1 + aq/2 + bq/2

= 1 + (a2)q/4 + (b2)q/4

≤ 1 + [1 + a2]q/4 + [1 + b2]q/4. (40)

This ends the proof. 
�
Now we are able to give examples of functions F, G, H verifying conditions

required in Theorem 2.2.

Remark 3.2 Fix p ∈]2, 3] and define

F(x, t) = γ (x)t p/2 (41)

for t ∈ [0,+∞[, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then (9), (12), (14)
hold true with k1 = γ1, k2 = 0, k3 = p

2 γ2, a(x) = 0. Indeed, we use (19) and (20)
with m = p/2 in Lemma 3.1 and we are done.

Remark 3.3 Fix q ∈]1, 3[ and define

G(x, t) = γ (x)tq/2 (42)

for t ∈ [0,+∞[, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then, when q > 2,
(10), (13), (15) hold true with k1 = γ1, k2 = 0, k3 = q

2γ2, b(x) = 0. Indeed, we use
(20) with m = q/2 in Lemma 3.1 and we are done. Moreover, when q ≤ 2, (10), (13),
(16) hold true with k1 = γ1, k2 = 0, k3 = γ2, b(x) = 0. Indeed, when q ≤ 2, we use
the well-known inequality (27) with m = q/2 and we are done.
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Remark 3.4 Fix r ∈ [1, 3[ and define

H(x, s) = γ (x)|s|r (43)

for s ∈ R, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then, (11) holds true with
k3 = γ2, c(x) = 0.

Remark 3.5 Fix p ∈]2, 3] and define

F(x, t) = γ (x)[1 + t2]p/4 (44)

for t ∈ [0,+∞[, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then (9), (12), (14)
hold true with k1 = γ1, k2 = γ2, k3 = p

2 γ2, a(x) = γ2. Indeed, we use (27) with
m = p/4, (34) and (35).

Remark 3.6 Fix q ∈]1, 3[ and define

G(x, t) = γ (x)[1 + t2]q/4 (45)

for t ∈ [0,+∞[, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then, when q > 2,
(10), (13), (15) hold true with k1 = γ1, k2 = 0, k3 = q

2γ2, b(x) = γ2. Indeed, we use
(27) with m = q/4, (35) and we are done. Moreover, when q ≤ 2, (10), (13), (16)
hold true with k1 = γ1, k2 = 0, k3 = γ2, b(x) = γ2. Indeed, when q ≤ 2, we use (27)
with m = q/4, (38) and we are done.

Remark 3.7 Fix r ∈ [1, 3[ and define

H(x, s) = γ (x)[1 + |s|2]r/2 (46)

for s ∈ R, where γ1 ≤ γ (x) ≤ γ2 with γ1, γ2 ∈]0,+∞[. Then, (11) holds true with
k3 = 2r/2γ2, c(x) = 2r/2γ2.

The following lemma can be found in [13] as Lemma 4.1.

Lemma 3.6 Consider the matrices A, B ∈ R
3×3:

A =
⎛
⎝ A1

B2

B3

⎞
⎠ , B =

⎛
⎝ B1

B2

B3

⎞
⎠ .

Then, the following estimates hold:

(a) |A| ≤ |A1| + |B2| + |B3|,
(b) | det A| ≤ |A1||(adj2B)1|,
(c) |(adj2A)2 j | ≤ |A1||B3| and |(adj2A)3 j | ≤ |A1||B2|, for all j ∈ {1, 2, 3}.
In order to get our main result, we have to prove a suitable Caccioppoli-type

inequality for any component uα of the local minimizer u of functional I (1) on
every superlevel set {uα > k}. To this goal, we will use the following lemma (see [13]
for a proof).
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Lemma 3.7 Let Ω be an open subset of R3. Consider a Carathéodory function f :
Ω × R

3×3 → [0,+∞[. Assume that there exist c1, c3 > 0 and c2 ≥ 0 such that, for
every ξ ∈ R

3×3,

c1(|ξ |p + |adj2ξ |q) − c2 ≤ f (x, ξ) ≤ c3(|ξ |p + |(adj2ξ)|q + | det ξ |r + 1 + ω(x)),

with 1 ≤ p, 1 ≤ q, 1 ≤ r, ω(x) ≥ 0.
Let u ∈ W 1,p

loc (Ω;R3) be such that x → f (x, Du(x)) ∈ L1
loc(Ω). Fix η ∈ C1

0(Ω),
η ≥ 0 and k ∈ R, and denote, for almost every x ∈ {u1 > k} ∩ {η > 0},

A =
⎛
⎝μη−1(k − u1)Dη

Du2

Du3

⎞
⎠ .

If

q <
p∗ p

p∗ + p
and r <

p∗q

p∗ + q

and ω ∈ L1
loc(Ω), then

ημ f (x, A) ∈ L1({u1 > k} ∩ {η > 0}), ∀μ ≥ p∗.

4 Proof of Theorem 2.2

We want to stress that the proof of our result follows the idea used in [13]: we provide
the local boundedness of the minimizers by proving that each component is locally
bounded. In the following lemma, we refer to the first component u1: the core of the
proof lies in the following Caccioppoli-type inequality, obtained on every superlevel
set {u1 > k}. We keep in mind that p∗ = np

n−p if p < n = 3 and p∗ is any number
> p when p = n = 3.

Proposition 4.1 (Caccioppoli-type estimate) Let f be as in (8) satisfying (9)–(16)
with 1 ≤ r < q < p ≤ 3 such that

2 < p, q <
pp∗

p + p∗ , r <
p∗q

p∗ + q
. (47)

Let u ∈ W 1,p
loc (Ω;R3) be a local minimizer of I . Let BR(x0) ⊂⊂ Ω with |BR(x0)| < 1;

fixed k ∈ R, denote

A1
k,τ := {x ∈ Bτ (x0) : u1(x) > k} 0 < τ ≤ R.

Then, there exists C = C(k1, k2, k3, p, q, r, p∗) > 0 such that, for every 0 < s < t ≤
R:
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∫
A1

k,s

|Du1|pdx ≤ C
∫

A1
k,t

(
u1 − k

t − s

)p∗

dx + C

{
1 + ‖a + b + c‖Lσ (BR)

+
(∫

BR

(|Du2| + |Du3|)pdx

) p∗(p−2)
p(p∗−2) +

(∫
BR

(
|Du2| + |Du3|

)p
dx

) qp∗
p(p∗−q)

+
(∫

BR

|(adj2Du)1|q dx

) rp∗
q(p∗−r) + 1(2,+∞)(q)

(∫
BR

(|Du2| + |Du3|)pdx

) 2p∗
p(p∗−2)

×
(∫

BR

|(adj2Du)1|qdx

) (q−2)p∗
q(p∗−2)

}
|A1

k,t |θ ,
(48)

where

θ := min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
, if 1 < q ≤ 2,

θ := min

{
1 − 2p∗

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
, if 2 < q,

with 1
σ

= 0 if σ = ∞.

Proof The condition |BR(x0)| = 4π R3

3 < 1 ensures R < 1. Let s, t be such that
0 < s < t ≤ R. Consider a cutoff function η ∈ C∞

0 (Bt (x0)) satisfying the following
assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t − s
.

Fixing k ∈ R, define w ∈ W 1,p
loc (Ω;R3),

w1 := max{u1 − k, 0}, w2 = 0, w3 = 0,

and, for μ = p∗,

ϕ := −ημw.

For almost every x ∈ Ω \ ({η > 0} ∩ {u1 > k}) we have ϕ = 0, thus

f (x, Du + Dϕ) = f (x, Du) (49)

almost everywhere in Ω \ ({η > 0} ∩ {u1 > k}).
For almost every x ∈ {η > 0} ∩ {u1 > k} denote

A =
⎛
⎝μη−1(k − u1)Dη

Du2

Du3

⎞
⎠ . (50)
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We notice that

Du + Dϕ =
⎛
⎝ (1 − ημ)Du1 + μημ−1(k − u1)Dη

Du2

Du3

⎞
⎠ = (1 − ημ)Du + ημ A.

Moreover, since for almost every x ∈ {η > 0} ∩ {u1 > k},

det(Du + Dϕ) = (1 − ημ) det Du + ημ det A

and

adj2(Du + Dϕ) = (1 − ημ)adj2Du + ημadj2A,

then, since f is polyconvex, we get that

f (x, Du + Dϕ) ≤ (1 − ημ) f (x, Du) + ημ f (x, A) (51)

almost everywhere in {η > 0} ∩ {u1 > k}.
By the minimality of u, f (x, Du) ∈ L1

loc(Ω); note that in our case we can use
Lemma 3.7, deducing that

ημ f (x, A) ∈ L1({η > 0} ∩ {u1 > k}).

Therefore, (49) and (51) imply f (x, Du + Dϕ) ∈ L1
loc(Ω).

By the local minimality of u, (49) and (51), recalling that A1
k,t is the set {x ∈

Bt (x0) : u1(x) > k}, we have
∫

A1
k,t ∩{η>0}

f (x, Du)dx ≤
∫

A1
k,t ∩{η>0}

f (x, Du + Dϕ)dx

≤
∫

A1
k,t ∩{η>0}

{(1 − ημ) f (x, Du) + ημ f (x, A)}dx .

The inequality above implies

∫
A1

k,t ∩{η>0}
ημ f (x, Du)dx ≤

∫
A1

k,t ∩{η>0}
ημ f (x, A)dx .

Taking into account the expression of f (see (8)), we obtain from the above inequality
that

∫
A1

k,t ∩{η>0}
ημ
[

F(x, |Du|2) + G(x, |adj2Du|2) + H(x, det Du)
]
dx

≤
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |A|2) + G(x, |adj2A|2) + H(x, det A)
]
dx . (52)
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Denote ũ = (u2, u3) and

Dũ =
(

Du2

Du3

)
.

We have

|Du|2 = |Du1|2 + |Dũ|2;

we use (12) with t1 = |Du1|2 and t2 = |Dũ|2, so that
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |Du1|2) + F(x, |Dũ|2) − k2
]
dx

≤
∫

A1
k,t ∩{η>0}

ημF(x, |Du|2)dx .
(53)

Note that

|A|2 = |A1|2 + |Dũ|2;

by using (14) with t1 = |A1|2 and t2 = |Dũ|2, we obtain
∫

A1
k,t ∩{η>0}

ημF(x, |A|2)dx

≤
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |A1|2) + F(x, |Dũ|2)

+ k3|A1|2(|Dũ|2) p
2 −1 + a(x)

]
dx . (54)

Furthermore, setting

| Ã|2 = |(adj2Du)2|2 + |(adj2Du)3|2, | ˜̃A|2 = |(adj2A)2|2 + |(adj2A)3|2 (55)

and noticing

(adj2A)1 = (adj2Du)1,

we can write

|adj2Du|2 = |(adj2Du)1|2 + |(adj2Du)2|2 + |(adj2Du)3|2 = |(adj2Du)1|2 + | Ã|2,
|adj2A|2 = |(adj2A)1|2 + |(adj2A)2|2 + |(adj2A)3|2 = |(adj2Du)1|2 + | ˜̃A|2.
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Applying (13) with t1 = |(adj2Du)1|2 and t2 = | Ã|2, we get
∫

A1
k,t ∩{η>0}

ημ
(

G(x, |(adj2Du)1|2) − k2
)
dx

≤
∫

A1
k,t ∩{η>0}

ημG(x, |adj2Du|2)dx . (56)

Assumption (15) when q > 2 or (16) when q ≤ 2, with t1 = | ˜̃A|2 and t2 =
|(adj2Du)1|2, yields
∫

A1
k,t ∩{η>0}

ημG(x, |adj2A|2)dx ≤
∫

A1
k,t ∩{η>0}

ημ[G(x, | ˜̃A|2)

+ G(x, |(adj2Du)1|2) + b(x) + 1(2,+∞)(q)k3| ˜̃A|2
(
|(adj2Du)1|2

) q
2 −1]dx . (57)

By virtue of (53),(54), (56) and (57), from (52), we get

∫
A1

k,t ∩{η>0}
ημ[F(x, |Du1|2) + F(x, |Dũ|2) − 2k2

+G(x, |(adj2Du)1|2) + H(x, detDu)]dx

≤
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |A1|2) + F(x, |Dũ|2) + k3|A1|2(|Dũ|2) p
2 −1

+ a(x) + G(x, | ˜̃A|2) + G(x, |(adj2Du)1|2) + b(x)

+ 1(2,+∞)(q)k3| ˜̃A|2
(
|(adj2Du)1|2

) q
2 −1 + H(x, detA)

]
dx

and then
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |Du1|2) − 2k2 + H(x, detDu)
]
dx

≤
∫

A1
k,t ∩{η>0}

ημ
[

F(x, |A1|2) + k3|A1|2(|Dũ|2) p
2 −1 + a(x) + G(x, | ˜̃A|2)

+ b(x) + 1(2,+∞)(q)k3| ˜̃A|2 (|(adj2Du)1|2) q
2 −1 + H(x, detA)

]
dx .

(58)

In order to estimate the first two terms on the right-hand side of (58), we recall that
μ = p∗ > p and

A1 = μη−1(k − u1)Dη.
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By using the right-hand side of (9) and the fact z p ≤ 1 + z p∗
if z ≥ 0, we obtain

∫
A1

k,t ∩{η>0}
ημF(x, |A1|2) ≤

∫
A1

k,t ∩{η>0}
ημ
[
k3|A1|p + a(x)

]
dx

≤
∫

A1
k,t ∩{η>0}

ημ
[
k3
{
1 + |A1|p∗}+ a(x)

]
dx

≤
∫

A1
k,t ∩{η>0}

{
ημ(k3 + a(x)) + k3(2μ)p∗

ημ−p∗
(

u1 − k

t − s

)p∗}
dx

≤
∫

A1
k,t ∩{η>0}

{
k3 + a(x) + k3(2μ)p∗

(
u1 − k

t − s

)p∗}
dx . (59)

We will write d ′ to denote the Hölder conjugate of d > 1: d ′ = d
d−1 . Regarding the

second term on the right-hand side in (58), notice that

(p − 2)

(
p∗

2

)′
< p;

we use Young inequality with p∗
2 ,
(

p∗
2

)′
and Hölder inequality with p

(p−2)
(

p∗
2

)′ ,

p

p−(p−2)
(

p∗
2

)′ :

∫
A1

k,t ∩{η>0}
k3η

μ|A1|2|Dũ|p−2dx

≤
∫

A1
k,t ∩{η>0}

k3η
μ|A1|p∗

dx +
∫

A1
k,t ∩{η>0}

k3η
μ|Dũ|(p−2)

(
p∗
2

)′
dx

≤ k3(2μ)p∗
∫

A1
k,t ∩{η>0}

(
u1 − k

t − s

)p∗

dx

+ k3

(∫
BR

|Dũ|pdx

)(1− 2
p

)(
p∗
2

)′

|A1
k,t |1−

(
1− 2

p

)(
p∗
2

)′
.

(60)

Now we estimate the fourth term in (58). By using (10), (55), Lemma 3.6-(c) and
Young inequality with exponents p∗

q and (
p∗
q )′, we estimate

∫
A1

k,t ∩{η>0}
ημG(x, | ˜̃A|2) ≤

∫
A1

k,t ∩{η>0}
ημk3((| ˜̃A|2) q

2 + b(x))dx

=
∫

A1
k,t ∩{η>0}

ημ(k3
(
|(adj2A)2|2 + |(adj2A)3|2

) q
2 + b(x))dx

≤
∫

A1
k,t ∩{η>0}

ημ(3
q
2 k3

[
|A1|2(|Du2|2 + |Du3|2)

] q
2 + b(x))dx
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≤
∫

A1
k,t ∩{η>0}

ημ3
q
2 k3|A1|p∗

dx +
∫

A1
k,t ∩{η>0}

ημ3
q
2 k3 (|Dũ|)q(

p∗
q )′ dx

+
∫

A1
k,t ∩{η>0}

ημb(x)dx .

Note that q(
p∗
q )′ < p when q <

pp∗
p+p∗ and pp∗

p+p∗ > 1 if p > 2n
n+1 .

Moreover, Hölder inequality, with p
q

/(
p∗
q

)′
and

(
p
q

/(
p∗
q

)′)′
, yields

∫
A1

k,t ∩{η>0}
ημ|Dũ|q(

p∗
q )′dx ≤

(∫
A1

k,t

(|Dũ|)p dx

) q
p (

p∗
q )′

|A1
k,t |1−

q
p (

p∗
q )′

≤
(∫

BR

(|Dũ|)p dx

) q
p (

p∗
q )′

|A1
k,t |1−

q
p (

p∗
q )′ ;

(61)

therefore, if we note that ( p∗
q )′ = p∗

p∗−q , we have

∫
A1

k,t ∩{η>0}
ημG(x, | ˜̃A|2) ≤

∫
A1

k,t ∩{η>0}
ημ3

q
2 k3|A1|p∗

dx

+3
q
2 k3

(∫
BR

|Dũ|pdx

) qp∗
p(p∗−q) |A1

k,t |1−
qp∗

p(p∗−q) +
∫

A1
k,t ∩{η>0}

ημb(x)dx .

(62)

Eventually, if q > 2, we have to estimate the sixth term in (58) and we use

Lemma 3.6-(c) and Young inequality with exponents p∗
2 and

(
p∗
2

)′
, so having

∫
A1

k,t ∩{η>0}
ημ| ˜̃A|2

(
|(adj2Du)1|2

) q
2 −1

dx

=
∫

A1
k,t ∩{η>0}

ημ
(
|(adj2A)2|2 + |(adj2A)3|2

)
|(adj2Du)1|q−2dx

≤ 3
∫

A1
k,t ∩{η>0}

ημ|A1|2(|Du3|2 + |Du2|2)|(adj2Du)1|q−2dx

≤ 3
∫

A1
k,t ∩{η>0}

ημ|A1|p∗
dx

+3
∫

A1
k,t ∩{η>0}

ημ|Dũ|2
(

p∗
2

)′
|(adj2Du)1|(q−2)

(
p∗
2

)′
dx .

(63)

Observe that 2 < q <
pp∗

p+p∗ implies p > 12
5 ; so we have 2

(
p∗
2

)′
< p and we apply

Hölder inequality with exponents p

2
(

p∗
2

)′ and

(
p

2
(

p∗
2

)′

)′
,
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∫
A1

k,t ∩{η>0}
ημ|Dũ|2

(
p∗
2

)′
|(adj2Du)1|(q−2)

(
p∗
2

)′
dx

≤
(∫

BR

|Dũ|p
) 2

p

(
p∗
2

)′

×

⎛
⎜⎜⎜⎜⎝
∫

A1
k,t ∩{η>0}

ημ|(adj2Du)1|
(q−2)

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′⎞
⎟⎟⎟⎟⎠

1− 2
p

(
p∗
2

)′ (64)

Furthermore, if (q − 2)
(

p∗
2

)′
(

p

2
(

p∗
2

)′

)′
< q, we apply Hölder inequality again

with exponents q

(q−2)
(

p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′ and its conjugate:

(∫
BR

|Dũ|p
) 2

p

(
p∗
2

)′

⎛
⎜⎜⎜⎜⎝
∫

A1
k,t

|(adj2Du)1|
(q−2)

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′⎞
⎟⎟⎟⎟⎠

1− 2
p

(
p∗
2

)′

≤
(∫

BR

|Dũ|p
) 2

p

(
p∗
2

)′

⎡
⎢⎢⎢⎢⎣
(∫

A1
k,t

|(adj2Du)1|q
) (q−2)

q

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′

×|A1
k,t |

1− (q−2)
q

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′⎤
⎥⎥⎥⎥⎦

1− 2
p

(
p∗
2

)′

. (65)
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Therefore, by (64) and (65), (63) becomes

∫
A1

k,t ∩{η>0}
ημ| ˜̃A|2

(
|(adj2Du)1|2

) q
2 −1

dx ≤ 3
∫

A1
k,t ∩{η>0}

ημ|A1|p∗
dx

+ 3

(∫
BR

|Dũ|pdx

) 2
p

(
p∗
2

)′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
A1

k,t

|(adj2Du)1|qdx

) (q−2)
q

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′

×|A1
k,t |

1− (q−2)
q

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1− 2
p

(
p∗
2

)′

. (66)

Please, note that the previous condition (q − 2)
(

p∗
2

)′
(

p

2
(

p∗
2

)′

)′
< q means q <

pp∗
p+p∗ . Finally, r -growth assumption (11) on H(x, .) yields

∫
A1

k,t ∩{η>0}
ημH(x, det A)dx ≤

∫
A1

k,t ∩{η>0}
ημ(k3| det A|r + c(x))dx . (67)

We compute det A with respect to the first row, see Lemma 3.6-(b),

ημ| det A|r ≤ ημ|A1|r |(adj2Du)1|r ≤ (2μ)rημ−r
(

u1 − k

t − s

)r

|(adj2Du)1|r

≤ (2μ)r
(

u1 − k

t − s

)r

|(adj2Du)1|r .

Notice that r < p < p∗ and r p∗
p∗−r < q. By the Young inequality with exponents p∗

r

and p∗
p∗−r , one has

(
u1 − k

t − s

)r

|(adj2Du)1|r ≤
(

u1 − k

t − s

)p∗

+ |(adj2Du)1| rp∗
p∗−r .

123



J Optim Theory Appl (2018) 178:699–725 717

Hölder inequality with q
rp∗

p∗−r

and q

q− rp∗
p∗−r

leads to

∫
A1

k,t ∩{η>0}
ημ| det A|rdx ≤ (2μ)r

[ ∫
A1

k,t ∩{η>0}

(
u1 − k

t − s

)p∗

dx

+
∫

A1
k,t ∩{η>0}

|(adj2Du)1| rp∗
p∗−r dx

]

≤ (2μ)r
[ ∫

A1
k,t ∩{η>0}

(
u1 − k

t − s

)p∗

dx

+
(∫

BR

|(adj2Du)1|qdx

) rp∗
q(p∗−r) |A1

k,t |1−
rp∗

q(p∗−r)

]
.

(68)

Therefore, (67) and (68) imply

∫
A1

k,t ∩{η>0}
ημH(x, det A)dx ≤ k3(2μ)r

[ ∫
A1

k,t ∩{η>0}

(
u1 − k

t − s

)p∗

dx

+
(∫

BR

|(adj2Du)1|qdx

) rp∗
q(p∗−r) |A1

k,t |1−
rp∗

q(p∗−r)

]
+
∫

A1
k,t ∩{η>0}

ημc(x)dx . (69)

By left-hand side inequalities in (9) and (11), using (58), (59), (60), (62), (66) and
(69), we conclude

∫
A1

k,s

|Du1|pdx ≤ C
∫

A1
k,t

(
u1 − k

t − s

)p∗

dx + C

{
1 + ‖a + b + c‖Lσ (BR)

+
(∫

BR

(|Du2| + |Du3|)pdx

)(1− 2
p

)(
p∗
2

)′

+
(∫

BR

(
|Du2| + |Du3|

)p
dx

) qp∗
p(p∗−q) +

(∫
BR

|(adj2Du)1|q dx

) rp∗
q(p∗−r)

+1(2,+∞)(q)

(∫
BR

(|Du2| + |Du3|)pdx

) 2
p

(
p∗
2

)′

×
(∫

BR

|(adj2Du)1|qdx

) (q−2)
q

(
p∗
2

)′
⎛
⎜⎝ p

2

(
p∗
2

)′

⎞
⎟⎠

′(
1− 2

p

(
p∗
2

)′) }
|A1

k,t |θ ,

(70)
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where

θ := min

{
1 −

(
1 − 2

p

)(
p∗

2

)′
, 1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ
,

1[1,2](q) + 1(2,+∞)(q)

⎛
⎜⎝1 − (q − 2)

q

(
p∗

2

)′
⎛
⎜⎝ p

2
(

p∗
2

)′

⎞
⎟⎠

′⎞
⎟⎠
(
1 − 2

p

(
p∗

2

)′)
⎫⎪⎬
⎪⎭

andC = C(k1, k2, k3, p, q, r, p∗) > 0;moreover, 1E (q) = 1 if q ∈ E and 1E (q) = 0
if q /∈ E . Now we note that

1 −
(
1 − 2

p

)(
p∗

2

)′
≥ 1 − p∗

p(p∗ − 1)
≥ 1 − qp∗

p(p∗ − q)
,

where the last inequality is granted since q �→ 1 − qp∗
p(p∗−q)

decreases. Then,

θ := min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ
,

1[1,2](q) + 1(2,+∞)(q)

⎛
⎜⎝1 − (q − 2)

q

(
p∗

2

)′
⎛
⎜⎝ p

2
(

p∗
2

)′

⎞
⎟⎠

′⎞
⎟⎠
(
1 − 2

p

(
p∗

2

)′)
⎫⎪⎬
⎪⎭ .

Note that
(

p∗
2

)′ = p∗
p∗−2 ; then, the exponents in (70) can be written as follows

(
1 − 2

p

)(
p∗

2

)′
= p∗(p − 2)

p(p∗ − 2)
,

2

p

(
p∗

2

)′

= 2p∗

p(p∗ − 2)
,

(
p∗

2

)′
⎛
⎜⎝ p

2
(

p∗
2

)′

⎞
⎟⎠

′ (
1 − 2

p

(
p∗

2

)′)

= p∗

p∗ − 2
,

so that (70) turns out to be

∫
A1

k,s

|Du1|pdx ≤ C
∫

A1
k,t

(
u1 − k

t − s

)p∗

dx + C

{
1 + ‖a + b + c‖Lσ (BR)

+
(∫

BR

(|Du2| + |Du3|)pdx

) p∗(p−2)
p(p∗−2)

+
(∫

BR

(
|Du2| + |Du3|

)p
dx

) qp∗
p(p∗−q)
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+
(∫

BR

|(adj2Du)1|q dx

) rp∗
q(p∗−r)

+1(2,+∞)(q)

(∫
BR

(|Du2| + |Du3|)pdx

) 2p∗
p(p∗−2)

×
(∫

BR

|(adj2Du)1|qdx

) (q−2)p∗
q(p∗−2)

}
|A1

k,t |θ , (71)

where

θ := min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
, if 1 < q ≤ 2,

θ := min

{
1 − qp∗

p(p∗ − q)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ
,

p∗(p − 2) − 2p

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)

}
, if 2 < q.

If 2 < q <
pp∗

p+p∗ , we have

1 − qp∗

p(p∗ − q)
>

p∗(p − 2) − 2p

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
= 1 − 2p∗

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
(72)

and

θ = min

{
1 − 2p∗

p(p∗ − 2)
− (q − 2)p∗

q(p∗ − 2)
, 1 − r p∗

q(p∗ − r)
, 1 − 1

σ

}
.

This ends the proof of Proposition 4.1. 
�
We now proceed with the proof of Theorem 2.2. We fix x0 ∈ Ω and R0 <

min{dist(x0, ∂Ω),
( 3
4π

)1/3} such that

∫
BR0

|u1|p∗
dx < 1, (73)

where Bρ is the ball centered at x0 with radius ρ. Note that R0 < 1, |BR0 | < 1 and
BR0 ⊂⊂ Ω . For every R ∈ (0, R0] we define the decreasing sequence of radii

ρh := R

2
+ R

2h+1 .

Fix a positive constant d ≥ 1 and define the increasing sequence of positive levels

kh := d

(
1 − 1

2h+1

)
.

123



720 J Optim Theory Appl (2018) 178:699–725

We define the “excess”

Jh :=
∫

A1
kh ,ρh

(u1 − kh)p∗
dx .

We use our Caccioppoli inequality (48) and Proposition 2.4 of [13]: we get

Jh+1 ≤ c

(
2

p∗ p∗
p

)h

(Jh)
θ

p∗
p ,

where the positive constant c is independent of h. See also [40,41]. Assumption (17)
tells us that θ

p∗
p > 1; then, we can use Lemma 2.5 of [13] with γ := θ

p∗
p − 1, see

also [42]:

Jh ≤
(
2

p∗ p∗
p

)− h
γ

J0, (74)

provided

J0 ≤ c− 1
γ

(
2

p∗ p∗
p

)− 1
γ 2

. (75)

Note that

J0 =
∫

A1
d
2 ,R

(
u1 − d

2

)p∗

dx → 0 as d → +∞;

then, we can choose d ≥ 1 large enough so that (75) holds true. Thus, we have (74)
with γ > 0, so that Jh → 0 as h → +∞; since R

2 < ρh and kh < d, we also have

0 ≤
∫

A1
d, R

2

(
u1 − d

)p∗
dx ≤ Jh;

then,

∫
A1

d, R
2

(
u1 − d

)p∗
dx = 0

so that u1 ≤ d almost everywhere in B R
2
. We have proved that u1 is locally bounded

from above. In order to prove that u1 is locally bounded from below, we note that −u
locally minimizes

∫
Ω

f̃ (x, Dz(x))dx , where f̃ (x, ξ) = f (x,−ξ); then, we get that
−u1 is locally bounded from above, so u1 is locally bounded from below. We have
just shown that u1 ∈ L∞

loc(Ω).
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Now we turn our attention to the second component u2. We change the order of the
two components u1 and u2: we get a new function v as follows:

v =
⎛
⎝ u2

u1

u3

⎞
⎠ ;

then,

Dv =
⎛
⎝ Du2

Du1

Du3

⎞
⎠

and det Dv = − det Du; moreover (adj2Dv)1 = −(adj2Du)2, (adj2Dv)2 =
−(adj2Du)1 and (adj2Dv)3 = −(adj2Du)3, so that

adj2Dv = −
⎛
⎝ (adj2Du)2

(adj2Du)1

(adj2Du)3

⎞
⎠ .

If we write C1,2(ξ) to denote the matrix obtained from ξ by inverting line 1 and line 2,
we have Dv = C1,2(Du) and adj2Dv = −C1,2(adj2Du). Then, v is a local minimizer

of
∫
Ω

˜̃f (x, Dw(x))dx , where ˜̃f (x, ξ) = f (x, C1,2(ξ)). Thus, the first component v1

is locally bounded: u2 = v1 ∈ L∞
loc(Ω). In a similar way we deal with the third

component u3: we change the order of the two components u1 and u3; we get a new
function w as follows:

w =
⎛
⎝ u3

u2

u1

⎞
⎠ ;

then,

Dw =
⎛
⎝ Du3

Du2

Du1

⎞
⎠

and det Dw = − det Du; moreover (adj2Dw)1 = −(adj2Du)3, (adj2Dw)2 =
−(adj2Du)2 and (adj2Dw)3 = −(adj2Du)1, so that

adj2Dw = −
⎛
⎝ (adj2Du)3

(adj2Du)2

(adj2Du)1

⎞
⎠ .

If we write C1,3(ξ) to denote the matrix obtained from ξ by inverting line 1 and
line 3, we have Dw = C1,3(Du) and adj2Dw = −C1,3(adj2Du). Then, w is a
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local minimizer of
∫
Ω

˜̃̃
f (x, Dz(x))dx , where

˜̃̃
f (x, ξ) = f (x, C1,3(ξ)). Thus, the

first component w1 is locally bounded: u3 = w1 ∈ L∞
loc(Ω). This ends the proof of

Theorem 2.2. 
�

5 Conclusions

We have been able to prove boundedness for minimizers of the most important
three-dimensional polyconvex integral, provided the growth exponents verify some
restrictions. It would be interesting to understand what happens when such restric-
tions are not in force.
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Appendix: Comparison Between Two Structures

Lemma A.1 We assume that Fα, Gα : R3 �→ [0,+∞[ and H : R �→ [0,+∞[; let
p, q, r ∈]0,+∞[ with p �= 2. Then, it is false that

3∑
α=1

Fα(ξα) +
3∑

α=1

Gα((adj2ξ)α) + H(det ξ) = |ξ |p + |adj2ξ |q + | det ξ |r (76)

for every ξ ∈ R
3×3.

Proof We argue by contradiction: if (76) holds true, then we can use (76) with

ξ =
⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ (77)

and we get

adj2ξ =
⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ , (78)

with det ξ = 0, so that

3∑
α=1

Fα((0, 0, 0)) +
3∑

α=1

Gα((0, 0, 0)) + H(0) = 0; (79)
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we keep in mind that Fα, Gα, H ≥ 0 and we get

Fα((0, 0, 0)) = Gα((0, 0, 0)) = H(0) = 0, (80)

for every α = 1, 2, 3. Now we use (76) with

ξ =
⎛
⎝ t 0 0
0 0 0
0 0 0

⎞
⎠ (81)

and we get

adj2ξ =
⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ , (82)

with det ξ = 0, so that

F1((t, 0, 0)) + F2((0, 0, 0)) + F3((0, 0, 0)) +
3∑

α=1

Gα((0, 0, 0)) + H(0) = |t |p;
(83)

we keep in mind (80) and we get

F1((t, 0, 0)) = |t |p, (84)

for every t ∈ R. In a similar manner, taking

ξ =
⎛
⎝0 0 0

t 0 0
0 0 0

⎞
⎠ , (85)

we get
F2((t, 0, 0)) = |t |p, (86)

for every t ∈ R. In the same way, taking

ξ =
⎛
⎝0 0 0
0 0 0
t 0 0

⎞
⎠ , (87)

we get
F3((t, 0, 0)) = |t |p, (88)

for every t ∈ R. Eventually, we take

ξ =
⎛
⎝ 1 0 0
1 0 0
1 0 0

⎞
⎠ (89)
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and (76) implies

3∑
α=1

Fα((1, 0, 0)) +
3∑

α=1

Gα((0, 0, 0)) + H(0) = 3p/2; (90)

we use (80), (84), (86), (88) and we get

3 = 3p/2 : (91)

such an equality is a contradiction, since p �= 2. This ends the proof of Lemma A.1.

�
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