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1 Introduction

We study the conjugate gradient methods for unconstrained optimization problems. It
is well known that Fletcher–Reeves (FR) [1], Conjugate Descent (CD) [2] and Dai–
Yuan (DY) [3] conjugate gradient methods have strong convergence properties, but
they may not perform well in practice due to jamming. On the other hand, Hestenes–
Stiefel (HS) [4], Polak–Ribiére–Polyak (PRP) [5,6], andLiu–Storey (LS) [7] conjugate
gradient methods may not converge in general, but they often perform better than
FR, CD and DY. To combine the best numerical performances of the LS method
and the global convergence properties of the CD method, Yang et al. [8] proposed
a hybrid LS-CD method. Dai and Liao [9] proposed an efficient conjugate gradient-
type method (Dai–Liao method). Later, some more efficient Dai–Liao-type conjugate
gradient methods, known as DHSDL and DLSDL, were designed and studied in [10].

Continuing previous results, we propose two efficient hybridizations of conju-
gate gradient (CG) methods for solving unconstrained optimization problems and a
hybridization of theBroyden–Fletcher–Goldfarb–Shanno (BFGS)methodwith theCG
methods. The convergence analysis of the proposed methods is considered. Numerical
experiments show that our methods outperform the existing ones from [10].

The rest of the paper is organized as follows. In Sect. 2, we elaborate various possi-
bilities to determine the step size and the search directionwhich can be used in defining
various conjugate gradient methods and their combinations. Here, a hybridization of
the CG method and the BFGS method will also be presented. A modification of the
LSCDmethod from [8], termed asMLSCD, is proposed in Sect. 3. Also, the global con-
vergence of theMLSCD method for non-convex functions with the backtracking line
search is approved. In Sect. 4, we combine conjugate gradient parameters of DHSDL
andDLSDLmethods from [10] and propose themodification of these methods, termed
asMMDL. The global convergence of theMMDLmethod, supported by the backtrack-
ing line search, is proved. A new hybrid BFGS-CG search direction, that combines
the search direction of the quasi-Newton BFGSmethod and CGmethods, is proposed
in Sect. 5. The method will be termed as H -BFGS-CG1. The global convergence of
the H -BFGS-CG1 method with the backtracking line search is proved. In Sect. 6, we
report some numerical results and compare the performance of the proposed methods
with some existing methods. Some final conclusions are given in the last section.

2 Preliminaries

Unconstrainedoptimization problems consider the problemofminimizing anobjective
function f : Rn → R

min f (x), x ∈ R
n, (1)

that depends on real variables x ={x1, . . . , xn}without any restrictions on their values.
There are many methods for solving (1). Usually, the objective f is a continuously
differentiable function with its gradient g. The general CG iterative scheme is given
by

xk+1 =xk + tkdk, k =0, 1, . . . , (2)
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where xk is the current iterate, tk is the step size found by one of the line search
methods, dk is the search direction given by next relations

dk := dk := d(βk, gk, dk−1) =
{− g0, k = 0,

− gk + βkdk−1, k ≥ 1,
(3)

where gk = g(xk) and βk is an appropriately defined real scalar, known as the conju-
gate gradient parameter. A number of conjugate gradient iterative methods have been
defined using various modifications of the conjugate gradient direction dk and the
parameter βk . The most popular conjugate gradient parameters βk are surveyed by
next formulas:

βFR
k = ‖gk‖2

‖gk−1‖2 [1], βCD
k = − ‖gk‖2

gTk−1dk−1
[2], βDY

k = ‖gk‖2
yTk−1dk−1

[3],

βHS
k = yTk−1gk

yTk−1dk−1
[4], βPRP

k = yTk−1gk
‖gk−1‖2 [5, 6], βLS

k = − yTk−1gk
gTk−1dk−1

[7],

βDHSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gTk gk−1
∣∣

μ
∣∣gTk dk−1

∣∣ + dT
k−1yk−1

− tk
gTk sk−1

kT
k−1yk−1

[10],

βDLSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gTk gk−1
∣∣

μ
∣∣gTk dk−1

∣∣ − kT
k−1gk−1

− tk
gTk sk−1

dT
k−1yk−1

[10],

(4)

where yk−1 = gk − gk−1, sk−1 = xk − xk−1 and ‖ · ‖ stands for the Euclidean vector
norm.

As usual, the step size tk is determined using the backtracking line search procedure
from [11]. It starts from t = 1, and it reduces the objective function sufficiently in
each iteration. Therefore, we use the following Algorithm 1 from [12] for the inexact
line search which determines tk .

Algorithm 1 The backtracking line search starting from t = 1.
Require: Objective function f (x), the direction dk of the search at the point xk and numbers 0 < σ < 0.5

and β ∈]0, 1[.
1: t = 1.
2: While f (xk + tdk ) > f (xk ) + σ tgTk dk , take t := tβ.
3: Return tk = t .

To combine the best numerical performances of the PRP method and the global
convergence properties of the FR method, Touati–Ahmed and Storey [13] proposed a
hybrid PRP–FR method, which is called the H1 method in [14], using the conjugate
gradient parameter defined as

βH1
k = max

{
0,min

{
βPRP
k , βFR

k

}}
. (5)
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Gilbert and Nocedal in [15] modified (5) to

βk = max
{

− βFR
k ,min

{
βPRP
k , βFR

k

}}
.

A hybrid HS–DY conjugate gradient method was proposed by Dai and Yuan in [16].
This method is termed as the H2 method in [14]. The H2 method is defined by the
conjugate gradient parameter

βH2
k = max

{
0,min

{
βHS
k , βDY

k

}}
. (6)

Numerical results derived in [13,16,17] show better performances of H1 and H2
methods with respect to the PRP method.

We consider hybrid CG algorithms where the search direction dk := dk , k ≥ 1,
from (3) is modified using one of the following two rules:

dk := D(βk, gk, dk−1) = −
(
1 + βk

gTk dk−1

‖gk‖2
)

gk + βkdk−1, (7)

dk := D1(βk, gk, dk−1) =−Bkgk + D(βk, gk, dk−1), (8)

and the conjugate gradient parameter βk is defined using some proper combinations
of the parameters βk from (4) and already defined hybridizations of these parameters.

Following the idea from the descent three term PRP method from [18], Zhang et
al. in [19,20] proposed a modification to the FR method, termed as theMFR method,
using the search direction

dk := D
(
βFR
k , gk, dk−1

)
. (9)

Zhang in [20] also proposed a modified DY method, which is known as the MDY
method and which is defined by the gradient direction

dk := D
(
βDY
k , gk, dk−1

)
. (10)

The MFR and MDY methods possess very useful property

gTk dk =−‖gk‖2. (11)

Further, the MFR and the MDY methods reduce to the FR method and the DY
method, respectively, if the exact line search is used. The MFR method has proven
to be globally convergent for non-convex functions with the Wolfe line search or the
Armijo line search, and it is very efficient in real computations [19].

However, it is not known whether the MDY method converges globally. So, in the
paper [14], the authors replaced βFR

k in (9) and βDY
k in (10) by βH1

k from (5) and βH2
k

from (6), respectively. Then, they defined new hybrid PRP–FR and HS–DY methods,
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which they call the NH1 method and the NH2 method, respectively. These methods
are based upon the search directions

NH1: dk := D
(
βH1
k , gk, dk−1

)
, (12)

NH2: dk := D
(
βH2
k , gk, dk−1

)
. (13)

It is easy to see that the NH1 and the NH2 methods still satisfy (11), which shows that
they are descent methods.

On the other hand, the search direction dk in quasi-Newton methods is obtained as
a solution of the linear algebraic system

Bkdk =−gk, (14)

where Bk is an approximation of the Hessian. The initial approximation is the identity
matrix B0 = I , and subsequent updates Bk are defined by an appropriate formula.
Here we are interested in the BFGS update formula, defined by

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+ ykyTk

sTk yk
, (15)

where sk = xk+1 − xk , yk = gk+1 − gk . The next secant equation must hold:

Bk+1sk = yk, (16)

which is possible only if the curvature condition

sTk yk > 0 (17)

is satisfied.
The three-term hybrid BFGS conjugate gradient method was proposed in [21].

That method uses best properties of both BFGS and CGmethods and defines a hybrid
BFGS-CG method for solving some selected unconstrained optimization problems,
resulting in improvement in the total number of iterations and the CPU time.

3 A Mixed LS-CD Conjugate Gradient Method

We consider the modification of LSCD method, defined in [8] by

βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
,

dk = d
(
βLSCD
k , gk, dk−1

) (18)

123



J Optim Theory Appl (2018) 178:860–884 865

and define the MLSCD method with the search direction

dk :=D
(
βLSCD
k , gk, dk−1

)
. (19)

In general, our idea is to replace dk(β
LSCD
k , gk, dk−1) from [8] with dk =

D(βLSCD
k , gk, dk−1).

Now we give the algorithm of this method.

Algorithm 2 MLSCD method.

Require: A starting point x0, parameters 0 < ε < 1, 0 < δ < 1.

1: Set k = 0 and compute d0 = − g0.

2: If

‖gk‖ ≤ ε and
| f (xk+1) − f (xk )|

1 + | f (xk )| ≤ δ,

STOP; else go to Step 3.

3: (Backtracking) Find the step size tk ∈]0, 1] using Algorithm 1.
4: Compute xk+1 = xk + tkdk .

5: Calculate gk+1, yk = gk+1 − gk and go to Step 6.

6: Calculate

βLS
k+1 = yTk gk+1

−gTk dk
, βCD

k+1 = ‖gk+1‖2
−gTk dk

,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

7: Compute the search direction dk+1 = D(βLSCD
k+1 , gk+1, dk ).

8: Let k := k + 1, and go to Step 2.

3.1 Convergence of the MLSCD Conjugate Gradient Method

First, it is easy to prove the next theorem.

Theorem 3.1 Let βk be any CG parameter. Then, the search direction
dk :=D(βk, gk, dk−1) satisfies

gTk dk = −‖gk‖2. (20)

We are going to prove the global convergence of the MLSCD method under the
following assumptions.

Assumption 3.1 (1) The level set S = {x ∈ R
n| f (x) ≤ f (x0)} is bounded.

(2) The function g is continuously differentiable in some neighborhoodN of S and its
gradient is Lipschitz continuous. Namely, there exists a constant L > 0, such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, for all x, y ∈ N. (21)
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It is well known that if Assumption 3.1 holds, then there exists a positive constant
�, such that

‖gk‖ ≤ �, for all k. (22)

The outcome of the next lemma, often called the Zoutendijk condition, is used to prove
the global convergence of nonlinear CG methods. Originally, it was given in [22].

Lemma 3.1 [22,23]Let the conditions inAssumption3.1be satisfied. Let the sequence
{xk} be generated by the MLSCD method with the backtracking line search. Then it
holds that ∞∑

k=0

‖gk‖4
‖dk‖2 < +∞. (23)

Proof Consider the case where the backtracking line search is used. If tk �= β, then it
is not difficult to show that there is a constant c > 0 such that

tk ≥ c
−gTk dk

‖dk‖2 = c
‖gk‖2
‖dk‖2 . (24)

This together with backtracking line search implies that there exists a constant M > 0
such that

‖gk‖4
‖dk‖2 ≤ M( f (xk) − f (xk+1)). (25)

On the other hand, if tk = ζ then it follows that

‖gk‖4
‖dk‖2 ≤ ‖gk‖2 ≤ ‖dk‖2 ≤ δ−1ζ−2( f (xk) − f (xk+1)).

This also implies (25) with some M = δ−1ζ−2. 	

Theorem 3.2 Let the conditions of Assumption 3.1 hold. Then the sequence {xk},
generated by the MLSCD method with the backtracking line search satisfies

lim inf
k→∞ ‖gk‖ = 0. (26)

Proof In order to gain the contradiction, let us suppose that (26) does not hold. Then,
there exists a constant c > 0 such that

‖gk‖ ≥ c, for all k ≥ 0. (27)

Clearly, (19) can be rewritten into the form

dk = −lkgk + βLSCD
k dk−1, lk = 1 + βLSCD

k
gTk dk−1

‖gk‖2 . (28)
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Now, from (28), it follows that

dk + lkgk = βLSCD
k dk−1,

which further implies

(dk + lkgk)2=
(
βLSCD
k dk−1

)2
,

‖dk‖2 + 2lkdT
k gk + l2k‖gk‖2=

(
βLSCD
k

)2‖dk−1‖2,

and subsequently

‖dk‖2 =
(
βLSCD
k

)2‖dk−1‖2 − 2lkdT
k gk − l2k‖gk‖2. (29)

Notice that
βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
≤ |βCD

k |. (30)

Dividing both sides of (29) by (gTk dk)
2, we get from (30), (20), (27) and the definition

of βCD
k that

‖dk‖2
‖gk‖4 = ‖dk‖2

(gTk dk)2
=

(
βLSCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkdT
k gk

(gTk dk)2
− l2k

‖gk‖2
(gTk dk)2

≤
(
βCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

=
(

‖gk‖2
−gTk−1dk−1

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2
.

(31)

Now, applying (20) in (31), one can verify

‖dk‖2
‖gk‖4 = ‖gk‖4

‖gk−1‖4
‖dk−1‖2
‖gk‖4 + 2lk

‖gk‖2 − l2k
‖gk‖2
‖gk‖4

= ‖dk−1‖2
‖gk−1‖4 + 2lk

‖gk‖2 − l2k
1

‖gk‖2

= ‖dk−1‖2
‖gk−1‖4 − (lk − 1)2

‖gk‖2 + 1

‖gk‖2

≤ ‖dk−1‖2
‖gk−1‖4 + 1

‖gk‖2

≤
k∑
j=0

1

‖g j‖2

≤ k + 1

c2
.
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The last inequalities imply

∑
k≥1

‖gk‖4
‖dk‖2 ≥ c2

∑
k≥1

1

k + 1
= ∞, (32)

which contradicts to (23). The proof is thus complete. 	


4 A Mixed DHSDL-DLSDL Conjugate Gradient Method

In this section, we propose the hybrid MMDL method which is defined by the search
direction dk as follows:

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
, (33)

dk = D
(
βMMDL
k , gk, dk−1

)
. (34)

The computational algorithm of this method is presented in Algorithm 3.

Algorithm 3 MMDL method.

Require: A starting point x0, parameters 0 < ε < 1, 0 < δ < 1, μ > 1.

1: Set k = 0 and compute d0 = −g0.

2: If

‖gk‖ ≤ ε and
| f (xk+1) − f (xk )|

1 + | f (xk )| ≤ δ,

STOP; else go to Step 3.

3: (Backtracking) Find the step size tk ∈]0, 1] using Algorithm 1.
4: Compute xk+1 = xk + tkdk .

5: Calculate gk+1, yk = gk+1 − gk , sk = xk+1 − xk and go to Step 6.

6: Calculate

βDHSDL
k+1 =

∥∥gk+1
∥∥2 − ‖gk+1 ‖

‖gk ‖
∣∣∣gTk+1gk

∣∣∣
μ

∣∣∣gTk+1dk
∣∣∣ + dTk yk

− tk
gTk+1sk

dTk yk
,

βDLSDL
k+1 =

∥∥gk+1
∥∥2 − ‖gk+1 ‖

‖gk ‖
∣∣∣gTk+1gk

∣∣∣
μ

∣∣∣gTk+1dk
∣∣∣ − dTk gk

− tk
gTk+1sk

dTk yk
,

βMMDL
k+1 = max

{
0,min

{
βDHSDL
k+1 , βDLSDL

k+1

}}
.

7: Compute the search direction dk+1 = D(βMMDL
k+1 , gk+1, dk ).

8: Let k := k + 1, and go to Step 2.
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4.1 Convergence of the MMDL Conjugate Gradient Method

We now prove the global convergence of the MMDL method for arbitrary objective
functions.

Theorem 4.1 Let the conditions in Assumption 3.1 hold. Then the sequence {xk}
generated by the MMDL method with the backtracking line search satisfies

lim inf
k→∞ ‖gk‖ = 0. (35)

Proof Assume, on the contrary, that (35) does not hold. Then, there exists a constant
c > 0 such that

‖gk‖ ≥ c, for all k. (36)

Denote

lk = 1 + βMMDL
k

gTk dk−1

‖gk‖2 . (37)

Then we can write
dk + lkgk = βMMDL

k dk−1, (38)

and further

(dk + lkgk)2=
(
βMMDL
k dk−1

)2
,

‖dk‖2 + 2lkdT
k gk + l2k‖gk‖2=

(
βMMDL
k

)2‖dk−1‖2.

Thus,

‖dk‖2 =
(
βMMDL
k

)2‖dk−1‖2 − 2lkdT
k gk − l2k‖gk‖2. (39)

Having in view μ > 1 as well as dT
k gk < 0 and applying the extended conjugacy

condition dT
k yk−1 = tgTk sk−1, t > 0, which was exploited in [9,10], we get

βDHSDL
k+1 =

‖gk+1‖2 − ‖gk+1 ‖
‖gk ‖

∣∣gTk+1gk
∣∣

μ
∣∣gTk+1dk

∣∣ + dT
k yk

− tk
gTk+1sk
dT
k yk

≤
‖gk+1‖2 − ‖gk+1 ‖

‖gk ‖
∣∣gTk+1gk

∣∣
μ

∣∣gTk+1dk
∣∣ + dT

k yk

=
‖gk+1‖2 − ‖gk+1 ‖

‖gk ‖
∣∣gTk+1gk

∣∣
μ

∣∣gTk+1dk
∣∣ + dT

k (gk+1 − gk)

=
‖gk+1‖2 − ‖gk+1 ‖

‖gk ‖
∣∣gTk+1gk

∣∣
μ

∣∣gTk+1dk
∣∣ + dT

k gk+1 − dT
k gk

≤ ‖gk+1‖2
μ

∣∣gTk+1dk
∣∣ + dT

k gk+1 − dT
k gk

≤ ‖gk+1‖2
−dT

k gk
.
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Further,

βDLSDL
k+1 =

‖gk+1‖2 − ‖gk+1 ‖
‖gk ‖

∣∣gTk+1gk
∣∣

μ
∣∣gTk+1dk

∣∣ − dT
k gk

− tk
gTk+1sk
dT
k yk

≤
‖gk+1‖2 − ‖gk+1 ‖

‖gk ‖
∣∣gTk+1gk

∣∣
μ

∣∣gTk+1dk
∣∣ − dT

k gk

≤ ‖gk+1‖2
μ

∣∣gTk+1dk
∣∣ − dT

k gk

≤ ‖gk+1‖2
−dT

k gk
.

Now, we easily conclude

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
≤ ‖gk‖2

−dT
k−1gk−1

. (40)

Next, dividing both sides of (39) by (gTk dk)
2, we get from (20), (40) and (36) that

‖dk‖2
‖gk‖4 = ‖dk‖2

(gTk dk)2
=

(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkdT
k gk

(gTk dk)2
− l2k

‖gk‖2
(gTk dk)2

=
(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

≤
(

‖gk‖2
−gTk−1dk−1

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

= ‖gk‖4
‖gk−1‖4

‖dk−1‖2
‖gk‖4 + 2lk

‖gk‖2 − l2k
‖gk‖2
‖gk‖4

= ‖dk−1‖2
‖gk−1‖4 + 2lk

‖gk‖2 − l2k
1

‖gk‖2

= ‖dk−1‖2
‖gk−1‖4 − (lk − 1)2

‖gk‖2 + 1

‖gk‖2

≤ ‖dk−1‖2
‖gk−1‖4 + 1

‖gk‖2

≤
k∑
j=0

1

‖g j‖2

≤ k + 1

c2
.

(41)

The inequalities in (41) imply
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∑
k≥1

‖gk‖4
‖dk‖2 ≥ c2

∑
k≥1

1

k + 1
= ∞. (42)

Therefore, ‖gk‖ ≥ c causes a contradiction to (23). Consequently, (35) is verified. 	


5 Hybrid Three-Term Broyden–Fletcher–Goldfarb–Shanno Conjugate
Gradient Methods in Solving Unconstrained Optimization Problems

It is known that conjugate gradient methods are better compared to the quasi-Newton
method in terms of the CPU time. In addition, BFGS is more costly in terms of the
memory storage requirements thanCG. On the other hand, the quasi-Newton methods
are better in terms of the number of iterations and the number of function evaluations.
For this purpose, various hybridizations of quasi-Newton methods and CG methods
have been proposed by previous researchers. The new hybrid method which solves
the system of nonlinear equations combining the quasi-Newton method with chaos
optimization was proposed in [24]. In [25], the authors defined a combination of a
quasi-Newton and the Cauchy descent method for solving unconstrained optimiza-
tion problems, which is known as the quasi-Newton SD method. In [21], the authors
proposed a hybrid search direction that combines the quasi-Newton and CGmethods.
It yields a search direction of the hybrid method which is known as the BFGS-CG
method in [21]. The search direction of the method from [21] is defined by

dk =
{

−Bkgk, k = 0,

−Bkgk + η(−gk + βkdk−1), k ≥ 1,

where η > 0 and βk = gTk gk−1

gTk dk−1
. A hybrid direction search between BFGS update of

the Hessian matrix and the conjugate coefficient βk was proposed and investigated in
[26,27]. A HybridDFP-CGmethod for solving unconstrained optimization problems
was presented in [28].

5.1 Three-Term H-BFGS-CG1 Method

Our idea is to consider a three-term hybrid BFGS-CGmethod (called H -BFGS-CG1),
defined by the search direction

dk :=
{−Bkgk, k = 0,

D1

(
βLSCD
k , gk, dk−1

)
, k ≥ 1.

Algorithm 4 defines the corresponding computational procedure of the H -BFGS-
CG1 method.
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Algorithm 4 H-BFGS-CG1 algorithm.

Require: A starting point x0, parameters 0 < ε < 1, 0 < δ < 1.

1: Set k = 0 and compute g0, B0 = I , d0 = −B0g0.

2: If

‖gk‖ ≤ ε and
| f (xk+1) − f (xk )|

1 + | f (xk )| ≤ δ,

STOP; else go to Step 3.

3: (Backtracking) Find the step size tk ∈]0, 1] using Algorithm 1.
4: Compute xk+1 = xk + tkdk .

5: Calculate gk+1, yk = gk+1 − gk , sk = xk+1 − xk and go to Step 6.

6: Calculate

βLS
k+1 = yTk gk+1

−gTk dk
, βCD

k+1 = ‖gk+1‖2
−gTk dk

,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

7: Compute Bk+1 using (15).
8: Compute the search direction dk+1 = D1(β

LSCD
k+1 , gk+1, dk ).

9: Let k := k + 1, and go to Step 2.

5.2 Convergence Analysis of H-BFGS-CG1 Method

The following assumptions are required in this section.

Assumption 5.1 H1: The objective function f is twice continuously differentiable.
H2: The level set S is convex. Moreover, there exist positive constants c1 and c2 such

that

c1‖z‖2 ≤ zTF(x)z ≤ c2‖z‖2,

for all z ∈ R
n and x ∈ S, where F(x) is the Hessian of f .

H3: The gradient g is Lipschitz continuous at the point x∗, that is, there exists the
positive constant c3 satisfying

‖g(x) − g(x∗)‖ ≤ c3‖x − x∗‖,

for all x in a neighborhood of x∗.

Theorem 5.1 [29] Let {Bk} be generated by the BFGS update formula (15), where
sk = xk+1 − xk , yk = gk+1 − gk . Assume that the matrix Bk is symmetric and positive
definite and satisfies (16) and (17) for all k. Furthermore, assume that {sk} and {yk}
satisfy the inequality

‖yk − G∗sk‖
‖sk‖ ≤ εk,
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for some symmetric and positive matrix G∗ and for some sequence {εk} possessing
the property

∞∑
k=1

εk < ∞.

Then

lim
k→∞

‖(Bk − G∗)sk‖
‖sk‖ = 0

and the sequences {‖Bk‖}, {‖B−1
k ‖} are bounded.

Theorem 5.2 (Sufficient descent and global convergence.) Consider Algorithm 4.
Assume that the conditions H1, H2 and H3 in Assumption 5.1 are satisfied as well
as conditions of Theorem 5.1. Then

lim
k→∞ ‖gk‖2 = 0.

Proof It holds

gTk dk = −gTk Bkgk − gTk gk − βLSCD
k gTk dk−1 + βLSCD

k gTk dk−1

≤ −c1‖gk‖2 − ‖gk‖2
= −(c1 + 1)‖gk‖2 ≤ ‖gk‖2, c1 + 1 > 0,

(43)

wherefrom we conclude that the sufficient descent holds.
Further, from backtracking line search condition and (43), it holds

f (xk) − f (xk + tkdk) ≤ −σ tkgTk dk ≤ σ tk‖gk‖2. (44)

Since f (xk) is decreasing and the sequence f (xk) is bounded below by H2, we have
that

lim
k→∞ ( f (xk) − f (xk + tkdk)) = 0. (45)

Hence, (44) and (45) imply

lim
k→∞ σ tk‖gk‖2 = 0.

Now, from tk > 0 and σ > 0, we have

lim
k→∞ ‖gk‖2 = 0,

which was our initial intention. 	
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6 Numerical Experiments

In this section, we present numerical results obtained by testing DHSDL, DLSDL,
MMDL,MLSCD and H -BFGS-CG1methods. The codes used in the tests were written
in the Matlab programming language, and the tests were performed on the computer
Workstation Intel Core i3 2.0 GHz. The number of iterations, number of function
evaluations and CPU time in all tested methods are analyzed.

In the first part, we compare DHSDL, DLSDL, MMDL and MLSCD methods. The
tested 33 functions are selected from [30]. We have considered 10 different numerical
experiments with the number of variables equal to 100, 500, 1000, 2000, 3000, 5000,
7000, 8000, 10,000 and 15,000, for each function in the Tables 1, 2 and 3. Summary
numerical results for DHSDL, DLSDL,MMDL and MLSCD, tested on 33 large-scale
test functions, are presented in Tables 1, 2 and 3.

The stopping conditions for all algorithms are

‖gk‖ ≤ 10−6 and
| f (xk+1) − f (xk)|

1 + | f (xk)| ≤ 10−16.

The backtracking parameters for all algorithms are σ = 0.0001 and β = 0.8, which
means that we accept a small decrease in f predicted by a linear approximation at the
current point.

Performance profiles of a given metric, proposed in [31], is a widely used tool
for benchmarking and comparing the performance of an optimization software on
a large test set. As usual, the number of iterations, number of function evaluations
and the computing time (CPU time) are used as performance measures. Figure 1(left)
shows the performances of compared methods relative to the number of iterations.
Figure 1(right) illustrates the performance of these methods relative to the number of
function evaluations. The top curve corresponds to the method that exhibits the best
performances with respect to the chosen performance profile.

Figure 2 shows the performance of the considered methods relative to the CPU
time.

In Fig. 1(left), it is observable that DHSDL, DLSDL,MMDL andMLSCDmethods
successfully solve all the problems, and theMLSCDmethod is best in 82% of the test
problems compared to other methods.

In Fig. 1(right), it is observable thatDHSDL,DLSDL,MMDL andMLSCDmethods
successfully solve all the problems, and theMLSCDmethod is best in 78% of the test
problems compared to the other methods.

Graphs in Fig. 2 show that DHSDL, DLSDL, MMDL and MLSCD methods suc-
cessfully solve all the problems, and the MLSCD method is best in 73% of the test
problems compared to the other methods.

Consequently, Figs. 1 and 2 show that theMLSCDmethod generates the best result
with respect to all three considered criteria.

Table 4 contains the average number of iterations, the CPU time, and the number
of function evaluations for all 330 numerical experiments.

Based on the results arranged in Table 4, it is observable that the MLSCD method
gives better results compared to DHSDL, DLSDL and MMDL methods. This conclu-
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Table 1 Summary numerical results for the number of iterations

Test function No. of iterations

DHSDL DLSDL MMDL MLSCD

Extended penalty function 1215 1234 1205 1189

Perturbed quadratic function 270,275 221,969 259,193 6776

Raydan 1 function 53,186 49,828 49,015 3321

Raydan 2 function 390 390 56 56

Diagonal 1 function 29,328 27,623 32,947 3548

Diagonal 3 function 57,572 46,091 52,521 4477

Hager function 3185 3205 2962 1614

Generalized tridiagonal 1 function 622 625 622 1385

Extended tridiagonal 1 function 986,304 857 1,250,116 3939

Extended TET function 3320 3416 2005 1042

Diagonal 4 function 8184 8046 7778 1439

Diagonal 5 function 25,070 25,070 40 40

Extended Himmelblau function 1348 1348 1345 1614

Perturbed quadratic diagonal function 1,314,838 832,200 1,162,770 12,650

Quadratic QF1 function 269,831 231,134 262,582 8654

Extended quadratic penalty QP1 function 560 556 585 846

Extended quadratic penalty QP2 function 120,793 115,663 112,874 2863

Quadratic QF2 function 290,961 259,641 280,104 7875

Extended quadratic exponential EP1 function 506 506 501 501

Extended tridiagonal 2 function 1334 1339 1095 748

ARWHEAD function (CUTE) 37,844 34,583 37,508 3159

Almost perturbed quadratic function 273,128 225,250 262,536 6792

LIARWHD function (CUTE) 1,491,307 1,382,551 1,441,296 3498

ENGVAL1 function (CUTE) 558 570 561 1045

Diagonal 6 function 482 486 56 56

COSINE function (CUTE) 6420 13,212 5802 2154

Generalized quartic function 1540 1593 1226 1163

Diagonal 7 function 5163 5163 539 539

Diagonal 8 function 16,366 16,366 577 577

Full Hessian FH3 function 2458 2455 2454 2456

Diagonal 9 function 221,364 158,244 200,892 4654

HIMMELH function (CUTE) 90 90 90 67

Extended Rosenbrock 50 50 50 40

sion is confirmed by performance profiles for the number of iterations, number of
function evaluations and the CPU time.

In order to compare all five methods (DHSDL, DLSDL, MMDL, MLSCD and H -
BFGS-CG1), we are forced to reduce the number of variables due to the bad average
CPU time of the H -BFGS-CG1 method during the testing. For each test problem, we
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Table 2 Summary numerical results for the number of function evaluations

Test function No. of funct. evaluation

DHSDL DLSDL MMDL MLSCD

Extended penalty function 44,466 44,600 44,179 42,846

Perturbed quadratic function 11,355,510 9,214,352 10,909,537 271,818

Raydan 1 function 1,435,352 1,334,819 1,329,884 91,573

Raydan 2 function 970 970 122 122

Diagonal 1 function 1,100,988 1,032,762 1,252,937 136,604

Diagonal 3 function 2,158,912 1,709,338 1,986,158 167,563

Hager function 56,222 56,459 52,392 29,503

Generalized tridiagonal 1 function 10,290 10,568 10,387 23,914

Extended tridiagonal 1 function 5,194,192 5092 6,369,195 19,043

Extended TET function 33,240 34,180 20,100 9510

Diagonal 4 function 158,336 155,132 151,761 28,344

Diagonal 5 function 50,310 50,310 90 90

Extended Himmelblau function 25,572 25,572 25,515 29,640

Perturbed quadratic diagonal function 54,423,738 33,793,696 48,110,702 471,146

Quadratic QF1 function 10,439,311 8,879,307 10,198,882 330,341

Extended quadratic penalty QP1 function 10,551 10,221 11,047 14,320

Extended quadratic penalty QP2 function 3,443,064 3,283,726 3,243,403 82,215

Quadratic QF2 function 13,106,020 11,629,683 12,644,902 347,236

Extended quadratic exponential EP1 function 13,968 13,968 13,776 13,776

Extended tridiagonal 2 function 11,261 11,255 9185 6157

ARWHEAD function (CUTE) 1,670,783 1,521,208 1,661,430 127,659

Almost perturbed quadratic function 11,471,846 9,348,191 11,052,096 273,094

LIARWHD function (CUTE) 71,820,981 66,491,445 69,605,196 156,571

ENGVAL1 function (CUTE) 8182 8815 8406 17,065

Diagonal 6 function 1205 1262 122 122

COSINE function (CUTE) 176,032 485,018 120,982 69,682

Generalized quartic function 18,131 18,004 15,666 10,756

Diagonal 7 function 26,630 26,630 3275 3275

Diagonal 8 function 82,669 82,669 3654 3654

Full Hessian FH3 function 86,912 86,866 86,267 86,714

Diagonal 9 function 9,542,988 6,768,095 8,683,251 197,364

HIMMELH function (CUTE) 190 190 190 2803

Extended Rosenbrock 110 110 110 90

considered 10 different numerical experimentswith the number of variables as follows:
100, 200, 300, 500, 700, 800, 1000, 1500, 2000 and 3000. The stopping conditions
are the same as in previous tests. Also, the values of backtracking parameters for all
methods are identical. Summary numerical results for all five methods, tested on 26
large-scale test functions, are presented in Tables 5, 6 and 7. Figures 3 and 4 show the
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Table 3 Summary numerical results for the CPU time

Test function CPU time

DHSDL DLSDL MMDL MLSCD

Extended penalty function 11.469 11.844 12.141 12.266

Perturbed quadratic function 4703.016 4348.422 4617.125 92.375

Raydan 1 function 430.313 386.734 402.156 47.875

Raydan 2 function 0.656 0.922 0.313 0.219

Diagonal 1 function 1006.297 920.359 1186.688 90.953

Diagonal 3 function 2926.469 2296.703 2776.672 210.828

Hager function 87.500 88.078 80.781 36.203

Generalized tridiagonal 1 function 9.094 9.359 8.422 17.500

Extended tridiagonal 1 function 14,915.734 10.750 17,806.109 45.438

Extended TET function 20.766 20.797 12.313 5.641

Diagonal 4 function 19.422 17.781 17.406 5.359

Diagonal 5 function 83.000 82.625 0.359 0.297

Extended Himmelblau function 3.672 3.750 4.000 6.016

Perturbed quadratic diagonal function 21,479.750 12,615.844 19,096.688 137.219

Quadratic QF1 function 4994.438 3891.266 4762.094 106.500

Extended quadratic penalty QP1 function 2.922 2.828 3.359 4.313

Extended quadratic penalty QP2 function 513.609 499.391 479.750 31.516

Quadratic QF2 function 4023.453 3586.750 3756.359 96.453

Extended quadratic exponential EP1 function 4.281 4.844 4.172 4.188

Extended tridiagonal 2 function 3.031 3.172 2.641 1.984

ARWHEAD function (CUTE) 791.922 720.609 733.859 29.734

Almost perturbed quadratic function 5771.016 4021.641 5214.688 71.000

LIARWHD function (CUTE) 24,076.406 22,565.406 23,170.625 40.625

ENGVAL1 function (CUTE) 2.438 2.703 2.391 6.531

Diagonal 6 function 1.031 1.031 0.172 0.141

COSINE function (CUTE) 29.609 370.688 113.250 33.828

Generalized quartic function 4.813 5.750 6.000 3.156

Diagonal 7 function 17.922 17.094 2.813 2.547

Diagonal 8 function 50.344 48.484 3.000 2.625

Full Hessian FH3 function 20.938 20.391 21.500 20.094

Diagonal 9 function 2539.172 1570.594 2368.234 107.125

HIMMELH function (CUTE) 0.594 0.609 0.547 5.422

Extended Rosenbrock 0.203 0.234 0.250 0.172

performance of these methods relative to the number of iterations, number of function
evaluations and the CPU time, respectively.

In Fig. 3(left), we see that all five methods successfully solve all the problems, and
theMLSCDmethod is best in 42% of the test problems compared to theDHSDL (7%),
DLSDL (7%), MMDL (23%), H -BFGS-CG1 (42%).
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Fig. 1 Performance profiles based on the number of iterations (left) and function evaluations (right)
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Fig. 2 Performance profile based on CPU time

Table 4 Average numerical outcomes for 33 test functions tested on 10 numerical experiments

Average performances DHSDL DLSDL MMDL MLSCD

Number of iterations 166,533.091 111,253.152 164,663.727 2,750.818

Number of function evaluations 5,999,361.576 4,731,348.879 5,685,599.970 92,866.970

CPU time (s) 2683.191 1762.044 2626.269 38.671

In Fig. 3(right), we see that all five methods successfully solve all test problems,
and theMLSCD method is best in 38% of the test problems compared to the DHSDL
(12%), DLSDL (15%), MMDL (30%), H -BFGS-CG1 (34%).

In Fig. 4, we see that all five methods successfully solve all the problems, and the
MLSCD method is best in 50% of the test problems compared to the DHSDL (23%),
DLSDL (12%), MMDL (35%), H -BFGS-CG1 (0%).
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Table 5 Summary numerical results for the number of iterations

Test function No. of iterations

DHSDL DLSDL MMDL MLSCD H -BFGS-CG1

Extended penalty function 1456 1492 1476 1165 13,055

Raydan 1 function 23,050 23,217 22,238 1976 32,385

Raydan 2 function 390 392 51 51 451

Diagonal 2 function 4758 5209 39,601 88,355 137

Diagonal 3 function 22,477 19,693 19,313 2238 15,706

Hager function 1692 1764 1623 1589 7496

Generalized tridiagonal 1
function

623 606 644 1542 7750

Extended tridiagonal 1 function 596,328 827 754,710 3429 330

Extended TET function 3411 3500 2061 1067 2357

Diagonal 5 function 25,070 25,070 40 40 25,043

Extended Himmelblau function 1306 1306 1301 1572 7201

Extended quadratic penalty QP1
function

563 585 599 917 2087

Extended quadratic exponential
EP1 function

504 504 522 522 3187

Extended tridiagonal 2 function 1416 1417 1223 770 40,094

ENGVAL1 function (CUTE) 607 594 589 1126 5486

NONSCOMP function (CUTE) 3,145,116 30,559,018 34,334,110 39,002 8366

Diagonal 6 function 466 470 51 51 514

DIXON3DQ function (CUTE) 23,873,421 20,357,499 23,604,046 70,883 2344

COSINE function (CUTE) 31,671 2875 1389 2487 113

BIGGSB1 function (CUTE) 21,483,005 18,112,456 21,231,110 64,815 2270

Generalized quartic function 1245 1178 979 1310 378

Diagonal 7 function 5454 5454 562 562 43

Diagonal 8 function 17,891 17,891 579 579 13,254

Full Hessian FH3 function 3702 3699 3680 3680 1503

HIMMELH function (CUTE) 90 90 90 68 20

Extended Rosenbrock 50 50 50 40 40

Table 8 contains the average number of iterations, the average CPU time, and the
average number of function evaluations for all 260 numerical experiments.

The results in Table 8 show remarkable progress in reducing the number of iter-
ations and the number of function evaluations using the H -BFGS-CG1 method.
Compared to the DHSDL, DLSDL,MMDL andMLSCD methods, the H -BFGS-CG1
method achieved a lower average number of iterative steps, and also a lower aver-
age number of function evaluations compared to the DHSDL, DLSDL and MMDL
methods.
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Table 6 Summary numerical results for the number of function evaluations

Test function No. of function evaluations

DHSDL DLSDL MMDL MLSCD H -BFGS-CG1

Extended penalty function 39,354 40,173 40,016 33,458 508,837

Raydan 1 function 462,262 465,590 449,908 39,859 1,394,768

Raydan 2 function 970 975 112 112 1192

Diagonal 2 function 9526 10,428 151,063 176,720 2139

Diagonal 3 function 679,418 589,965 585,640 66,898 939,249

Hager function 23,955 25,156 23,148 24,396 222,414

Generalized tridiagonal 1
function

10,239 10,064 10,728 26,171 260,172

Extended tridiagonal 1 function 3,140,661 4912 3,845,293 16,675 5800

Extended TET function 34,150 35,020 20,660 9726 50,201

Diagonal 5 function 50,310 50,310 90 90 50,298

Extended Himmelblau function 24,774 24,774 24,679 28,878 293,347

Extended quadratic penalty QP1
function

9291 9644 9828 14,096 57,012

Extended quadratic exponential
EP1 function

13,734 13,734 14,131 14,131 171,947

Extended tridiagonal 2 function 11,253 11,336 9613 6304 1,220,619

ENGVAL1 function (CUTE) 8520 8769 8258 17,416 140,092

NONSCOMP function (CUTE) 55,575,511 531,637,119 618,136,564 698,515 340,659

Diagonal 6 function 1164 1171 112 112 1372

DIXON3DQ function (CUTE) 194,329,593 161,402,916 193,158,500 597,334 42,659

COSINE function (CUTE) 950,303 105,989 24,834 84,165 9956

BIGGSB1 function (CUTE) 17,4871,424 143,604,806 173,740,005 546,352 41,301

Generalized quartic function 11,696 10,944 10,999 10,978 7574

Diagonal 7 function 27,714 27,714 3370 3370 2209

Diagonal 8 function 89,819 89,819 3238 3238 146,099

Full Hessian FH3 function 120,485 120,291 119,251 119,385 99,571

HIMMELH function (CUTE) 190 190 190 1927 1800

Extended Rosenbrock 110 110 110 90 90

However, if we observe the average CPU time for all fivemethods, we can conclude
that the H -BFGS-CG1method is slow. The conclusion is the same if we look at graphs
arranged in Fig. 4.

From the above, we can give a final conclusion that the MLSCD method is the
most efficient in terms of all three underlying metrics: number of iterations, number
of function evaluations and the CPU time.

7 Conclusions

We propose three efficient conjugate gradient methods for unconstrained optimiza-
tion problems, in which the search directions always satisfy the sufficient descent
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Table 7 Summary numerical results for the CPU time

Test function CPU time

DHSDL DLSDL MMDL MLSCD H -BFGS-CG1

Extended penalty function 1.891 1.922 1.938 1.531 7745.109

Raydan 1 function 17.016 17.906 17.031 2.406 28,628.781

Raydan 2 function 0.141 0.219 0.063 0.063 177.156

Diagonal 2 function 1.688 2.063 15.641 30.453 66.547

Diagonal 3 function 99.109 82.953 81.938 7.750 7598.953

Hager function 5.078 5.297 4.734 4.406 5111.313

Generalized tridiagonal 1
function

1.203 1.359 1.203 3.094 2484.188

Extended tridiagonal 1 function 1099.453 1.531 1369.641 5.047 130.000

Extended TET function 2.313 2.500 1.547 0.906 935.063

Diagonal 5 function 9.656 10.094 0.078 0.109 9798.609

Extended Himmelblau function 0.719 0.719 0.828 0.750 2737.547

Extended quadratic penalty QP1
function

0.594 0.500 0.578 0.656 688.172

Extended quadratic exponential
EP1 function

0.641 0.766 0.719 0.641 1207.734

Extended tridiagonal 2 function 0.641 0.828 0.813 0.328 12,771.406

ENGVAL1 function (CUTE) 0.469 0.578 0.547 0.984 1830.703

NONSCOMP function (CUTE) 732.359 32,109.703 10,681.109 8.969 1647.484

Diagonal 6 function 0.281 0.344 0.078 0.078 210.125

DIXON3DQ function (CUTE) 10,948.516 9275.313 12,082.484 28.031 1292.516

COSINE function (CUTE) 42.063 5.859 2.375 6.125 61.828

BIGGSB1 function (CUTE) 9884.078 8730.078 10,221.297 24.469 891.500

Generalized quartic function 0.719 1.078 0.609 0.594 159.453

Diagonal 7 function 2.297 2.375 0.438 0.469 20.453

Diagonal 8 function 6.375 6.156 0.438 0.500 5002.109

Full Hessian FH3 function 6.922 7.078 6.688 6.781 1117.875

HIMMELH function (CUTE) 0.328 0.391 0.078 0.500 9.141

Extended Rosenbrock 0.078 0.094 0.297 0.141 16.984

condition. These methods are derived using various modifications on the conjugate
gradients direction dk of the form (7) or (8) or using various combinations of scal-
ing parameters βk . Comparative criteria are the number of iterative steps, spent CPU
time, and the number of the function evaluations. Based on the backtracking line
search conditions, we show that our methods are strongly convergent for the uni-
formly convex functions and globally convergent for general functions. Numerical
results illustrate that the proposed methods can outperform the existing ones. Also,
these results show that a hybridization of a quasi-Newton method with a CG method
reduces the number of iterations and the number of function evaluations, but increases
the CPU time.
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Fig. 3 Performance profiles based on the number of iterations (left) and function evaluations (right)
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Fig. 4 Performance profile based on CPU time

Table 8 Average numerical outcomes for 26 test functions tested on 10 numerical experiments

Avg. performances DHSDL DLSDL MMDL MLSCD H -BFGS-CG1

Number of iterations 1,894,067.77 2,659,494.46 3,077,793.73 11,147.54 7,369.62

No. of fun.evaluation 16,557,554.85 32,242,381.50 38,091,936.15 97,707.54 231,206.81

CPU time (s) 879.41 1933.37 1326.66 5.22 3551.57
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