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Abstract This paper is mainly concerned with controlled stochastic evolution equa-
tions of Sobolev type for the Caputo and Riemann–Liouville fractional derivatives.
Some sufficient conditions are established for the existence of mild solutions and opti-
mal state-control pairs of the limited Lagrange optimal systems. The main results are
investigated by compactness of fractional resolvent operator family, and the optimal
control results are derived without uniqueness of solutions for controlled evolution
equations.
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1 Introduction

Fractional calculus is an important generalization of ordinary differentiation and inte-
gration to arbitrary non-integer order, which has been regarded as one of the most
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powerful tools to describe long-memory processes in the last decades. Many phenom-
ena from viscoelasticity, electrochemistry, nonlinear oscillation in mechanics, among
others, can be modeled by differential equations involving fractional derivatives. We
refer the reader to monographs [1,2] for more details. The optimal control is one of the
fundamental topics in the field of mathematical control theory, which plays a key role
in control systems [3,4]. In recent years, solvability and optimal control governed by
fractional differential equations have been considerably studied. For instance, the exis-
tence and optimal control for semi-linear fractional finite time delay evolution systems
of order ]0, 1[were investigated in [2]. Liu andWang [5] considered the solvability and
optimal controls for systems governed by semi-linear impulsive fractional differential
equations of order ]0, 1]. Since noise or stochastic perturbation are unavoidable in real
world [6,7], it is of interest to consider stochastic effects in optimal control problems.
Balasubramaniam and Tamilalagan [8] investigated the solvability and optimal con-
trols for fractional stochastic systems of order in ]0, 1]. Yan and Jia [9] discussed opti-
mal controls for fractional stochastic functional differential equations of order ]1, 2].

On the other hand, Sobolev-type evolution equations find wide applications in
mathematical models such as flow of fluid through fissured rocks, thermodynamics,
propagation of long waves of small amplitude and so on; see for instance [10,11]
and references therein. Sobolev-type fractional equations have attracted great inter-
est recently. There are already some fundamental results on Sobolev-type fractional
equations of order in ]0, 1]. For example, Zhou gave some controllability results on
Sobolev-type fractional systems in [2]. Debbouche et al established some sufficient
conditions for the existence of optimal multi-controls governed by Sobolev-type frac-
tional equations in [12]. Benchaabane and Sakthivel [13] investigated the existence and
uniqueness of mild solutions for a semi-linear Sobolev-type fractional stochastic dif-
ferential equations inHilbert spaces. In above-mentioned topics, the solution operators
of Sobolev-type fractional equationswere obtained via the so-called subordination for-
mulas of a strongly continuous semigroup. However, in order to ensure the existence of
such operators, is necessary an order of fractional integration in ]0, 1[ (for the Caputo
fractional derivative) and the existence and compactness of certain inverse operator.

In this paper,we study the existence andoptimal controls for Sobolev-type fractional
stochastic evolution equations of order in ]1, 2[ in Caputo and Riemann–Liouville
fractional derivatives. We also note that there are few results available on existence
and optimal controls for Sobolev-type fractional stochastic evolution equations of
order in ]1, 2[.

The rest of this paper is organized as follows. Section 2 presents the problem to
study in this paper. Section 3 collects the Preliminaries. Sections 4 and 5 are devoted
to the existence and optimal controls for addressed systems. Section 6 gives some
applications and in Sect. 7 we present some Conclusions.

2 Problem Statement

Themain objective of this paper is to investigate the following Sobolev-type fractional
stochastic evolution equations of the order α ∈]1, 2[
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∂α
t (Ex)(t) = Ax(t) + f (t, x(t)) + B(t)u(t) + �(t, x(t))

dW (t)

dt
, t ∈ I

Ex(0) = Ex0, (Ex)′(0) = Ex1, (1)

and

∂α(Ex)(t) = Ax(t) + f (t, x(t)) + B(t)u(t) + �(t, x(t))
dW (t)

dt
, t ∈ I

E(g2−α ∗ x)(0) = Ex0, (E(g2−α ∗ x))′(0) = Ex1, (2)

where I := [0, b], ∂α
t and ∂α denote, respectively, the Caputo and Riemann–Liouville

fractional derivatives, the state x(t) takes values in a separable Hilbert space H with
inner product 〈·, ·〉H and norm ‖ · ‖H, A and E are two closed linear operators defined
on H with domains D(A) and D(E), respectively. {W (t)}t≥0 is a given K-valued
Wiener process with a finite trace nuclear covariance operator Q ≥ 0, andK is another
separable Hilbert space with inner product 〈·, ·〉K and norm ‖ ·‖K. The control u takes
values from a separable reflexive Hilbert Y , B : I → B(Y,H), f : I × H → H,
� : I ×H → B(K,H), which will satisfy some additional conditions. Here,B(K,H)

denotes the space of all bounded linear operators from K into H. If K = H, then we
just write B(K). The function “g�(·)” and its finite convolution “∗” will be specified
later.

Observe that the change of variable y(t) = Ex(t) allows to write (1) as

∂α
t y(t) = Ly(t) + g(t) + B(t)u(t) + h(t)

dW (t)

dt
, y(0) = y0, y′(0) = y1, where

g(t) = E−1 f (t, x(t)), L = AE−1, h(t) = E−1�(t, x(t))(t) and y0 = Ex0,
D(L) = E(D(A)), y1 = Ex1. Then, formally the system (1) can be studied by
above reduced system. However, this change of variable needs the existence of E−1

as a bounded operator, which in general is restrictive. On the other hand, a com-
mon assumption to deal with the problem (1) is: E, A are closed linear operators;
D(E) ⊂ D(A) and E is bijective; and E−1 is a compact operators. In this case,
−AE−1 is a bounded operator which generates a uniformly continuousC0-semigroup.
See for instance [13,14] and the references therein.

In this paper, we establish sufficient conditions for the existence of mild solutions
to (1) and (2). And then we prove the existence of optimal state-control pairs of the
limited Lagrange optimal systems governed by (1) and (2). The solution operators for
(1) and (2) are directly expressed as fractional resolvent operator family generated
by the pair (A, E) without assuming the existence or compactness of E−1. The main
results are investigated under the mixed Carathéodory and Lipschitz conditions via
compactness of fractional resolvent operator family, and thus, the optimal control
results are derived without uniqueness of solutions for controlled evolution equations.

3 Preliminaries

In this section, we list some basic definitions, notations and results. For more detailed
facts on stochastic and fractional differential equations, see [1,2,15] and references
therein.
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Let (�,F ,P) be a complete probability space equipped with a normal filtration
Ft , t ∈ I satisfying the usual conditions (i.e., right continuous and F0 containing
all P-null sets). For Q-Wiener process on (�,F ,P) with linear bounded covariance
operator Q satisfying tr Q < ∞, we assume that there exists a complete orthonormal
system {en}n≥1 inK, a bounded sequence of non-negative real numbers {λn}n≥1 such
that Qen = λnen , and a sequence {Wn}n≥1 of independent Brownian motions such
that 〈W (t), e〉K = ∑∞

n=1
√

λn〈en, e〉KWn(t), for e ∈ K, t ∈ I and Ft = FW
t ,

where FW
t is the σ -algebra generated by {W (s) : 0 ≤ s ≤ t}. Let L2(�,H) be the

space of all Fb-measurable square mean integrable random variables with values in
the Hilbert space H. We denote by C(I, L2(�,H)) the space of continuous maps
from I into L2(�,H) satisfying the expectation condition sup

t∈I
E‖x(t)‖2 < ∞. Let

C(I,H) be the closed subspace of C(I, L2(�,H)) consisting of measurable and Ft -
adapted H-valued process x ∈ C(I, L2(�,H)) endowed with the norm ‖x‖C =
(

sup
t∈I

E‖x(t)‖2
) 1

2

. Then (C, ‖ · ‖C) is a Banach space.

In what follows, we introduce the admissible control set. Let Y be a separa-
ble reflexive Hilbert space from which the control u takes values. Let L2

F (I, Y )

be the closed subspace of L2
F (I × �, Y ), consisting of all measurable and Ft -

adapted, Y -valued stochastic processes satisfying the conditionE
∫ b
0 ‖u(t)‖2Y dt < ∞,

and furnished with the norm ‖u‖ =
(
E

∫ b
0 ‖u(t)‖2Y dt

) 1
2
. Let P(Y ) be a class of

nonempty closed and convex subsets of Y . We assume that the multivalued map
U : I → P(Y ) is graph measurable, U(·) ⊂ 	, where 	 is a bounded set of Y .
The set Uad := {u ∈ L2

F (I, 	) : u(t) ∈ U(t) a.e. t ∈ I } is called the admissible
control set, and from [16] it follows that Uad �= ∅.

For α > 0,we define gα(t) := tα−1


(α)
, for t > 0 and gα(t) = 0 for t ≤ 0,where 
(·)

is the Gamma function. We also define g0 ≡ δ0, the Dirac delta. For α > 0, n = �α�
denotes the smallest integer n greater than or equal to α. The finite convolution of f
and g is defined by ( f ∗ g)(t) := ∫ t

0 f (t − s)g(s)ds.

Definition 3.1 Let α > 0. The α-order Riemann–Liouville fractional integral of v is
defined by Jαv(t) := (gα ∗ v)(t). Also, we define J 0 as J 0v(t) = v(t).

Definition 3.2 Let α > 0. The α-order Caputo and Riemann–Liouville fractional
derivatives of v are defined, respectively by ∂α

t v(t) := (gn−α ∗ v(n))(t) and ∂αv(t) =
dn

dtn (gn−α ∗ v)(t), where n = �α�.
In the following, we recall some results on fractional resolvent operator family

{SE
α,β(t)}t≥0, which can be found in details in [17,18]. The E-modified resolvent

set of A, ρE (A), is defined by ρE (A) := {λ ∈ C : (λE − A) : D(A) ∩ D(E) →
H is invertible and (λE−A)−1 ∈ B(H, [D(A)∩D(E)])}.The operator (λE−A)−1 is
called the E-resolvent operator of A.A strongly continuous family {T (t)}t≥0 ⊆ B(H)

is said to be of type (M, ω) or exponentially bounded if there exist M > 0 and ω ∈ R,

such that ‖T (t)‖ ≤ Meωt for all t ≥ 0. Note that, without loss of generality, we can
assume ω > 0.
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Definition 3.3 Let A : D(A) ⊆ H → H, E : D(E) ⊆ H → H be closed linear
operators on a Hilbert space H satisfying D(A) ∩ D(E) �= {0}. Let α, β > 0. The
pair (A, E) is said to be the generator of an (α, β)-resolvent family, if there exist
a constant μ ≥ 0 and a strongly continuous function SE

α,β : [0,∞[→ B(H) such

that SE
α,β(t) is exponentially bounded, {λα : Reλ > μ} ⊂ ρE (A), and for all x ∈ H,

λα−β E (λα E − A)−1 x =
∫ ∞

0
e−λt SE

α,β(t)xdt,Reλ > μ. In this case, {SE
α,β(t)}t≥0

is called the (α, β)-resolvent family generated by the pair (A, E).

Definition 3.4 The resolvent family {SE
α,β(t)}t≥0 ⊂ B(H) is said to be compact, if

for every t > 0, the operator SE
α,β(t) is a compact operator.

Lemma 3.1 Let α > 0 and 1 < β ≤ 2. Suppose that {SE
α,β(t)}t≥0 is the (α, β)-

resolvent family of type (M, ω) generated by (A, E). Then, the function t �→ SE
α,β(t)

is continuous in B(H).

Lemma 3.2 If (A, E) generates an (α, β)-resolvent family of type (M, ω) and γ > 0,
then (A, E) also generates an (α, β + γ )-resolvent family of type

( M
ωγ , ω

)
.

Lemma 3.3 Let α > 0, 1 < β ≤ 2 and {SE
α,β(t)}t≥0 be an (α, β)-resolvent family of

type (M, ω) generated by (A, E). Then, the following assertions are equivalent: (i)
SE
α,β(t) is a compact operator for all t > 0; (ii) E(μE − A)−1 is a compact operator

for all μ > ω1/α.

Lemma 3.4 Let 1 < α < 2, and {SE
α,1(t)}t≥0 be the (α, 1)-resolvent family of type

(M, ω) generated by (A, E). Suppose that t �→ SE
α,1(t) is continuous in B(H). Then,

the following assertions are equivalent: (i) SE
α,1(t) is a compact operator for all t > 0;

(ii) E(μE − A)−1 is a compact operator for all μ > ω1/α.

Lemma 3.5 Let
3

2
< α < 2, and {SE

α,α−1(t)}t≥0 be the (α, α −1)-resolvent family of

type (M, ω) generated by (A, E). Suppose that t �→ SE
α,α−1(t) is continuous in B(H).

Then, the following assertions are equivalent: (i) SE
α,α−1(t) is compact for all t > 0;

(ii) E(μE − A)−1 is compact for all μ > ω1/α.

Finally, we recall the following results, which can be found in [19].

Lemma 3.6 If K is a compact subset of a Banach space X, then its convex closure is
compact.

Lemma 3.7 The closure and weak closure of a convex subset of a normed space are
the same.

Lemma 3.8 Let C be a closed, convex and nonempty subset of a Banach space X.
Let operators N1, N2 satisfy that: (i) If u, v ∈ C, then N1u + N2v ∈ C; (ii) N1 is
a contraction; (iii) N2 is compact and continuous. Then, there exists z ∈ C such that
z = N1z + N2z.
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4 Existence of Mild Solutions

In this section, we shall establish some existence results of mild solutions to systems
(1) and (2) under the mixed Carathéodory and Lipschitz conditions. Let us list the
following assumptions.

(A1) The pair (A, E) generates the (α, 1)-resolvent family {SE
α,1(t)}t≥0 of type

(M, ω), E(λα E − A)−1 is compact for all λα ∈ ρE (A) with λ > ω
1
α .

(A2) f : I × H → H satisfies the following conditions: (a) For a.e. t ∈ I , f (t, ·)
is continuous, and for each x ∈ H, f (·, x) is measurable; (b) There exists a
function φ ∈ L1(I,�+) such that E‖ f (t, x)‖2 ≤ φ(t)E‖x‖2,∀t ∈ I, x ∈ H.

(A3) B : I → B(Y,H) is essentially bounded, i.e.B ∈ L∞(I,B(Y,H)).
(A4) The function � : I × H → B(K,H) is continuous and there exists a constant

L� > 0 such that E‖�(t, x) − �(t, y)‖2 ≤ L�E‖x − y‖2, t ∈ I, x, y ∈ H.

(H1) Let 1 < α < 2, and the pair (A, E) generates the (α, α − 1)-resolvent family
{SE

α,α−1(t)}t≥0 of type (M, ω) and the operator E(λα E − A)−1 is compact for

all λα ∈ ρE (A) with λ > ω
1
α .

Definition 4.1 An Ft -adapted stochastic process x : I → H is called a mild solution
to (1), if for each t ∈ I it verifies the following integral equation

x(t) = SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1 +
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, x(s))dW (s)

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)B(s)u(s)ds +
∫ t

0
(gα−1 ∗ SE

α,1)(t − s) f (s, x(s))ds.

Definition 4.2 An Ft -adapted stochastic process x : I → H is called a mild solution
to (2), if for each t ∈ I it verifies the following integral equation

x(t) = SE
α,α−1(t)x0 + (g1 ∗ SE

α,α−1)(t)x1 +
∫ t

0
(g1 ∗ SE

α,α−1)(t − s)�(s, x(s))dW (s)

+
∫ t

0
(g1 ∗ SE

α,α−1)(t − s)B(s)u(s)ds +
∫ t

0
(g1 ∗ SE

α,α−1)(t − s) f (s, x(s))ds.

Theorem 4.1 If conditions (A1)–(A4) hold, then the system (1) has at least one mild
solution on I provided that

10
M2e2ωbb

ω2(α−1)

[
1

2
‖φ‖L1 + L�

]

< 1. (3)

Proof For a constant r > 0, we define Br := {
x ∈ C(I,H) : E‖x(t)‖2 ≤ r, t ∈ I

}
.

We further define the map N := N1 + N2 : C(I,H) → C(I,H) as

(N1x)(t) := SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, x(s))dW (s),
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(N2x)(t) :=
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, x(s)) + B(s)u(s)]ds.

Obviously, the fixed points of N are mild solutions of the system (1). We shall show
that N admits a fixed point. The proof will be given in several steps.
Step 1 There exists a constant r > 0 such that N (Br ) ⊆ Br . Indeed, if it is not true,
then for each r > 0, there exists x ∈ Br , E‖(N x)(t)‖2 > r for some t ∈ I . From the
definition of N , we have

r < E‖(N x)(t)‖2 ≤ 5M2e2ωb
E‖x0‖2 + 5

M2e2ωb

ω2 E‖x1‖2 + 5
M2e2ωbb

ω2(α−1)
r‖φ‖L1

+ 5
M2e2ωb

ω2(α−1)

[

b‖B‖2‖u‖2
L2
F (I,Y )

+ 2L�br + 2
∫ b

0
E‖�(s, 0)‖2ds

]

.

Dividing both sides by r and taking the lower limit as r → ∞, we obtain 1 ≤
10 M2e2ωbb

ω2(α−1)

[ 1
2‖φ‖L1 + L�

]
, which is a contradiction to (3). Thus, there exists r > 0

such that N (Br ) ⊆ Br .

Step 2 N1 is a contraction in Br . In fact, for x, y ∈ Br and t ∈ I , we have

E‖(N1x)(t) − (N1y)(t)‖2 ≤ M2e2ωbb

ω2(α−1)
L� sups∈I E‖x(s) − y(s)‖2. Thus, we have

E‖N1x − N1y‖2 ≤ M2e2ωbb

ω2(α−1)
L�E‖x − y‖2. By (3), N1 is a contraction in Br .

Step 3 N2 is continuous in Br . In fact, let xn, x ∈ Br be such that xn → x in Br as

n → ∞. Then E‖(N2xn)(t) − (N2x)(t)‖2 ≤ M2e2ωbb

ω2(α−1)
4r

∫ t

0
φ(s)ds. Note that the

function s �→ φ(s) is integrable on I . Thus, the Lebesgue-dominated convergence
theorem implies that N2 is continuous in Br .
Step 4 N2 is equicontinuous. Let x ∈ Br , and take 0 ≤ t2 < t1 ≤ b. Then

E‖(N2x)(t1) − (N2x)(t2)‖2

≤ 4E

∥
∥
∥
∥

∫ t1

t2
(gα−1 ∗ SE

α,1)(t1 − s) f (s, x(s))ds

∥
∥
∥
∥

2

+ 4E

∥
∥
∥
∥

∫ t1

0
(gα−1 ∗ SE

α,1)(t1 − s)B(s)u(s)ds

∥
∥
∥
∥

2

+ 4E

∥
∥
∥
∥

∫ t2

0
[(gα−1 ∗ SE

α,1)(t1 − s) − (gα−1 ∗ SE
α,1)(t2 − s)] f (s, x(s))ds

∥
∥
∥
∥

2

+ 4E

∥
∥
∥
∥

∫ t2

0
[(gα−1 ∗ SE

α,1)(t1 − s) − (gα−1 ∗ SE
α,1)(t2 − s)]B(s)u(s)ds

∥
∥
∥
∥

2

:= I1 + I2 + I3 + I4.

By (A2), for the term I1, as t1 → t2, we have I1 ≤ 4M2e2ωb

ω2(α−1) E

∥
∥
∥
∫ t1

t2
f (s, x(s))ds

∥
∥
∥
2

≤ 4M2e2ωbb
ω2(α−1)

∫ t1
t2

φ(s)ds → 0. From (A3), for the term I2, as t1 → t2, we have I2 ≤
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4M2e2ωbb
ω2(α−1) ‖B‖2 ∫ t1

t2
E‖u(s)‖2ds ≤ 4M2e2ωbb

ω2(α−1) ‖B‖2 ∫ t1
t2
E‖u(s)‖2ds → 0. For terms

I3, I4, we get by Hölder’s inequality

I3 ≤ 4t2r
∫ t2

0
‖(gα−1 ∗ SE

α,1)(t1 − s) − (gα−1 ∗ SE
α,1)(t2 − s)‖2φ(s)ds,

I4 ≤ 4t2

∫ t2

0
‖(gα−1 ∗ SE

α,1)(t1 − s) − (gα−1 ∗ SE
α,1)(t2 − s)‖2E‖B(s)u(s)‖2ds.

Note that ‖(gα−1 ∗ SE
α,1)(t1 − ·) − (gα−1 ∗ SE

α,1)(t2 − ·)‖2φ(s) ≤ 4M2e2ωb

ω2(α−1) φ(s)

∈ L1(I,�+), ‖(gα−1 ∗ SE
α,1)(t1 − ·) − (gα−1 ∗ SE

α,1)(t2 − ·)‖2E‖B(s)u(s)‖2
≤ 4M2e2ωb

ω2(α−1) E‖B(s)u(s)‖2 ∈ L1(I,�+), (gα−1 ∗ SE
α,1)(t) = SE

α,α(t) for all t ≥
0 (see Lemma 3.2) and SE

α,α(t) is norm continuous (see Lemma 3.1), we have
(gα−1 ∗ SE

α,1)(t1 − s) − (gα−1 ∗ SE
α,1)(t2 − s) → 0 in B(H) as t1 → t2. By the

dominated convergence theorem, we obtain lim
t1→t2

I3 = 0, lim
t1→t2

I4 = 0.

Step 5 The set V(t) := {(N2x)(t) : x ∈ Br } is relatively compact for each t ∈ I.
In fact, clearly the set V(0) is relatively in H. Let t ∈]0, b] and ε ∈]0, t[, we define
(N ε

2 x)(t) :=
∫ t−ε

0
(gα−1∗ SE

α,1)(t −s)[ f (s, x(s))+B(s)u(s)]ds. The condition (A1)

and Lemma 3.3 imply that (gα−1∗SE
α,1)(t) = SE

α,α(t) is compact for all t > 0. Consid-

eringBu ∈ L2(I,H) for all u ∈ Uad , the setOε := {(gα−1∗SE
α,1)(t −s)[ f (s, x(s))+

B(s)u(s)] : x ∈ Br , 0 ≤ s ≤ t − ε} is compact for all ε > 0. Then, conv(Oε) is also
a compact set by Lemma 3.6. By the mean value theorem for Bochner integrals, we
obtain that (N ε

2 x)(t) ∈ (t −ε)conv(Oε) for all t ∈ I . Thus, the setVε(t) = {(N ε
2 x)(t) :

x ∈ Br } is relatively compact in H for every ε ∈]0, t[. Furthermore, for x ∈
Br , E

∥
∥(N2x)(t) − (N ε

2 x)(t)
∥
∥2 ≤ 2 M2e2ωb

ω2(α−1)

[

r
∫ t

t−ε
φ(s)ds + b‖B‖2‖u‖2

L2
F (I,Y )

ε2
]

.

Since the map s �→ φ(s) belongs to L1([t −ε, t],�+), by the dominated convergence
theorem we have that lim

ε→0
E‖(N2x)(t) − (N ε

2 x)(t)‖2 = 0. So, there are relatively

compact sets arbitrarily close to the set V(t), and V(t) is relatively compact for every
t ∈ I .

As a consequence of Steps 1–5, we deduce that N1 is a contraction in Br and N2
is completely continuous in Br . By Lemma 3.8, there exists a fixed point x(·) for
N1 + N2 in Br . Thus, the system (1) admits a mild solution. ��
Theorem 4.2 Assume that conditions (H1), (A2)–(A4) are satisfied. Then, the system
(2) admits at least one mild solution on I provided that

10
M2e2ωbb

ω2

[
1

2
‖φ‖L1 + L�

]

< 1. (4)

Proof We define the operator N := N1 + N2 as

(N1x)(t) := SE
α,α−1(t)x0 + (g1 ∗ SE

α,α−1)(t)x1

123



566 J Optim Theory Appl (2019) 182:558–572

+
∫ t

0
(g1 ∗ SE

α,α−1)(t − s)�(s, x(s))dW (s),

(N2x)(t) :=
∫ t

0
(g1 ∗ SE

α,α−1)(t − s)[ f (s, x(s)) + B(s)u(s)]ds.

As in the proof of Theorem 4.1, if for each r > 0 there exists x ∈ Br such that

r < E‖(N x)(t)‖2 ≤ 5M2e2ωb
E‖x0‖2 + 5

M2e2ωb

ω
E‖x1‖2 + 5

M2e2ωbb

ω2 r‖φ‖L1

+5
M2e2ωb

ω2

[

‖B‖2‖u‖2
L2
F (I,Y )

b + 2L�br + 2
∫ b

0
E‖�(s, 0)‖2ds

]

,

then dividing by r and taking r → ∞, we obtain 1 ≤ 10 M2e2ωbb
ω2

[ 1
2‖φ‖L1 + L�

]
. In

view of (4), there exists a constant r > 0 such that N (Br ) ⊆ Br . We can show N1
is a contraction in Br as Step 2 in Theorem 4.1. Since SE

α,α−1(t) is norm continuous

(see (H1)) and t �→ (g1 ∗ SE
α,α−1)(t) is also norm continuous by Lemma 3.1, we can

similarly prove that N2(Br ) is equicontinuous. Lemma 3.3 implies the compactness
of (g1 ∗ SE

α,α−1)(t) = SE
α,α(t) for all t > 0. Thus, the set V(t) := {(N2x)(t) : x ∈ Br }

is relatively compact for each t ∈ I . By the Arzela–Ascoli theorem, we can deduce
that N2 is completely continuous. From Lemma 3.8, there exists a fixed point x(·) for
N1 + N2 on Br . Thus, the system (2) admits a mild solution. ��

5 Existence of Optimal Controls

This section is concernedwith the existence of optimal state-control pairs of the limited
Lagrange optimal control problems governed by the systems (1) and (2), respectively.
Themain results are derived via some compactness results of corresponding operators,
and thus the uniqueness of solutions to (1) and (2) is not necessarily needed.

For any u ∈ Uad, let Br be defined as before and S(u) denotes the set of all
mild solutions to the systems (1) or (2) in Br . Let xu ∈ Br denote the mild solution
to the systems (1) or (2) corresponding to the control u ∈ Uad, and consider the
following limited Lagrange problem (LP): Find x0 ∈ Br ⊆ C(I,H) and u0 ∈ Uad
such that for all u ∈ Uad, J (x0, u0) ≤ J (xu, u), where x0 ∈ Br denotes the mild
solution to the systems (1) or (2) related to the control u0 ∈ Uad, and J (xu, u) :=
E

{∫ b
0 L(t, xu(t), u(t))dt

}
.

We remark that under the conditions of Theorems 4.1–4.2, a pair (x(·), u(·)) is
feasible if it verifies the systems (1) or (2) for x(·) ∈ Br , and if (xu(·), u(·)) is
feasible, then xu ∈ S(u) ⊂ Br .

In order to seek results of optimal control, we need the following conditions.

(A5) The function L : I × H × Y → �⋃{∞} satisfies:
(A5.1) The function L : I × H × Y → �⋃{∞} is Borel measurable;
(A5.2) L(t, ·, ·) is sequentially lower semicontinuous onH × Y for a.e. t ∈ I ;
(A5.3) L(t, x, ·) is convex on Y for each x ∈ H and a.e. t ∈ I ;
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(A5.4) There exist constants c ≥ 0, d > 0, ψ is non-negative and ψ ∈ L1(I,�) such
that L(t, x, u) ≥ ψ(t) + cE‖x‖2 + d‖u‖2Y .

(A6) t �→ SE
α,1(t) is continuous in B(H).

(H2) Let 3
2 < α < 2, and the pair (A, E) generates the (α, α − 1)-resolvent family

{SE
α,α−1(t)}t≥0 of type (M, ω). Assume that the operator E(λα E − A)−1 is

compact for all λα ∈ ρE (A) with λ > ω
1
α and t �→ SE

α,α−1(t) is continuous in
B(H).

Remark 5.1 Conditions (A1), (A6) and Lemma 3.4 imply that SE
α,1(t) is compact for

all t > 0. According to Lemma 3.5, SE
α,α−1(t) is also compact for all t > 0 under the

condition (H2).

Taking into account the proofs of Lemma 3.2 and Corollary 3.3 of Chapter 3 in [3],
we have the following similar results.

Lemma 5.1 Assume that SE
α,α(t) is compact for all t > 0. Then, the operator �

by (�u)(·) =
∫ ·

0
SE
α,α(· − s)B(s)u(s)ds, ∀u(·) ∈ Uad ⊂ L2

F (I, Y ) is compact.

Moreover, if un ∈ Uad converges weakly to u as n → ∞ in L2
F (I, Y ), then �un → �u

as n → ∞.

Theorem 5.1 Assume that conditions (A1)–(A6) and (3) hold. Then, the problem (LP)
governed by (1) admits at least one optimal feasible pair.

Proof We define J (u) = inf
xu∈S(u)

J (xu, u),∀u ∈ Uad. If the set S(u) admits finite

elements, there exists some x̃u ∈ S(u) such that J (x̃u, u) = inf
xu∈S(u)

J (xu, u) = J (u).

If the set S(u) admits infinite elements and inf
xu∈S(u)

J (xu, u) = +∞, there is nothing

to prove. Now, we assume that J (u) = inf
xu∈S(u)

J (xu, u) < +∞. By (A5), we have

J (u) > −∞. We now divide the proof into several steps.
Step 1By the definition of the infimum, there exists a sequence {xu

n } ⊆ S(u) satisfying
J (xu

n , u) → J (u) as n → ∞. Considering {xu
n , u} as a sequence of feasible pairs, we

have

xu
n (t) = SE

α,1(t)x0 + (g1 ∗ SE
α,1)(t)x1 +

∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, xu
n (s))dW (s)

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, xu
n (s)) + B(s)u(s)]ds, t ∈ I. (5)

Step 2 We now show that there exists some x̃u ∈ S(u) such that J (x̃u, u) =
inf

xu∈S(u)
J (xu, u) = J (u). To do this, we first prove that for each u ∈ Uad, the set

{xu
n }n∈N is relatively compact in C(I,H). Note that
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xu
n (t) = SE

α,1(t)x0 + (g1 ∗ SE
α,1)(t)x1 +

∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, xu
n (s))dW (s)

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, xu
n (s)) + B(s)u(s)]ds

:= I1xu
n + I2xu

n + I3xu
n + I4xu

n .

From (A1), (A6), Lemmas 3.3–3.4 and Remark 5.1, and analogously to Steps 3–5
in Theorem 4.1, we can similarly obtain that {I1xu

n }n∈N, {I2xu
n }n∈N, {I3xu

n }n∈N and
{I4xu

n }n∈N are all precompact subsets of C(I,H). Consequently, the set {xu
n }n∈N is

precompact in C(I,H) for u ∈ Uad . Without loss of generality, we may assume that
xu

n → x̃u in C(I,H) for u ∈ Uad as n → ∞. Let n → ∞ in both sides of (5), by the
Lebesgue-dominated convergence theorem, we obtain that

x̃u(t) = SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1 +
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, x̃u(s))dW (s)

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, x̃u(s)) + B(s)u(s)]ds, t ∈ I,

which implies that x̃u ∈ S(u). Now we claim that J (x̃u, u) = inf
xu∈S(u)

J (xu, u) =
J (u) for any u ∈ Uad. In fact, owing to C(I,H) is continuously embedded in L1(I,H),
through the definition of a feasible pair, the assumption (A5) andBalder theorem ([20]),
imply

J (u) = lim
n→∞

∫ b

0
L(t, xu

n (t), u(t))dt ≥
∫ b

0
L(t, x̃u(t), u(t))dt = J (x̃u, u) ≥ J (u),

i.e. J (x̃u, u) = J (u). This shows that J (u) attains its minimum at x̃u ∈ C(I,H) for
each u ∈ Uad .
Step 3 It is shown that there exists u0 ∈ Uad such that J (u0) ≤ J (u) for all u ∈ Uad.
If inf

u∈Uad
J (u) = +∞, then there is nothing to prove. Assume that inf

u∈Uad
J (u) < +∞.

Similarly to Step 1, we can prove that inf
u∈Uad

J (u) > −∞, and there exists a sequence

{un} ⊆ Uad such that J (un) → inf
u∈Uad

J (u) as n → ∞. Since {un} ⊆ Uad, {un}
is bounded in L2

F (I, Y ) and L2
F (I, Y ) is a reflexive Banach space, there exists a

subsequence still denoted by {un} weakly convergent to some u0 ∈ L2
F (I, Y ) as

n → ∞. Note that Uad is closed and convex, and by Lemma 3.7 it follows that
u0 ∈ Uad .

Suppose x̃un is the mild solution to Eq. (1) related to un , where J (un) attains its
minimum. Then, (x̃un , un) is a feasible pair and verifies the following integral equation
for t ∈ I ,

x̃un (t) = SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1 +
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, x̃un (s))dW (s)
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+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, x̃un (s)) + B(s)un(s)]ds

:= �1 x̃un (t) + �2 x̃un (t) + �3 x̃un (t) + �4 x̃un (t) + �5un(t). (6)

By (A1), Lemmas 3.3–3.4, and analogously to Steps 3–5 in Theorem 4.1, we can
similarly obtain that the sets {�1 x̃un }n∈N, {�2 x̃un }n∈N, {�3 x̃un }n∈N, {�4 x̃un }n∈N are
all relatively compact subsets of C(I,H). Furthermore, by Lemma 5.1,�5un → �5u0

in C(I,H) as n → ∞ and �5 is compact. Thus, the set {x̃un } ⊂ C(I,H) is relatively
compact, and there exists a subsequence still denoted by {x̃un }, and x̃u0 ∈ C(I,H)

such that x̃un → x̃u0 in C(I,H) as n → ∞. If n → ∞ in both sides of (6), then we
have

x̃u0(t) = SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1 +
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)�(s, x̃u0(s))dW (s)

+
∫ t

0
(gα−1 ∗ SE

α,1)(t − s)[ f (s, x̃u0(s)) + B(s)u0(s)]ds, t ∈ I,

which implies that (x̃u0 , u0) is a feasible pair. Since C(I,H) is continuously embedded
in L1(I,H), by the assumption (A5) and Balder theorem ([20]), we have

inf
u∈Uad

J (u) = lim
n→∞

∫ b

0
L(t, x̃un (t), un(t))dt ≥

∫ b

0
L(t, x̃u0(t), u0(t))dt

= J (x̃u0 , u0) ≥ inf
u∈Uad

J (u).

Thus, J (x̃u0 , u0) = J (u0) = inf
xu0∈S(u0)

J (xu0 , u0). Moreover, J (u0) = inf
u∈Uad

J (u),

i.e., J attains its minimum at u0 ∈ Uad . This finishes the proof. ��
Theorem 5.2 Assume that conditions (H2), (A2)–(A5) and (4) hold. Then, the prob-
lem (LP) governed by (2) admits at least one optimal feasible pair.

Proof According toRemark 5.1, SE
α,α−1(t) is compact for all t > 0 under the condition

(H2). Since the operator E(λα E − A)−1 is compact for all λα ∈ ρ(A) with λ > ω
1
α

(see (H2)), the operator (g1 ∗ SE
α,α−1)(t) = SE

α,α(t) is compact for all t > 0 by Lemma
3.3. Considering Lemma 5.1, we can proceed the remainder analogously to that of
Theorem 5.1. We omit the details here. ��

6 Some Applications

In this section, we present some applications. We consider the following fractional
stochastic evolution equations of Sobolev type with 1 < α < 2, t ∈ I

∂α
t (Ex)(t) = Ax(t) + J 2−α[ f (t, x(t)) + B(t)u(t)] + �(t, x(t))

dW (t)

dt
,
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Ex(0) = Ex0, (Ex)′(0) = Ex1, u ∈ Uad, (7)

and

∂α(Ex)(t) = Ax(t) + J 2−α[ f (t, x(t)) + B(t)u(t)] + �(t, x(t))
dW (t)

dt
,

(E(g2−α ∗ x))(0) = Ex0, (E(g2−α ∗ x))′(0) = Ex1, u ∈ Uad. (8)

Under the condition (A1), the mild solution to Eq. (7) is given by

x(t) = SE
α,1(t)x0 + (g1 ∗ SE

α,1)(t)x1 +
∫ t

0
(g1 ∗ SE

α,1)(t − s) f (s, x(s))ds

+
∫ t

0
(g1 ∗ SE

α,1)(t − s)B(s)u(s)ds +
∫ t

0
(g1 ∗ SE

α,1)(t − s)�(s, x(s))dW (s)

and by condition (H1), the mild solution of Eq. (8) can be written as

x(t) = SE
α,α−1(t)x0 + (g1 ∗ SE

α,α−1)(t)x1 +
∫ t

0
(g3−α ∗ SE

α,α−1)(t − s)�(s, x(s))dW (s)

+
∫ t

0
(g3−α ∗ SE

α,α−1)(t − s)[ f (s, x(s)) + B(s)u(s)]ds.

Since
∥
∥
∥(g1 ∗ SE

α,1)(t)
∥
∥
∥ ≤ Meωt

ω
, and

∥
∥
∥(g3−α ∗ SE

α,α−1)(t)
∥
∥
∥ ≤ Meωt

ω3−α
, we can prove

the following results similarly to Theorems 5.1–5.2.

Lemma 6.1 Under conditions (A1)–(A6) and (4), the problem (LP) governed by Eq.
(7) admits at least one optimal feasible pair.

Lemma 6.2 If 10 M2e2ωbb
ω2(3−α)

[
1

2
‖φ‖L1 + L�

]

< 1 and (H2), (A2)–(A5) hold, then the

problem (LP) governed by (8) has at least one optimal feasible pair.

Example 6.1 Consider the following fractional system of order α ∈]1, 2[

∂α
t

[

x(t, ξ) − ∂2x

∂ξ2
(t, ξ)

]

= ∂4x

∂ξ4
(t, ξ) + f (t, x(t, ξ))

+ u(t, ξ) + σ(t, x(t, ξ))
dW (t)

dt
,

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],
x(0, ξ) = x0(ξ), ξ ∈ [0, π ],

xt (0, ξ) = x1(ξ), ξ ∈ [0, π ], (9)

where f (t, x(t, ξ)) := e−t x(t,ξ)
(360+t)(1+|x(t,ξ)|) , σ (t, x(t, ξ)) := e−t x(t,ξ)

(720+t)(1+|x(t,ξ)|) . Take
J (x, u) := E

{∫ π

0

∫ 1
0 |x(t, ξ)|2dtdξ + ∫ π

0

∫ 1
0 |u(t, ξ)|2dtdξ

}
, and x(·)(ξ) := x(·, ξ),
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B(·)u(·)(ξ) := u(·, ξ). Set H = Y := L2[0, π ], W (t) is a standard Brownian
motion in H defined on a stochastic space (�,F ,P). Define A : D(A) ⊂ H → H
and E : D(E) ⊂ H → H, respectively by Ax := − ∂4x

∂ξ4
and Ex := x − ∂2x

∂ξ2
,

with domain D(E) = D(A) := {
x ∈ H : x ∈ H4([0, π ]), x(t, 0) = x(t, π) = 0

}
.

It is known that A has discrete spectrum with eigenvalues −n4, n ∈ N, with

corresponding eigenvectors xn(s) :=
√

2
π
sin(ns). Furthermore, {xn : n ∈ N} is

an orthonormal basis for H, and operators A, E can be expressed by (see [10])
Ax = −∑∞

n=1 n4〈x, xn〉xn), and Ex = ∑∞
n=1(1 + n2)〈x, xn〉xn . According to

[17, Example 6.3], we conclude that (A, E) generates the (α, 1)-resolvent family
{SE

α,1(t)}t≥0 given by SE
α,1(t)x = ∑∞

n=1 hn
α,1(t)〈x, xn〉xn, for all x ∈ H, where

hn
α,1(t) := eα,1

(
− n4

n2+1
tα

)
, and eα,1(z) := ∑∞

k=0
zk


(αk+1) . Moreover (see also [17,

Example 6.3]), the operator E(λα E − A)−1 is compact on H, the operator SE
α,1(t)

is norm continuous and satisfies
∥
∥
∥SE

α,1(t)x
∥
∥
∥ ≤ 2‖x‖ for each x ∈ H. Thus, SE

α,1(t)

is of type (2, 1), i.e. M = 2 and ω = 1. Let I := [0, 1] and �(t, x) := σ(t, x).
Then, Problem (9) can be written in the abstract form (1). Note that in this case
‖φ‖L1 ≤ 1

360 , L� ≤ 1
720 , b = ω = 1, and thus 10 M2e2ωbb

ω2(α−1)

[ 1
2‖φ‖L1 + L�

] ≤ e2
9 < 1.

According to Theorems 4.1 and 5.1, there exists a mild solution to (9), and its corre-
sponding limited Lagrange problem admits at least one optimal feasible pair.

7 Conclusions

In this paper, some sufficient conditions are established for the existence of mild
solutions and optimal state-control pairs to Sobolev-type fractional stochastic evolu-
tion equations of order α ∈]1, 2[. The main results are investigated under the mixed
Carathéodory and Lipschitz conditions via compactness of fractional resolvent oper-
ator family, and thus the optimal control results are derived without uniqueness of
solutions for addressed evolution equations. We propose to investigate the existence
of solutions to Sobolev-type fractional stochastic equations by the uniform continuity
or some decay properties of the resolvent family in future works.
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