
J Optim Theory Appl (2018) 178:591–613
https://doi.org/10.1007/s10957-018-1312-7

Stability of Local Efficiency in Multiobjective
Optimization

Sanaz Sadeghi1 · S. Morteza Mirdehghan1

Received: 4 July 2017 / Accepted: 15 May 2018 / Published online: 4 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Analyzing the behavior and stability properties of a local optimum in an
optimization problem, when small perturbations are added to the objective functions,
are important considerations in optimization. The tilt stability of a local minimum in
a scalar optimization problem is a well-studied concept in optimization which is a
version of the Lipschitzian stability condition for a local minimum. In this paper, we
define a new concept of stability pertinent to the study of multiobjective optimization
problems.We prove that our new concept of stability is equivalent to tilt stability when
scalar optimizations are available.We then use our new notions of stability to establish
new necessary and sufficient conditions on when strict locally efficient solutions of a
multiobjective optimization problem will have small changes when correspondingly
small perturbations are added to the objective functions.

Keywords Multiobjective programming · Variational analysis · Tilt stability ·
Weighted sum scalarization

Mathematics Subject Classification 90C29 · 90C31 · 49K40

Communicated by Fabián Flores-Bazán.

B S. Morteza Mirdehghan
mirdehghan@shirazu.ac.ir

Sanaz Sadeghi
s.sadeghi@shirazu.ac.ir

1 Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-018-1312-7&domain=pdf
http://orcid.org/0000-0003-1033-1762


592 J Optim Theory Appl (2018) 178:591–613

1 Introduction

Analyzing the sensitivity and stability of an optimal solution when small perturbations
are introduced into an optimization problem is an important topic in optimization. In
particular, the Lipschitzian stability of locally optimal solutions with respect to small
perturbations is a well-studied concept in optimization problems. Several variants of
Lipschitzian stability have been studied in [1–5]. Awell-known notion of Lipschitzian
stability is the tilt stability of a local minimizer. Tilt stability is studied by Poliquin
and Rockafellar in the context for scalar optimization in [6]. This notion of stability
has been extensively studied by several other researchers in [6–10]. These researchers
have paved the way to identify necessary and sufficient conditions for the tilt stability
status of locally optimal solutions to an optimization problem. The second-order sub-
differential introduced by Mordukhovich in [11,12] is similarly employed as a tool
for constructing exact criteria to identify the tilt stability status of local minimizers in
[6–10].

Robust optimization represents another popular and practical branch of approaches
to optimization problems which deal with uncertainty in their parameters. Robustness
has been studied from several differing points of view in [13–22]. Considering the
multiple notions of characterizing robustness in optimization problems, in this article
we benefit from the definition given in [19,20]. This definition states that an efficient
point of a multiobjective optimization problem is robust if it remains efficient when
small linear terms are added to the objective functions.

In Sect. 2, we review preliminary concepts, which are assumed in our theories and
discussions later in the article. We next introduce a new notion of stability in multiob-
jective optimization in Sect. 3 with respect to tilt stability in scalar optimization. We
then obtain relations between our new concept of stability and the concept of tilt sta-
bility. Namely, we show that a tilt-stable local minimizer of the weighted sum problem
is a stable locally efficient point of the multiobjective optimization problem. We also
present sufficient conditions for stable locally efficient points in our methods based
on a few specific properties of the objective functions including linearity, convexity,
differentiability, and Lipschitzianity. Furthermore, we determine new necessary and
sufficient conditions for robust efficient solutions in our stability analysis. Finally, we
demonstrate the significance of the new contributions to stability theory we introduced
here and clarify our methodology by elaborating on a short selection of representative
examples of our work. We conclude the article in Sect. 4 with some key remarks and
suggestions for future research which builds on the new results we have proved in this
article.

2 Preliminaries

In this section, we review some basics, notation, and preliminary results in variational
analysis, scalar optimization, and multiobjective optimization which we will need to
discuss and prove our new results in Sect. 3. For more careful and detailed treatments
of these topics, we suggest Borwein and Zhu [23], Rockafellar and Wets [5], and
Mordukhovich [4,24].
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2.1 Notation, Definitions and Conventions

In mathematical analysis, for any δ > 0 we define the δ-neighborhood of a point
x̄ ∈ R

n to be the set

B(x̄, δ) = {x ∈ R
n : ‖x − x̄‖ < δ}.

For any set Ω , we denote the closure of Ω by cl(Ω). The conical hull (or positive
hull) of the set Ω is the cone defined by

Pos(Ω) :=
{
x ∈ R

n : ∃m ∈ N; x =
m∑
i=1

λi xi , λi ≥ 0, xi ∈ Ω, i = 1, . . . ,m

}
.

For any collection of convex sets Ω1, . . . ,Ωk ⊆ R
n , we clearly have that

Pos

(
k⋃

i=1

Ωi

)
=

{
k∑

i=1

λi xi : λi ≥ 0, xi ∈ Ωi , i = 1, 2, . . . , k

}
.

Weadopt the following conventions to compare the order of any twovectors x, y ∈ R
n :

x < y ⇐⇒ xi < yi ∀i = 1, 2, . . . , n,

x ≤ y ⇐⇒ xi ≤ yi ∀i = 1, 2, . . . , n, x �= y,
x � y ⇐⇒ xi ≤ yi ∀i = 1, 2, . . . , n.

Suppose that ‖.‖ is a vector norm on R
n and R

p; then, the mapping |‖.|‖ on R
p×n

|‖A|‖ := max‖x‖=1‖Ax‖

is called the induced matrix norm corresponding ‖.‖ acting on the vector space Rp×n

of all real p × n matrices.
In this paper, we primarily consider the induced matrix norm corresponding to the

infinity norm ‖.‖∞ defined by

|‖A‖|∞ := max1≤i≤p

∑n

j=1
|ai j |.

If we define the standard matrix γ -norm on R
p×n by

‖A‖γ =

⎛
⎜⎜⎝ ∑

1≤i≤p
1≤ j≤n

|ai j |γ
⎞
⎟⎟⎠

1
γ

,
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for 1 ≤ γ < ∞, then by norm equivalence there are always positive constants C1(γ )

and C2(γ ) such that

C1(γ )‖A‖γ ≤ |‖A‖|∞ ≤ C2(γ )‖A‖γ , ∀A ∈ R
p×n .

Thus norm equivalence guarantees that our results considered in this article are suitable
in contexts where other norms are more natural choices for analysis.

2.2 Some Basics of Variational Analysis

Consider the following optimization problem

min
x∈X g(x), (1)

where g : Rn → R is a single real-valued function and X ⊆ R
n is the set of feasible

solutions of (1). Let

δX (x) =
{
0, x ∈ X,

∞, x /∈ X.

The optimization problem in (1) is equivalent to finding an extended real-valued func-
tion f : Rn −→ R as follows:

min f (x) = g(x) + δX (x). (2)

The following proposition expresses a necessary and sufficient condition for mini-
mality of x̄ ∈ R

n under some key assumptions of the above optimization problem.

Proposition 2.1 Let f : Rn → R be differentiable at x̄ . If there is some δ > 0 such
that x̄ is a minimum solution of the problem

min f (x) s.t. x ∈ B(x̄, δ), (3)

then ∇ f (x̄) = 0. Conversely, if f (x) is convex on B(x̄, δ) and ∇ f (x̄) = 0, then x̄ is
an optimal solution of Problem (3).

Proof We refer the reader to the statement of Theorem 4.1.2 and its corollary proved
in [25], which we do not reproduce here. ��

In scalar optimization, studying the Lipschitzian stability of locally optimal solu-
tions when a small-sized linear term is added to the objective function is of essential
importance in applications. The tilt stability of local minimizers is a version of the
Lipschitzian stability introduced by Poliquin and Rockafellar in [6] in the following
form:
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Definition 2.1 (Tilt Stability of Local Minimizers) x̄ is a tilt-stable locally minimum
point of the function f : Rn → R if and only if f (x̄) is finite and there exist δ > 0
and ε > 0 such that the mapping

M : v �→ argmin
‖x−x̄‖≤δ

[ f (x) − f (x̄) − 〈v, x − x̄〉] ,

is single-valued and Lipschitzian for any v ∈ R
n satisfying ‖v‖ < ε withM(0) = {x̄}.

Proposition 2.2 If the mapping M in Definition 2.1 has Lipschitzian behavior for any
v ∈ R

n with ‖v‖ < ε, then the mapping

m(v) = { f (x) : x ∈ M(v)}, m : B(0, ε) ⊆ R
n �→ R,

has Lipschitzian behavior as well.

Proof Suppose that the mapping M is single-valued and Lipschitzian for any v ∈ R
n

with ‖v‖ < ε. For two arbitrary vectors v1 and v2 with ‖v1‖, ‖v2‖ < ε, let x1 ∈ M(v1)

and x2 ∈ M(v2) with x1 �= x2. Since the mapping M is single-valued, we have

f (x1) + vt1x1 < f (x2) + vt1x2,
f (x2) + vt2x2 < f (x1) + vt2x1.

Without any loss of generality, suppose that f (x1) ≤ f (x2). By this inequality and
the Lipschitzian property of the mapping M with respect to the constant γ we have

|m(v2) − m(v1)| = | f (x2) − f (x1)| = f (x2) − f (x1)

< v2(x1 − x2) < ε‖x1 − x2‖ ≤ εγ ‖v2 − v1‖.

��
Most of the properties presented in this article are constructed from the principles
of generalized differentiation in variational analysis. We next present the notions of
first-order subdifferentials for extended real-valued functions.

In particular, let f : Rn → R and f (x̄) be finite. The regular subdifferential of the
extended real-valued function f at x̄ is defined as

∂̂ f (x̄) :=
{
v ∈ R

n : lim inf
x→x̄

f (x) − f (x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0

}
.

Correspondingly, theMordukhovich subdifferential of this f at x̄ is defined as follows:

∂ f (x̄) := lim sup
x→x̄

∂̂ f (x).

If f is a smooth function, thenwe can see that ∂̂ f (x̄) = ∂ f (x̄) = ∇ f (x̄). If in addition
f is convex, then

∂̂ f (x̄) = ∂ f (x̄) = {v ∈ R
n : f (x) ≥ f (x̄) + 〈v, x − x̄〉}.
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We remark that if f is a nonsmooth andnonconvex function,wemayhave that ∂̂ f (x̄) =
∅.

For aC2-smooth function f (x) at point x = x̄ , a necessary and sufficient condition
for x̄ being a tilt-stable local optimum has been established by [Prop. 1.2, 6] in the
form of the next proposition. Then according to this proposition, the tilt stability of
f (x) at x = x̄ reduces to the positive definiteness of the Hessian matrix ∇2 f (x̄),
where f is a C2-smooth function.

Proposition 2.3 Let f be a C2-smooth function. If ∇ f (x̄) = 0, then x̄ is a tilt-stable
local minimum of f if and only if ∇2 f (x̄) is positive definite.

2.3 Some Basics of Multiobjective Optimization

Consider the following multiobjective programming (MOP) problem:

min f (x) = ( f1(x), . . . , f p(x)) s.t. x ∈ X, (4)

where X ⊆ R
n is the feasible set and fi (x), i = 1, 2, . . . , p, are the objective functions

of the aboveMOP problem. Usually, there exist conflicts among objective functions in
their targets then, usually, there does not exist any feasible solution of anMOPproblem
that optimizes all objective functions. Therefore, the notions of efficient solutions and
weakly efficient solutions are introduced in MOP to replace optimal solutions.

Definition 2.2 x ∈ X is a (locally) strictly efficient solution of Problem (4) iff (for
some δ > 0) there is no other (x ∈ X ∩ B(x̄, δ), x �= x̄) x ∈ X , x �= x such that
f (x) � f (x).

Definition 2.3 x ∈ X is a (locally) Pareto efficient solution of Problem (4) iff (for
some δ > 0) there is no other (x ∈ X ∩ B(x̄, δ)) x ∈ X such that f (x) ≤ f (x).

Definition 2.4 x ∈ X is a (locally) weakly efficient solution of Problem (4) iff (for
some δ > 0) there is no other (x ∈ X ∩ B(x̄, δ)) x ∈ X such that f (x) < f (x).

We define sets XSE , XE , and XWE as the sets of strictly, Pareto, andweakly efficient
solutions of (4), respectively.

Remark 2.1 Definitions 2.2, 2.3, and 2.4 imply that each strictly efficient solution is a
Pareto efficient solution and each Pareto efficient solution is a weakly efficient solution
but the reverses are not necessarily true.

The weakly efficient, Pareto efficient, and strictly efficient solutions of Problem (4)
can be found by solving the following single-objective optimization problem:

min
p∑

k=1

λk fk(x) s.t. x ∈ X, (5)

where λk ≥ 0, k = 1, 2, . . . , p, and
∑p

k=1 λk = 1. The above single-objective
optimization problem is called the weighted sum scalarization of the MOP problem
(4).
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Proposition 2.4 Suppose that x0 is an optimal solution of the weighted sum optimiza-
tion problem (5) with λ ∈ R

p
≥. The following statements hold.

1. If λ ∈ R
p
≥, then x0 ∈ XwE .

2. If λ ∈ R
p
>, then x0 ∈ XE .

3. If λ ∈ R
p
≥ and x0 is a unique optimal solution of (5), then x0 ∈ XSE ,

where Rp
≥(>) = {x = (x1, x2, . . . , xp) �= 0 : x ≥ (>) 0}.

Conversely, let all fi , i = 1, 2, . . . , p, be convex functions and X be a convex set.
If x̄ ∈ XWE , then there is λ = (λ1, . . . , λp) ∈ R

p
≥ such that x̄ is an optimal solution

of Problem (5).

Proof Refer to [26]. ��

3 A New Concept of Stability in Multiobjective Optimization

In this section, we will introduce a new concept of the stability and its properties in
multiobjective optimization. Consider the multiobjective optimization problem (4),
where fk : X ⊆ R

n → R, k = 1, 2, . . . , p, are real-valued objective functions. Using
the indicator function δX (x), (4) is represented as follows:

min F(x) = ( f1(x) + δX (x), f2(x) + δX (x), . . . , f p(x) + δX (x)).

In the above problem, F : Rn → R
p =] − ∞,∞] × . . . × ] − ∞,∞] is an extended

real-valued multifunction. In this regard, for an index j ∈ {1, 2, . . . , p}, if f j (x̄)
(x̄ ∈ R

n) is not finite, then F(x̄) is not finite, and so, point x̄ cannot be a candidate for
Pareto efficient (weakly efficient) solutions.

In this section, we present a new concept of the stability of locally efficient solutions
in multiobjective optimization. This concept is equivalent to the tilt stability when a
single-objective function is available (p = 1). In this regard, we study the following
multiobjective optimization problem:

min F(x) = ( f1(x), f2(x), . . . , f p(x)) s.t. x ∈ cl(B(x̄, δ)),

where fi : Rn → R, i = 1, 2, . . . , p, are extended real-valued functions and x̄ is a
strictly efficient solution.

To discuss the stability, we perturb F(x) by adding a linear mapping with a suffi-
ciently small norm to the objective functions as follows:

min F(x) + Ax = ( f1(x) + 〈v1, x〉, f2(x) + 〈v2, x〉, . . . , f p(x) + 〈vp, x〉)
s.t. x ∈ cl(B(x̄, δ)),

where δ is a positive real number and v1, v2, . . . , vp ∈ R
n are the transpose of the

rows of matrix Ap×n with ‖|A‖| < ε for the sufficiently small number ε > 0.
The main message of tilt stability is the Lipschitzian behavior of the solution map-

ping of perturbed problems, and then the single-valuedness of the local minimum
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appears as a result of the Lipschitzian property. However, in our definition, we do not
use the Lipschitzian behavior of the solution mapping of perturbed problems, because
the assumption of Lipschitzian property of the solution mapping implies the unique-
ness of the efficient solution of a multiobjective optimization problem, which is not
reasonable. Note that, usually, the number of the efficient solutions of a multiobjec-
tive optimization problem is uncountable in continuous optimization. In this regard,
we use strict efficiency in the presented concept of the stability of locally efficient
solutions in multiobjective optimization instead of unique efficiency. In other words,
strict efficiency in multiobjective optimization is corresponded to unique optimality
in scalar optimization.

Regarding the above introduction, we present a new structure of stability in mul-
tiobjective optimization. Throughout the paper, we consider M(δ,F)(x̄, A) to refer to
the following optimization problem:

min F(x) − F(x̄) − A(x − x̄) s.t. x ∈ cl(B(x̄, δ)), (6)

where δ > 0 and A is a p×nmatrix. Here, to extend the notion of tilt stability in scalar
optimization to multiobjective optimization, we introduce the following definition.

Definition 3.1 x̄ is a stable locally efficient point of the function F : Rn → R
p
, iff

F(x̄) is finite and there exist δ > 0, ε > 0, γ ≥ 0, and λ ≥ 0 such that

(a) x̄ is a strictly efficient solution of problem Mδ,F (x̄, 0p×n) and for any p×nmatrix
A with ‖|A‖| < ε, there is a strictly efficient solution x of problem Mδ,F (x̄, A)

such that
‖x − x̄‖ ≤ γ ‖|A‖|.

(b) For any two p × n matrices A1 and A2 with ‖|A1‖|, ‖|A2‖| < ε, there are strictly
efficient solutions x1 and x2 of problems Mδ(x̄, A1) and Mδ(x̄, A2), respectively,
such that

‖x1 − x2‖ ≤ γ ‖|A1 − A2‖|.
(c) For any two strictly efficient solutions x1 and x2 of problems Mδ,F (x̄, A1) and

Mδ,F (x̄, A2), respectively, with ‖x1− x2‖ ≤ γ ‖|A1− A2‖| and ‖|A1‖|, ‖|A2‖| <

ε, the following relation is true:

‖F(x1) − F(x2)‖ ≤ λ‖|A1 − A2‖|.

Proposition 3.1 Stable local efficiency, as defined in Definition 3.1, is equivalent to
the definition of the tilt stability of a local minimum when F : Rn → R.

Proof Strict efficiency in multiobjective optimization when one objective function
is available (scalar optimization) is equivalent to the existence of a unique optimal
solution. In Definition 3.1, if conditions (a) and (b) are relaxed for one objective
function (scalar optimization), then the Lipschitzian perturbation of the mapping M
is seen. For more explanation, suppose A1 = v1 and A2 = v2 are 1 × n vectors and
also x1 and x2 are the optimal solutions of Mδ,F (x̄, v1) and Mδ,F (x̄, v2), respectively.
Clearly, condition (b) in Definition 3.1 is the Lipschitzian property on M . Thus, the
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stable local efficiency introduced in Definition 3.1, where p = 1, implies the tilt
stability.

Conversely, by the Lipschitzian property of the mapping M in Definition 2.1 and
regarding Proposition 2.2, conditions (a), (b), and (c) of Definition 3.1 hold directly
where p = 1. ��

Proposition 3.2 If x̄ is a stable locally efficient point of F(x) with constants δ > 0,
ε > 0, and γ ≥ 0, as identified in the above definition, then all relations in the
definition are true for any 0 < δ̂ < δ.

Proof Suppose that 0 < δ̂ < δ. Without any loss of generality, let

0 < ε <

{
δ̂, γ < 1,
δ̂
γ
, γ ≥ 1.

Since there is the strictly efficient solution x̂ of problem Mδ,F (x̄, A) such that

‖x̂ − x̄‖ ≤ γ |‖A‖| ≤ γ ε < δ̂,

therefore, x̂ is a strictly efficient solution of problem M
δ̂,F (x̄, A). ��

Proposition 3.3 If F(x) = ( f1(x), f2(x), . . . , f p(x)), and all functions fi are Lips-
chitzian with constants ki , i = 1, 2, . . . , p, then for all x1 and x2 with ‖x1 − x2‖ ≤
γ |‖A1 − A2‖|, there is γ̂ ≥ 0 such that

‖F(x1) − F(x2)‖ ≤ γ̂ |‖A1 − A2‖|.

Proof For any ℘ ≥ 1 we have

‖F(x1) − F(x2)‖℘ ≤ ∑p
i=1 | fi (x1) − fi (x2)| ≤ ∑p

i=1 ki‖x1 − x2‖
≤ γ

∑p
i=1 ki |‖A1 − A2|‖,

where ‖.‖℘ is the L℘-norm. Let γ̂ := γ
∑p

i=1 ki , and so the proof is completed. ��

Proposition 3.4 If there is δ1 > 0 such that each fi is Lipschitzian on B(x̄, δ1) ∩
domF, then for the stability of the locally efficient solution x̄ , it is sufficient to check
the first and the second conditions of Definition 3.1, where

domF = {x ∈ R
n : F(x) is finite}.

Proof If conditions (a) and (b) of Definition 3.1 are true at x̄ with constant δ > 0, then
according to Proposition 3.2, without any loss of generality, we can consider δ < δ1.
From Proposition 3.3 condition (c) holds and the proof is completed. ��

123



600 J Optim Theory Appl (2018) 178:591–613

Throughout this paper, we consider F(x) = ( f1(x), f2(x), . . . , f p(x)), where
fi : Rn → R, i = 1, 2, . . . , p. Moreover, we suppose that there is δ1 > 0 such that
each fi is a Lipschitzian function on B(x̄, δ1) ∩ domF . Furthermore, we consider

|‖A‖| := |‖A‖|∞ = max1≤i≤p

∑n

j=1
|ai j |,

where A is a p × n matrix. Since there are η1 > 0 and η2 > 0 such that η1|‖A‖|℘ ≤
|‖A‖|∞ ≤ η2|‖A‖|℘ for any ℘ ≥ 1 , so conditions (a) and (b) of Definition 3.1 are
true for any |‖.‖|℘ , if we can show that they are true for |‖.‖|∞.

Lemma 3.1 x̂ is a strictly efficient solution of problem M(δ,F)(A, x̄) if and only if

{(x, F(x) − Ax) : x ∈ cl(B(x̄, δ))}
∩{(x, F(x̂) − Ax̂) − (0, d) : x ∈ cl(B(x̄, δ)), d ∈ R

p
�}

= {(x̂, F(x̂) − Ax̂)}.
(7)

Proof Suppose that x̂ is a strictly efficient solution of problem M(δ,F)(A, x̄). So, there
is no x1 ∈ cl(B(x̄, δ)) with x1 �= x̂ such that F(x1) − Ax1 � F(x̂) − Ax̂ . Therefore,
Relation (7) holds, clearly.

Now, suppose that Relation (7) is true and x̂ is not a strictly efficient solution
of problem M(δ,F)(A, x̄). Then, there is x1 ∈ cl(B(x̄, δ)) such that x1 �= x̂ and
F(x1)−Ax1 � F(x̂)−Ax̂ . This implies that there is d ∈ R

m
� such that F(x1)−Ax1 =

(F(x̂) − Ax̂) − d. Therefore

(x1, F(x1) − Ax1) ∈
{
(x, F(x̂) − Ax̂) − (0, d) : x ∈ cl(B(x̄, δ)), d ∈ R

p
�

}
.

Thus

(x1, F(x1) − Ax1) ∈ {(x, F(x) − Ax) : x ∈ cl(B(x̄, δ))} ∩{
(x, F(x̂) − Ax̂) − (0, d) : x ∈ cl(B(x̄, δ)), d ∈ R

p
�

}
.

This shows a contradiction. ��
For function F : Rn → R

p
and point x̄ ∈ domF , let

φ(δ,F)(A, x̄) := {
x̂ ∈ domF ∩ cl(B(x̄, δ)) : {(x, F(x) − Ax) : x ∈ cl(B(x̄, δ))}

∩{(x, F(x̂) − Ax̂) − (0, d) : x ∈ cl(B(x̄, δ)), d ∈ R
p
�} = {(x̂, F(x̂) − Ax̂)}}.

φ(δ,F)(A, x̄) is the set of all strictly efficient solutions of problem M(δ,F)(A, x̄).

Proposition 3.5 x̄ ∈ domF is a stable locally efficient point of F : Rn → R
p
if and

only if

(a) there are δ > 0, ε > 0, and γ ≥ 0 such that x̄ ∈ φ(δ,F)(0, x̄) and for any matrix
Ap×n with |‖A‖| < ε, there is x ∈ φ(δ,F)(A, x̄) such that

‖x − x̄‖ ≤ γ ‖|A‖|.
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(b) For any two p × n matrices A1 and A2 with ‖|A1‖|, ‖|A2‖| < ε, there are x1 ∈
φ(δ,F)(A1, x̄) and x2 ∈ φ(δ,F)(A2, x̄) such that

‖x1 − x2‖ ≤ γ ‖|A1 − A2‖|.
Proof According to the definition of stable local efficiency and Lemma 3.1, the proof
is obvious. ��

The following theorem shows a necessary condition for the stability of a locally
efficient solution of an MOP problem, where all objective functions are convex.

Proposition 3.6 Suppose that F(x) = ( f1(x), f2(x), . . . , f p(x)) and each fi is con-
vex and finite on some neighborhoods B(x̄, δ̂) with δ̂ > 0. If x̄ is a stable locally
efficient point of F(x), then for any δ1 > 0 we have

∪x∈B(x̄,δ1)Pos{∪i∂ fi (x)} = R
n .

Proof Suppose that 0 �= d ∈ R
n and δ1 > 0 have been given. We show that d ∈

∪x∈B(x̄,δ1)Pos{∪i∂ fi (x)}. Since x̄ is a stable locally efficient point of F(x), there exist
δ > 0, ε > 0, and γ ≥ 0 such that for any Ap×n with |‖A‖| < ε there is the strictly
efficient solution x of problem M(δ,F)(x̄, A) such that

‖x − x̄‖ ≤ γ |‖A‖|.
Without any loss of generality, consider γ ≥ 1, δ1

2 < ε, and δ1 < δ < δ̂. Let

At := δ1d

2γ ‖d‖1 [1, . . . , 1]1×p,

in which |‖A‖| = δ1
2γ < ε. This means that there is the strictly efficient solution

x̂ ∈ cl(B(x̄, δ)) of problem M(δ,F)(x̄, A) such that

‖x̂ − x̄‖ ≤ γ |‖A‖| = γ
δ1

2γ
= δ1

2
,

and so x̂ ∈ B(x̄, δ). Since for any i ∈ {1, 2, . . . , p}, fi (x) − fi (x̄) − vti (x − x̄) is a
convex function on cl(B(x̄, δ)), then, according to Proposition 2.4, there exists vector
λ ∈ R

m≥ such that the optimal solution of problem

min
∑

i λi ( fi (x) − fi (x̄) − vti (x − x̄)) = ∑
i λi ( fi (x) − fi (x̄))

− δ1
2γ

1
‖d‖1

∑
i λi 〈d, x − x̄〉

s.t. x ∈ cl(B(x̄, δ))

is attained at x̂ ∈ B(x̄, δ). This means that

δ1

2γ

d

‖d‖1
∑
i

λi ∈ ∂

(∑
i

λi ( fi (x̂))

)
. (8)
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Since each fi is locally Lipschitzian around x̂ , then, according to Theorem 3.36 of
[24], we have

∂

(∑
i

λi ( fi (x̂))

)
⊆

∑
i

λi∂ fi (x̂). (9)

Regarding (8) and (9) we have d ∈ Pos(∪i∂ fi ). ��
Lemma 3.2 Suppose that f : R

n �→ R and x̄ ∈ dom f . If x̄ is a tilt-stable local
minimum of f (x), then for any δ1 > 0 we have

∪x∈B(x̄,δ1)Pos{∂ f (x)} = R
n .

Proof Suppose that 0 �= d ∈ R
n and δ1 > 0 have been given. We show that d ∈

∪x∈B(x̄,δ1)Pos{∂ f (x)}. Since x̄ is a tilt-stable local minimum of f (x), there exist
δ > 0, ε > 0, and γ ≥ 0 such that for any v ∈ R

n with ‖v‖ < ε there is the unique
point x such that M(v) = {x} and

‖x − x̄‖ ≤ γ ‖v‖,

where M(.) is the mapping defined in Definition 2.1. Without any loss of generality,
consider γ ≥ 1, δ1

2 < ε and δ1 < δ. Let v := δ1
2γ

d
‖d‖ , therefore ‖v‖ = δ1

2γ < ε. This
means that there is x̂ ∈ cl(B(x̄, δ)) such that M(v) = {x̂} and

‖x̂ − x̄‖ ≤ γ ‖v‖ = γ
δ1

2γ
= δ1

2
.

So x̂ ∈ B(x̄, δ1) and according to the definition of the mapping M(.), we have
δ1
2γ

d
‖d‖1 ∈ ∂ f (x̂), then d ∈ ∪x∈B(x̄,δ1)Pos(∂ f (x)). ��
Note that in the above lemma, function f is not necessarily convex.

Example 3.1 Consider linear function f (x) := ct x : Rn �→ R. For any x̄ ∈ R
n and

δ1 > 0 we have

∂ f (x) = c ∀x ∈ B(x̄, δ1),

and∪x∈B(x̄,δ1)Pos{∂ f (x)} �= R
n . So, there exists no tilt-stable localminimumof f (x).

Proposition 3.7 Let F(x) := ( f1(x), f2(x), . . . , f p(x)), where fi : R
n �−→ R,

i = 1, 2, . . . , p. x̄ ∈ domF is a stable locally efficient point of F(x) if and only if
there is an index set I := {i1, i2, . . . , ik} ⊆ {1, 2, . . . , p} such that x̄ is a stable locally
efficient point of function G(x) := ( fi1(x), fi2(x), . . . , fik (x)).

Proof (⇒) By letting I := {1, 2, . . . , p}, the proof is clear.
(⇐) Conversely, let x̄ be a stable locally efficient point ofG(x), so, there are δ > 0,

ε > 0, and γ ≥ 0 such that the conditions of Definition 3.1 are satisfied. Since x̄ is
a strictly efficient solution of problem Mδ,G(x̄, 0|I |×n), then according to Corollary
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2.32 of [26], x̄ is a strictly efficient solution of problem Mδ,F (x̄, 0p×n). Now consider
an arbitrary matrix Ap×n with |‖A‖| < ε. Without any loss of generality suppose that
i1 ≤ i2 ≤ . . . ≤ ik . Let matrix B|I |×n be as follows:

bl := ail , l = 1, 2, . . . k,

where bl and ail , l = 1, 2, . . . , k, are the rows of matrices B and A, respectively.
Because of the stable local efficiency of x̄ forG(x) and inequality |‖B‖| ≤ |‖A‖| < ε,
there is a strictly efficient solution x of problem Mδ,G(x̄, B) such that

‖x − x̄‖ ≤ γ |‖B|‖ ≤ γ |‖A‖|.

Furthermore, according to Corollary 2.32 of [26], x is a strictly efficient solution of
problem Mδ,F (x̄, A) and so, condition (a) is satisfied for F(x) at x̄ .

Now, consider p × n matrices A1 and A2 with |‖A1‖|, |‖A2‖| < ε. Similar to the
above definition for constructing B from A, |I | × n matrices B1 and B2 are defined
corresponding to A1 and A2, respectively. There are strictly efficient solutions x1 and x2
of problemsMδ,G(x̄, B1) andMδ,G(x̄, B2), respectively, and so according toCorollary
2.32 of [26], x1 and x2 are strictly efficient solutions of problems Mδ,F (x̄, A1) and
Mδ,F (x̄, A2), respectively, such that

‖x1 − x2‖ ≤ γ |‖B1 − B2|‖ ≤ γ |‖A1 − A2‖|,

which completes the proof. ��
Corollary 3.1 If x̄ is a tilt-stable local minimum of one of the functions fi , i =
1, 2, . . . , p, then x̄ is a stable locally efficient point of F(x).

Proof The proof is obtained directly from Propositions 3.7 and 3.3. ��
Now, we present a necessary and sufficient condition of the stability of locally

efficient solutions for multiobjective linear optimization using robustness which has
been defined by Georgiev et al. [19] for linear multiobjective optimization and has
been extended by Zamani et al. [20] for multiobjective optimization as follows.

Definition 3.2 x̄ ∈ X is a robust efficient solution of problem

min F(x) s.t. x ∈ X, (10)

iff x̄ is an efficient solution of Problem (10) and there is ε > 0 such that for any p×n
matrix A with |‖A‖| < ε, the point x̄ is an efficient solution of problem

min F(x) + Ax s.t. x ∈ X,

Now, we show that any robust efficient point is a stable point.

Proposition 3.8 If x̄ is a robust efficient solution of Problem (10)with constant radius
ε, then x̄ is a strictly efficient point of Problem (10).
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Proof By contradiction, suppose that x̄ is a robust efficient solution of Problem (10)
with constant ε, while it is not a strictly efficient point of Problem (10). So, there is
x̂ ∈ X such that x̂ �= x̄ and F(x̂) = F(x̄).
Let

At := − ε(x̂ − x̄)

2‖x̂ − x̄‖1 [1, . . . , 1]1×p.

Now, we have

F(x̂) − F(x̄) + A(x̂ − x̄) = A(x̂ − x̄) = −ε

2

‖x̂ − x̄‖22
‖x̂ − x̄‖1 [1, . . . , 1]t1×p < 0 (11)

Furthermore,
‖A‖ = ε

2
< ε. (12)

Regarding (11) and (12) we have a contradiction with the assumption that x̄ is a robust
efficient solution with radius ε. ��
Lemma 3.3 If x̄ is a robust efficient solution of Problem (10) with constant radius
ε, then for any matrix Ap×n with |‖A|‖ = ε1 < ε, x̄ is a robust efficient solution of
problem

min F(x) − Ax s.t. x ∈ X.

Proof Let ε2 := ε − ε1 > 0. For any matrix Bp×n with |‖B|‖ < ε2, x̄ is an efficient
solution of problem

min F(x) − Ax + Bx = F(x) + (B − A)x
s.t. x ∈ X,

because x̄ is a robust efficient solution of Problem (10) with constant ε and also

|‖ − A + B|‖ ≤ |‖A|‖ + |‖B|‖ < ε1 + ε2 = ε.

This completes the proof. ��
Corollary 3.2 If x̄ is a robust efficient point of Problem (10) with constant radius ε,
then for any matrix A with ‖A‖ < ε, x̄ is a strictly efficient point of problem

min F(x) + Ax s.t. x ∈ cl(B(x̄, δ)).

Proof With regard to Proposition 3.8 and Lemma 3.3 the proof is clear. ��
Corollary 3.3 If there is δ > 0 such that x̄ is a robust efficient point of problem

min F(x) s.t. x ∈ cl(B(x̄, δ)),

then x̄ is a stable locally efficient point.
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Proof Regarding Corollary 3.2, for any matrix Awith ‖A‖ < ε, x̄ is a strictly efficient
solution of problem

min F(x) + Ax s.t. x ∈ cl(B(x̄, δ)),

so the conditions of Definition 3.1 are satisfied. ��
Proposition 3.9 Let X be a closed and convex set, fi (i = 1, . . . , p) be convex and
x̄ be an efficient solution of Problem (10). x̄ is a robust efficient solution of (10) if and
only if TX (x̄)∩G(x̄) = {0}, where G(x̄) is the set of all non-ascent directions defined
as

G(x̄) := {d ∈ R
n : dtξi ≤ 0, ∀ξi ∈ ∂ fi (x̄), i = 1, . . . , p},

and TX (x̄) is the tangent cone of X at x̄ defined as

TX (x̄) :=
{
d ∈ R

n : ∃({xi } ⊆ X, {ti } ⊆ R); ti ↓ 0,
xi − x̄

ti

}
.

Proof Refer to the proof of Theorem 3.3 of [20]. ��
Proposition 3.10 Suppose that F(x) is a multiobjective linear function in a neigh-
borhood of x̄ . x̄ is a stable locally efficient point of F(x) if and only if there is δ > 0
such that x̄ is a strictly efficient solution of problem Mδ,F (x̄, 0).

Proof (⇒) From Definition 3.1 of stable local efficiency, we conclude that, if x̄ is a
stable locally efficient point of F(x), then there exists δ > 0 such that x̄ is a strictly
efficient solution of Mδ,F (x̄, 0).

(⇐) Conversely, let F(x) = Cx on some neighborhoods of x̄ , where C is a p × n
matrix. Since ∂ fi (x̄) = {∇ fi (x̄)} = {ci }, i = 1, . . . , p, where ci is the i th row of C ,
and x̄ is a strictly efficient solution of problem Mδ,F (x̄, 0),

G(x̄) = {d ∈ R
n : cti d ≤ 0, i = 1, . . . , p} = {0}.

According to Proposition 3.9, point x̄ is a robust efficient solution of problem

min F(x) s.t. x ∈ cl(B(x̄, δ)). (13)

Thus, by Corollary 3.3 we conclude that x̄ is a stable locally efficient point. ��
Remark 3.1 Consider the following multiobjective linear programming problem:

min Cx s.t. Hx ≥ b, (14)

where C and H are two p × n and k × n matrices, respectively. All strict locally
efficient solutions of (14) are strict (globally) efficient solutions of (14). Regarding
Propositions 3.9 and 3.10, x̄ is a stable locally efficient solution of (14) if and only if
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x̄ is a robust efficient solution of (14). To see more examples for robust efficiency in
multiobjective linear programming refer to [19]. Those examples can also be used for
stable local efficiency in multiobjective linear programming.

As mentioned in the preliminaries of multiobjective optimization, MOP problems
can be converted to scalar optimization problems using some scalarization techniques.
One of these scalarization techniques is the weighted sum approach introduced in
the previous section. Here, using the weighted sum approach, we introduce some
characterizations of the stability of the locally efficient solutions of an MOP problem
and the tilt stability of the locally optimal solutions of the weighted sum problem.

Proposition 3.11 Suppose that F : Rn �→ R
p
and x̄ ∈ domF. If there is λ ∈ R

p
≥

such that x̄ is a tilt-stable local minimum of the function
∑p

i=1 λi fi (x), then x̄ is a
stable locally efficient point of F(x).

Proof Suppose that there is 0 �= λ ∈ R
p
≥ such that x̄ is a tilt-stable local minimum of

the function
∑p

i=1 λi fi (x). Without any loss of generality, suppose that
∑p

i=1 λi = 1(
by letting λi := λi∑p

i=1 λi
).

Therefore, there are ε > 0 and δ > 0 such that for any v ∈ R
n with ‖v‖ < ε, the

mapping

M : v �→ argmin
‖x−x̄‖≤δ

{∑p
i=1 λi fi (x) − ∑p

i=1 λi fi (x̄) − 〈v, x − x̄〉}

is single-valued and Lipschitzian. For any matrix Ap×n with |‖A‖| < ε, let v =∑p
i=1 λivi , where vi is the transpose of the i th row of A. Thus

‖v‖ = |λ1v1 + λ2v2 + · · · + λpvp‖ ≤ |λ1|‖v1‖ + |λ2|‖v2‖ + · · · + |λp|‖vp‖
≤ ‖|A‖|∑p

i=1 λi < ε.

Since the mapping

M : v �→ argmin
‖x−x̄‖≤δ

{ p∑
i=1

λi fi (x) −
p∑

i=1

λi fi (x̄) − 〈v, x − x̄〉
}

is single-valued and Lipschitzian with constant γ ≥ 0, there is x ∈ cl(B(x̄, δ)) such
that M(v) = {x}. Regarding Part 3 of Proposition 2.4, x is a strictly efficient solution
of problem Mδ,F (x̄, A), and also we have

‖x − x̄‖ ≤ γ ‖v‖ ≤ γ (|λ1|‖v1‖ + |λ2|‖v2‖ + · · · + |λp|‖vp‖)
≤ γ ‖|A‖|∑p

i=1 λi = γ |‖A‖|.

Similar to the above discussions, for any two p × n matrices A1 and A2 with
|‖A1‖|, |‖A2‖| < ε, there are strictly efficient solutions x1 and x2 of problems
Mδ,F (x̄, A1) and Mδ,F (x̄, A2), respectively, such that
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‖x1 − x2‖ ≤ γ ‖v1 − v2‖ = γ ‖∑p
i=1 λi (vi1 − vi2)‖

≤ γ (|λ1|‖(v11 − v12)‖ + |λ2|‖(v21 − v22)‖ + · · · + |λp|‖(vp1 − vp2)‖)
≤ γ ‖|A1 − A2‖| ∑p

i=1 λi = γ |‖A1 − A2‖|.

This completes the proof. ��

Note that Corollary 3.1 can also be obtained as a corollary of Proposition 3.11. The
converse of the above theorem is not valid in the general case. The following example
shows this inconsistency.

Example 3.2 Consider the following multiobjective optimization problem:

minx∈R F(x) = ( f1(x), f2(x)),

where

( f1(x), f2(x)) :=
⎧⎨
⎩

(x,−x), −1 ≤ x ≤ 1,
(x,−1), x ≥ 1,
(−1,−x), x ≤ −1.

x = 0 is a strictly efficient solution of problem M 1
2 ,F (0, 02×1). Furthermore, F(x)

is a multi-linear function on B(0, 1). With regard to Proposition 3.10, x is a stable
locally efficient point of F(x). Moreover, for any λ = (λ1, λ2) ≥ 0 and −1 ≤ x ≤ 1,
let

h(x) := λ1 f1(x) + λ2 f2(x) = λ1x − λ2x = (λ1 − λ2)x .

Consider δ := 0.5, therefore,

∂h(x) = {∇h(x)} = {λ1 − λ2}, ∀x ∈ cl(B(0, 0.5)).

Thus

∪x∈cl(B(0,δ))Pos{∂h(x)} �= R.

Regarding Lemma 3.2, we conclude that x = 0 is not a tilt-stable local minimum for
all weights λi ≥ 0, i = 1, 2.

Proposition 3.12 Let F : Rn → R
p
and all fi be finite on some neighborhoods of

x̄ , where i ∈ I ⊆ {1, 2, . . . , p}. Suppose that there are λ ∈ R
|I |
≥0 and ε > 0 such that

φ−1(v) = {x : v ∈ ∑
i∈I λi∂ fi (x)} is a Lipschitzian single-valued mapping for any

v ∈ R
n, with ‖v‖ < ε. If φ−1(0) = {x̄}, then x̄ is a stable locally efficient point of

F(x).
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Proof Since for all i ∈ I , fi are locally Lipschitzian on some neighborhoods of x̄ ,
according to Theorem 3.36 of [24], for any x in these neighborhoods of x̄ we have

∂

(∑
i∈I

λi fi (x)

)
⊆

∑
i∈I

λi∂ fi (x).

Moreover, regarding Theorem 3.4 of [27], x̄ is a tilt-stable local minimum of∑
i∈I λi fi (x). Using Propositions 3.7 and 3.11 of the present paper, we conclude

that x̄ is a stable locally efficient point of F(x). ��
Proposition 3.13 Let F : Rn → R

p
and x̄ ∈ domF. Suppose that there are index set

I ⊆ {1, 2, . . . , p} and δ > 0 such that fi are C2-smooth on cl(B(x̄, δ)) and ∇2 fi (x̄)
are positive semi-definite for any i ∈ I and also there is j ∈ I such that ∇2 f j (x̄) is

positive definite. If there exist λ ∈ R
|I |
> and δ̂ > 0 such that x̄ is an optimal solution

of the following problem

min
∑
i∈I

λi fi (x) s.t. ‖x − x̄‖ ≤ δ̂,

then x̄ is a stable locally efficient point of F(x).

Proof Without any loss of generality consider δ̂ ≤ δ, then according to Proposi-
tions 2.1 and 2.3 , x̄ is a tilt-stable localminimumof function

∑
i∈I λi fi (x). Therefore,

Propositions 3.7 and 3.11 show that x̄ is a stable locally efficient point of F(x). ��
The converse of Proposition 3.13 does not hold in general. Consider the following

example.

Example 3.3 Consider F : R2 → R
3 as follows:

F(x1, x2) = ( f1(x), f2(x), f3(x)) := (x21 , x
2
2 , (x1 + 1)2 + (x22 + 1)2).

Let λ := (0.5, 0.5, 0), then x = (0, 0) is a tilt-stable locally optimal point of g(x) =∑3
i=1 λi fi (x) = 0.5(x21 + x22 ). Using Proposition 3.11, x = (0, 0) is a stable locally

efficient point of F(x).

Moreover, f1(0, 0) and f2(0, 0) are positive semi-definite and f3(0, 0) is positive
definite. Furthermore, there are no δ̂ > 0 and λ ∈ R

3≥ with λ3 > 0 such that the
optimal solution of the following problem is determined at x = (0, 0),

min
3∑

i=1

λi fi (x) s.t. ‖x‖ ≤ δ̂, (15)

because
∑3

i=1 λi∇ fi (0, 0) = λ3[2, 2]t �= 0. Therefore, we conclude that the converse
of Proposition 3.13 is not valid in general.
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Proposition 3.14 For vector function F, let all fi be C2-smooth on some neighbor-
hoods B(x̄, δ). Suppose that there is an index set I ⊆ {1, . . . , p} such that ∇2 fi (x̄)
are positive definite for all i ∈ I and f j (x) are linear functions on B(x̄, δ) for all
j ∈ I c. Then, x̄ is a stable locally efficient point of F(x) if and only if there are λ ∈ R

p
≥

and δ̂ > 0 such that the optimal solution of problem

min
∑
i

λi fi (x) s.t. x ∈ cl(B(x̄, δ̂))

is attained uniquely at x̄ .

Proof (⇐) Suppose that δ̂ < δ and there is λ ≥ 0 such that the optimal solution of
the following problem is attained uniquely at x̄ :

min
∑
i

λi fi (x) s.t. x ∈ cl(B(x̄, δ̂)). (16)

We claim that there is j ∈ I such that λ j > 0. By contradiction, suppose that λ j =
0 for all j ∈ I . Let I1 := {i ∈ I c : λi > 0} := {i1, i2, . . . , ik} and G(x) :=
( fi1 , fi2 , . . . , fik ). G(x) is a linear mapping on cl(B(x̄, δ̂)), and so, the objective
function of Problem (16) is a parametric scalar linear function with parameters λi ,
i ∈ I1. Furthermore, x̄ ∈ B(x̄, δ), which implies that (16) has another optimal solution
in addition to x̄ . Thus, the optimal solution of (16) is not attained uniquely at x̄ which
is a contradiction. Therefore, there exists index j ∈ I such that λ j �= 0, and so∑

i λi∇2 fi (x̄) is positive definite. By Propositions 2.1 and 2.3 , x̄ is a tilt-stable local
minimum of

∑
i λi fi (x̄), and by Proposition 3.11, x̄ is a stable locally efficient point

of F(x).
(⇒) Conversely, suppose that x̄ is a stable locally efficient point of F(x), so there

is δ̄ < δ such that x̄ is a strictly efficient solution of problem

min F(x) x ∈ cl(B(x̄, δ̄)). (17)

Without any loss of generality suppose that I := {1, 2, . . . , k} and I c := {k + 1, k +
2, . . . , p}.

Let
At := [∇ f1(x̄) ∇ f2(x̄) . . . ∇ fk(x̄)],
Bt := [∇ fk+1(x̄) ∇ fk+2(x̄) . . . ∇ f p(x̄)]. (18)

Since x̄ is a strictly efficient point of Problem (17) and f j is a linear function on
cl(B(x̄, δ̄)) for any j ∈ I c, we conclude that the system

Ad < 0, Bd � 0, d ∈ R
n (19)

has no solution. So, regarding Theorem 3.22 of [26], there are y1 ∈ R
k≥ and y2 ∈ R

p−k
�

such that
At y1 + Bt y2 = 0. (20)
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Define λ ∈ R
p
≥ as follows:

λi :=
{
y1i , 1 ≤ i ≤ k,
y2i−k, k + 1 ≤ i ≤ p.

(21)

So, considering (20) and (21) we have

∑
i

λi∇ fi (x̄) = 0. (22)

In addition, since there is an index 1 ≤ j ≤ k such that λ j > 0 and∇2 f j (x̄) is positive
definite, then ∇2(

∑
i λi fi (x̄)) is positive definite and by Proposition 2.3 we conclude

that x̄ is a tilt-stable local minimum of problem
∑

i λi fi (x). The proof is completed
by the definition of tilt stability. ��

Note that in Proposition 3.14 the existence of index set I such that ∇2 fi (x̄) are
positive definite for all i ∈ I is essential. This is shown by Example 3.2. Regarding
Example 3.2, x = 0 is a stable locally efficient point of F(x) while there are no
λ ∈ R

2≥ and δ > 0 such that x = 0 is the unique optimal solution of Problem (16).
Note that in Proposition 3.14 the condition that each f j , j ∈ I c be linear on B(x̄, δ)

cannot change to the positive semi-definiteness of ∇2 f j (x̄), j ∈ I c.

Example 3.4 To show the shortcoming of substituting positive semi-definiteness for
linearity in Proposition 3.14,we consider F(x) = (−x, x4, (x−1)2). x̄ = 0 is a unique
optimal point of the weighted sum problem (16) with weights λ1 = λ3 = 0, λ2 = 1
and arbitrary δ̂ > 0. Each fi is convex, ∇2 f1(0) and ∇2 f2(0) are positive semi-
definite, and also ∇2 f3(0) is positive definite. We will show that x̄ = 0 is not a stable
locally efficient point of F(x). By contradiction, suppose that x̄ = 0 is a stable locally
efficient point of F(x); so, there are δ < 1 and ε > 0 such that conditions (a) and (b)
of Definition 3.1 hold for any matrix A with ‖A‖ < ε. Moreover, there is k ∈ N such
that 1

k
1
3

< δ and 1
k < ε. For any m ∈ N with m ≥ k, let

At
m :=

[
0 − 1

m
0

]
,

then ‖Am‖ < ε. The set of strictly efficient points of M(δ,F)(x̄, Am) is [( 1
4m )

1
3 , δ].

Now we have

‖x − 0‖ ≥ 1

4m
1
3

,

for any strictly efficient point of M(δ,F)(x̄, Am). In addition, there is no γ ≥ 0 such
that 1

4m
1
3

≤ γ ‖Am‖ = γ
m for any m ∈ N with m ≥ k, and this contradicts condition

(a) of Definition 3.1.
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Proposition 3.15 If the conditions of Proposition 3.14 hold, then x̄ is a stable locally
efficient point of F(x) if and only if there is δ > 0 such that x̄ is an efficient point of
problem Mδ,F (x̄, 0).

Proof (⇐) Suppose that x̄ is an efficient point of problemMδ,F (x̄, 0) and f j are linear
functions on cl(B(x̄, δ̄)) for any j ∈ I c, then we conclude the system

Ad < 0, Bd � 0, d ∈ R
n (23)

has no solution, where A and B are as defined in (18). Similar to the proof of Propo-
sition 3.14, the result is obtained.

(⇒) The converse statement is obtained directly by the definition of the stability of
F(x). ��
Proposition 3.16 For vector function F, let each fi be convex and C2-smooth on
some neighborhoods of x̄ ∈ domF and also ∇2 fi (x̄) be positive definite for all i . x̄
is a stable locally efficient point of F(x) if and only if there is δ > 0 such that x̄ is a
weakly efficient solution of problem Mδ,F (x̄, 0).

Proof (⇐) Without any loss of generality, suppose that all fi are convex and C2-
smooth on cl(B(x̄, δ)). Since x̄ is a weakly efficient solution of problem

min F(x) s.t. x ∈ cl(B(x̄, δ)),

there is λ ≥ 0 such that the optimal value of the following problem is attained at x̄ ,

min
∑

i∈I λi fi (x) s.t. x ∈ cl(B(x̄, δ)),

and so
∑

i λi∇ fi (x̄) = 0. Furthermore, there is j ∈ {1, 2, . . . , p} such that λ j >

0. Since ∇2 fi (x̄) are positive definite for all i ,
∑

i λi∇2 fi (x̄) is positive definite.
Regarding Proposition 2.3, x̄ is a tilt-stable local minimum of

∑
i λi fi (x), and so

according to Proposition 3.11, x̄ is a stable locally efficient point of F(x).
(⇒) The converse statement is obtained directly by the definition of the stability of

F(x). ��

4 Conclusions

Tilt stability of a local minimum is a well-known concept to investigate the sensitivity
and stability of an optimal solution. This concept is a version of the Lipschitzian stabil-
ity of a local minimum in scalar optimization. In this paper, a new concept of stability
in multiobjective optimization is introduced. In this regard, some perturbations are
added to the objective functions as small linear terms. Furthermore, some proposi-
tions are established to identify the stability status of a strictly efficient solution. Also,
the equivalency of the introduced stability concept and tilt stability is proved, when
the set of objective functions is a singleton. In other words, the proposed concept can
be considered as an extension of tilt stability in scalar optimization to multiobjective
optimization.
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Using some nonlinear scalarization methods for the proposed concept of stability
and robustness can be considered as an interesting research for future.
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