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Abstract This paper is devoted to present solutions to constrained finite-horizon opti-
mal control problems with linear systems, and the cost functional of the problem is in a
general form. According to the Pontryagin’s maximum principle, the extremal control
of such problem is a function of the costate trajectory, but an implicit function.We here
develop the canonical backward differential flows method and then give the extremal
control explicitly with the costate trajectory by canonical backward differential flows.
Moreover, there exists an optimal control if and only if there exists a unique extremal
control. We give the proof of the existence of the optimal solution for this optimal
control problem with Green functions.
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1 Introduction

It iswell known that there is a close relationship between the theory of optimization and
the technique of optimal control [1–3]. This paper is devoted to the study of constrained
finite-horizon optimal control problems as known as problem (P) by the Pontryagin’s
maximum principle and backward differential flows. These two theories have been
widely used in the research of optimizations and optimal control problems [4–7]. In
problem (P), an integral cost functional is minimized across the set of controls and
trajectories of a linear finite-dimensional dynamical system operating over a bounded
interval of time. Using standard notations of control theory, we represent the optimal
control problem (P) which has a quadratic part in its cost function and the constraints
of the control are a ball and a linear differential equation.

A piecewise continuous function mapping the time to the constraint zone, a ball, is
said to be an admissible control. And the initial point is a given vector. Specially, the
quadratic part of the cost function is symmetric positive definite. Let the rest part of the
cost function be second-order continuously differentiable and the second derivative is
great than 0 for all controls.

By the classical optimal control theory, we have the Hamiltonian function [8]. In
general, it is difficult to obtain an analytic form of the optimal feedback control for the
optimal control problem (P). It is well known that, in the unconstrained case, if the
part of the cost function except the quadratic part is a positive semi-definite quadratic
form, then a perfect optimal feedback control is obtained by the solution of a Riccati
matrix differential equation. The primal goal of this paper is to present an analytic
form of the optimal feedback control to the optimal control problem (P).

We know from the Pontryagin principle that the optimal trajectory and correspond-
ing parameter denoting the state and the costate which correspond to the optimal
control. Particularly, when the control is an extremal control, it satisfies the Pontrya-
gin principle. By means of the Pontryagin principle and the dynamic programming
theory, many numerical algorithms have been suggested to approximate the solution
to the problem (P). This is due to the nonlinear integrand in the cost functional. In
this paper, combining the backward differential flows with the Pontryagin principle,
we solve problem (P) which has nonlinear integrand on the control variable in the
cost functional and present the optimal control expressed by the costate via canonical
dual variables.

2 Problem Formulation

Using standard notations of control theory, we represent the optimal control problem
(P) as follows:

(P)

min J (u) = ∫ T
0 [F(x(t)) + 1

2u
T(t)Ru(t) + bTu(t)]dt

s.t. ẋ(t) = Ax(t) + Bu(t),
x(0) = x0 ∈ R

n,

u(t) ∈ U := {u : uTu ≤ 1} ⊂ R
m, t ∈ [0, T ],

(1)

where A ∈ R
n×n , B ∈ R

n×m and b ∈ R
m are constant matrices, and R ∈ R

m×m is a
symmetric positive definitematrix. The initial point x0 is a given vector inRn . Let F(x)
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be second-order continuously differentiable and Fxx (x) ≥ 0 for all x ∈ R
n . A piece-

wise continuous function, u(·) : [0, T ] → U , is said to be an admissible control. By
the classical optimal control theory, we have the following Hamiltonian function [8]:

H(t, x, u, λ) = F(x(t)) + 1

2
uT(t)Ru(t) + bTu(t) + λT(t)(Ax(t) + Bu(t)). (2)

The state and costate systems are

ẋ = Hλ(t, x, u, λ) = Ax(t) + Bu(t), x(0) = x0, (3)

λ̇ = −Hx = −Fx (x(t)) − ATλ, λ(T ) = 0. (4)

In general, it is difficult to obtain an analytic form of the optimal feedback control
for the problem (P). It is well known that, in the unconstrained case, if F(x(t)) is
a positive semi-definite quadratic form, then a perfect optimal feedback control is
obtained by the solution of a Riccati matrix differential equation. The primal goal of
this paper is to present an analytic form of the optimal feedback control to the optimal
control problem (P).

We know from the Pontryagin principle the x̂(·) and λ̂(·) denoting the state and
costate corresponding to û(·). Particularly, when û is an extremal control, we have

˙̂x = Hλ(t, x̂, û, λ̂) = Ax̂ + Bû, x̂(0) = x0, (5)
˙̂
λ = −Hx (t, x̂, û, λ̂) = −Fx̂ (x̂) − ATλ̂, λ̂(T ) = 0, (6)

H(t, x̂(t), û(t), λ̂(t)) = min‖u‖≤1
H(t, x̂(t), u, λ̂(t)), a.e.t ∈ [0, T ]. (7)

By means of the Pontryagin principle and the dynamic programming theory, many
numerical algorithms have been suggested to approximate the solution to the problem
(P). This is due to the nonlinear integrand in the cost functional. In this paper, combin-
ing the backward differential flows with the Pontryagin principle, we solve problem
(P), which has nonlinear integrand on the control variable in the cost functional and
present the optimal control expressed by the costate via canonical dual variables.

3 A Differential Flow with Lagrangian Function

In this section, we present a differential flow to deal with the problem (P), which is
used to find the optimal control expressed by the costate in the next section. For the
problem (P), the Lagrangian function can be written as

L(u, ρ) := 1

2
uTRu + (BTλ + b)Tu + ρ

2
(uTu − 1), (8)

where ρ is a Lagrangian multiplier. The corresponding partial derivatives with respect
to u are as follows

Lu(u, ρ) = (R + ρ I )u + BTλ + b, (9)
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and

Luu(u, ρ) = R + ρ I. (10)

Let R be a m × m symmetric positive definite matrix. We define a set G as

G := {ρ ≥ 0 : R + ρ I > 0} ⊂ R. (11)

Obviously, G is nonempty.
Then, we introduce a backward differential flow over G.

Definition 3.1 For each ρ in G, define

û(ρ) := −(R + ρ I )−1(BTλ + b), (12)

which is called a differential flow.

It can be verified easily that the differential flow satisfies the following differential
system

dû(ρ)

dρ
= −(R + ρ I )−1û(ρ). (13)

Theorem 3.1 If û(ρ) is the differential flow over G, then, for given ρ ∈ G, û(ρ) is
the unique minimizer of L(u, ρ) over Rn, i.e.,

L(u, ρ) ≥ L(û(ρ), ρ),∀u ∈ R
n . (14)

Proof For given ρ ∈ G, Luu(u, ρ) = R + ρ I > 0, for any u ∈ R
n , Luu(û(ρ), ρ) >

0,∀ρ ∈ G. On the other hand, by (9), it is clear that
Lu(û(ρ), ρ) = −(R+ρ)(R+ρ)−1(BTλ+b)+(BTλ+b) = 0. Then, the conclusion
of the theorem follows by elementary calculus. 	


The dual function with respect to a given û(ρ) is defined as

Pd(ρ) := L(û(ρ), ρ)

= 1

2
ûT(ρ)Rû(ρ) + (BTλ + b)Tû(ρ) + ρ

2
(ûT(ρ)û(ρ) − 1)

= −1

2
(BTλ + b)T(R + ρ)−1(BTλ + b) − 1

2
ρ.

(15)

The first derivative function of Pd(ρ) with respect to ρ can be expressed as

dPd(ρ)

dρ
= 1

2
(ûT(ρ)û(ρ) − 1). (16)

Furthermore, we have the following result.
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Lemma 3.1 For all ρ ∈ G, dPd (ρ)
dρ ≤ 0 if and only if

û(ρ) ∈ D := {u : uTu ≤ 1, u ∈ R
n}.

Proof By the definition of the feasible set D, a point u ∈ D if and only if ûT(ρ)û(ρ)−
1 ≤ 0. Then, by (16) we see that for ρ ∈ G , û(ρ) ∈ D if and only if dPd (ρ)

dρ ≤ 0. 	


4 Solving Quadratically Constrained Quadratic Programming by Dual
Problem

For a given quadratic function P(u) := 1
2u

TRu+(BTλ+b)Tu, we have the differential
flowwith respect to the quadratically constrained quadratic programmingproblem (P)

û(ρ) = −(R + ρ I )−1(BTλ + b). (17)

According to the dual function (15), we have the dual problem

(Pd) : max
ρ≥0, ρ∈G{Pd(ρ)}. (18)

Theorem 4.1 If ρ∗ ∈ G is an optimal solution to the dual problem (18), then the
quadratic function P(u) with u ∈ D has a minimizer at û(ρ∗).

Proof First, the optimal solution of the dual problem (18) ρ∗ is also the maximizer
of the function Pd(ρ) with ρ ≥ 0. If it is not true, then there exists a sequence (ρ(k)),
k ≥ 1, which tends to ρ∗ and satisfies Pd(ρ(k)) > Pd(ρ∗). Recall that ρ∗ ∈ G, and
therefore R + ρ∗ I > 0. For k is sufficiently large, we have R + ρ(k) I ≥ 0, which
implies that ρ(k) ∈ G. It contradicts our assumption that ρ∗ = argminρ∈G{Pd(ρ)}. 	


The fact that ρ∗ is a local maximizer of Pd(ρ) with ρ ≥ 0 implies that it is a K-T
point of the problem maxρ≥0{Pd(ρ)}. It means that dPd (ρ∗)

dρ ≤ 0 and ρ∗ dPd (ρ∗)
dρ = 0.

By (15) and Lemma 2.1, we have ûT(ρ∗)û(ρ∗) − 1 ≤ 0, i.e., û(ρ∗) ∈ D and

ρ∗(ûT(ρ∗)û(ρ∗) − 1) = 0. (19)

For any ρ ∈ G and u ∈ D, we have

P(u) ≥ P(u) + ρ

2
(uTu − 1) = L(u, ρ)

≥ min
u∈Rn

L(u, ρ) = L(û(ρ), ρ) = Pd(ρ).
(20)

Since ρ∗ ∈ G, it follows that

P(u) ≥ Pd(ρ
∗) = L(û(ρ∗), ρ∗)

= P(û(ρ∗)) + ρ∗

2
(ûT(ρ∗)û(ρ∗) − 1)

= P(û(ρ∗)).

(21)

123



354 J Optim Theory Appl (2018) 178:349–362

Thus, û(ρ∗) is a global minimum point of P(u) over D.

5 Pontryagin Extremal Control and the Canonical Backward
Differential Flow

According to the Pontryagin’s maximum principle [8,9], an optimal control is an
extremal control. For (2), the Hamiltonian function of (P), an extremal control û(·)
with the associated state x̂(·) and costate λ̂(·) together, satisfies

˙̂x = Hλ = Ax̂ + Bû, x̂(0) = x0,
˙̂
λ = −Hx = −Fx̂ (x̂) − ATλ̂, λ̂(T ) = 0, (22)

and for almost every given t ∈ [0, T ],

H(t, x̂(t), û(t), λ̂(t)) = min
u∈U H(t, x̂(t), u, λ̂(t)). (23)

Here,

H(t, x, u, λ) = F(x(t)) + 1

2
uT(t)Ru(t) + bTu(t) + λT(t)(Ax(t) + Bu(t)). (24)

Since the global optimization in (23) is solved for a fixed t , noting that the variable x
and u are separating, it is helpful to consider the following optimization problem with
a given parameter vector λ at first

(P1)
min P(u) = 1

2u
TRu + (BTλ + b)Tu

s.t. uTu ≤ 1.
(25)

In what follows, we use the theory of canonical differential flow [6] to solve the
optimization problem (P1). Then, we can prove that the minimizer of the problem
(P1) is on the backward differential flow, and we can point it out by a nonnegative
parameter ρ. The details are as follows. Since R > 0, R + ρ I > 0 when ρ ≥ 0. If
BTλ + b �= 0, then there is a ρ∗ > 0 satisfying

0 < ‖(R + ρ∗ I )−1(BTλ + b)‖ < 1. (26)

Let u∗ = −(R + ρ∗ I )−1(BTλ + b). Solving the backward differential equation

du
dρ + [R + ρ I ]−1u = 0,

u(ρ∗) = u∗, (27)

one may get the so-called canonical differential flow [6] for the optimization problem
(P1)

û(ρ) = −(R + ρ I )−1(BTλ + b). (28)

123



J Optim Theory Appl (2018) 178:349–362 355

It is easy to verify, when ρ > 0,

d(P(û(ρ)) + ρ
2 (ûT(ρ)û(ρ) − 1))

dû

= d(P(û(ρ)))

dû
+ ρû(ρ)

= Rû(ρ) + BTλ + b + ρû(ρ) = 0. (29)

d2(P(û(ρ)) + ρ
2 (ûT(ρ)û(ρ) − 1))

dû2
= R + ρ I > 0. (30)

Lemma 5.1 ‖ û(ρ) ‖ monotonically decreases when ρ ∈ [0,+∞).

Proof Since

‖û(ρ)‖2 = (BTλ + b)T(R + ρ I )−2(BTλ + b), (31)

and R + ρ I > 0 for ρ ≥ 0, it follows that

d‖û(ρ)‖2
dρ

= −2(BTλ + b)T(R + ρ I )−3(BTλ + b) ≤ 0. (32)

It is deduced that ‖û‖ monotonically decreases when ρ ∈ [0,+∞). 	


6 Solution to the Optimization Problem (P1)

Theorem 6.1 (i) When ‖R−1(BTλ + b)‖ > 1, the optimization problem (P1) has a
minimizer

ûλ = −[R + ρλ I ]−1(BTλ + b), (33)

where ρλ is the only positive root of ‖[R + ρ I ]−1(BTλ + b)‖ = 1.
(ii) When ‖R−1(BTλ + b)‖ ≤ 1, the optimization problem (P1) has a minimizer

ûλ = −R−1(BTλ + b). (34)

Proof (i) Let ‖R−1(BTλ + b)‖ > 1. For limρ→∞ ‖û(ρ)‖ = 0 and based on
Lemma 5.1, there is a ρλ > 0 so that

‖û(ρλ)‖ = 1. (35)

Let ûλ = û(ρλ) = −(R + ρλ I )−1(BTλ + b). Then, we have

d(P(ûλ)+ ρλ

2 (ûTλ ûλ − 1))

dûλ

= dP(ûλ)

dûλ

+ρλûλ = (R + ρλ I )ûλ + BTλ + b = 0.

(36)
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Further, we have

d2(P(ûλ) + ρλ

2 (ûTλ ûλ − 1))

dû2λ
= R + ρλ I > 0. (37)

Thus, for any u ∈ U = {uTu ≤ 1},

P(u) ≥ P(u) + ρλ

2
(uTu − 1) ≥ P(ûλ) + ρλ

2
(ûTλ ûλ − 1) = P(ûλ). (38)

This shows that for the case(i) the optimization problem (P1) has a minimizer

ûλ = −[R + ρλ I ]−1(BTλ + b). (39)

(ii) Let ‖R−1(BTλ + b)‖ ≤ 1. By Lemma 5.1, for this case, ‖û(ρ)‖ ≤ 1 in [0,+∞).
Noting (29) and (30), for any u ∈ U and ρ ≥ 0, we have

P(u) ≥ P(u) + ρ

2
(uTu − 1) ≥ P(û) + ρ

2
(ûT(ρ)û(ρ) − 1). (40)

Let ûλ = −R−1(BTλ + b). Consequently,

P(u) ≥ P(ûλ) + 0

2
(ûTλ ûλ − 1) = P(ûλ). (41)

This shows that for the case (ii) the optimization problem (P1) has a minimizer
ûλ = −R−1(BTλ + b). 	


7 Solution to the Linear Optimal Control Problem (P)

In what follows, we use the notation arg{ f (ρ) = 0, ρ ≥ 0} to stand for the positive
root of the equation f (ρ) = 0. For a given vector λ such that

‖R−1(BTλ + b)‖ > 1, (42)

we denote

ρλ := arg{‖[R + ρ I ]−1(BTλ + b)‖ = 1, ρ ≥ 0}. (43)

For the optimal control problem (P), we define the control u(λ) as follows.

Definition 7.1 For a vector λ, define

u(λ) :=
{

−[R + ρλ I ]−1(BTλ + b), if ‖R−1(BTλ + b)‖ > 1,

−R−1(BTλ + b), if ‖R−1(BTλ + b)‖ ≤ 1,
(44)
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where

ρλ = arg{‖[R + ρ I ]−1(BTλ + b)‖ = 1, ρ ≥ 0}.

Lemma 7.1 u(λ̂) ∈ C(Rn,Rm).

Recall the linear system

x(t) = eAt x0 +
∫ t

0
eA(t−s)Bu(s)ds. (45)

It is not difficult to see that

‖x(t)‖ ≤ e‖A‖t‖x0‖ +
∫ t

0
e‖A‖(t−s)‖B‖‖u(s)‖ds (46)

≤ e‖A‖t‖x0‖ + ‖B‖
∫ t

0
e‖A‖(t−s)ds (47)

≤ e‖A‖T
(

‖x0‖ + ‖B‖
‖A‖

)

:= C1. (48)

Let α := max{C1, T e‖A‖T (‖B‖+ 1)}. Because F(x) ∈ C2(Rn), Fx (x) is bounded in
S := {x : ‖x‖ ≤ α} and supx∈S ‖Fx (x)‖ := C2. The original optimal control problem
(P) is equivalent to the following optimal control problem

(P2)

min J (u) = 1
C2

∫ T
0 [F(x(t)) + 1

2u
T(t)Ru(t) + bTu(t)]dt,

s.t. ẋ(t) = Ax(t) + Bu(t),
x(0) = x0 ∈ R

n,

u(t) ∈ U = {u : uTu ≤ 1} ⊂ R
m, t ∈ [0, T ].

(49)

According to Theorem 6.1, the optimal control of problem (49) is

v̂(ω̂) =
{

−[R + ρω̂ I ]−1(BTω̂ + b), if ‖R−1(BTω̂ + b)‖ > 1,

−R−1(BTω̂ + b), if ‖R−1(BTω̂ + b)‖ ≤ 1.
(50)

The Pontryagin boundary value problem can be rewritten as

(BV P)
Ẏ = ÂY + f (Y ),

H1Y (0) + H2Y (T ) = Y0.
(51)

Theorem 7.1 There is a solution to the problem (51).

Proof Note that the matrix function Φ(t) := eÂt satisfies

det
(
H1Φ(0) + H2Φ(T )

) = det

(
I 0

0 e−ATT

)

�= 0.
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The solution to the corresponding homogeneous problem

Ẏ = ÂY, U (Y ) = H1Y (0) + H2Y (T ) = Y0 (52)

is

Y (t) = Φ(t)
(
H1Φ(0) + H2Φ(T )

)−1
Y0 = Φ(t)

(
I 0

0 e−ATT

)−1

Y0.

The Green function [10] to the homogeneous BVP is

G(t, s) :=
{

−Φ(t)
(
H1Φ(0) + H2Φ(T )

)−1
H2Φ(T )Φ−1(s), 0 < t<s<T,

Φ(t)
[
I − (

H1Φ(0) + H2Φ(T )
)−1

H2Φ(T )
]
Φ−1(s), 0 < s< t<T .

(53)

This is to say

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
(
0 0

0 e−AT(t−s)

)

, 0 < t < s < T,

(
eA(t−s) 0

0 0

)

, 0 < s < t < T,

(54)

‖G(t, s)‖ ≤ e‖A‖t ≤ e‖A‖T . (55)

Inwhat follows,we show that there exists one solutionY (t) of the Pontryagin boundary
value problem (51), which is equivalent to the solvability of the following integral
equation

Y (t) =
∫ T

0
G(t, s) f (Y (s))ds,

where f (Y ) :=
(

Bv((0, I )Y )

− 1
C2

Fx ((I, 0)Y )

)

.

Let X := C([0, T ],R2n) and Ω := {Y ∈ X : ‖Y (·)‖ ≤ α}. Define an operator
T : X → X , for given t ∈ [0, T ], each Y ∈ X ,

(TY )(t) =
∫ T

0
G(t, s) f (Y (s))ds. (56)

Since ‖v((0, I )Y )‖ ≤ 1, if Y (·) ∈ Ω , then ‖ − 1
C2

Fx ((I, 0)Y )‖ ≤ 1.
Consequently,

‖TY (t)‖ = ‖
∫ T

0
G(t, s) f (Y (s))ds‖ ≤ T e‖A‖T (‖B‖ + 1) ≤ α. (57)
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For ‖TY‖ = maxt∈[0,T ] ‖(TY )(t)‖ ≤ α, TΩ ⊂ Ω . By Schaefer’s fixed-point
theorem [11], there is a Ŷ ∈ Ω such that T Ŷ = Ŷ , i.e.,

T Ŷ =
∫ T

0
G(t, s) f (Ŷ (s))ds.

It follows that the Pontryagin boundary value problem (51) has a solution. 	


Theorem 7.2 Let Ŷ (·) := (ŷ(·), ω̂(·))T be a solution to the problem (51). Then, the
control v̂(t) := v

(
(0, I )Ŷ (t)

) = v(ω̂(t)) is a Pontryagin extremal control.

Proof Note that ŷ(·) and ω̂(·) satisfy the equations

˙̂y = Aŷ + Bv̂(ω̂), ŷ(0) = x0,

˙̂ω = − 1

C2
Fŷ(ŷ) − ATω̂, ω̂(T ) = 0. (58)

It implies that ŷ(·), ω̂(·) and ω̂ satisfy the Pontryagin boundary value equations. From
Theorem 6.1 and Definition (50), it follows that

v̂(t) = arg{min
v∈D H1(t, ŷ(t), v, ω̂(t))}, a.e. t ∈ [0, T ], (59)

where H1(t, ŷ(t), v, ω̂(t)) is the Hamiltonian function of the optimal control problem
(P2). So v̂(t) is a Pontryagin extremal control. 	


Theorem 7.3 The control v̂(t) = v
(
(0, I )Ŷ (t)

)
defined by (50) is an optimal control

to the problem (P2) and (P).

Proof Based on Theorem 7.2 and Definition (50), the extremal control v̂(t) =
v̂
(
(0, I )Ŷ (t)

)
can be expressed as a function of the costate variable ω̂, i.e., v̂(ω̂).

Bringing it back into the Hamiltonian function of problem (P2), we get

H1(t, ŷ(t), v̂(ω̂(t)), ω̂(t))

= 1

C2
(F(ŷ(t)) + 1

2
v̂(ω̂(t))TRv̂(ω̂(t)) + bTv̂(ω̂(t))) + ω̂T(t)(Aŷ(t) + Bv̂(ω̂(t))).

(60)

Since v̂(ω̂) is independent of the state variable ŷ and Fŷ ŷ(ŷ) ≥ 0, H1(t, ŷ, v̂(ω̂), ω̂) is
convex with respect to the variable ŷ. Referring to the classical optimal control theory
[9,12], we see that v̂(t) is an optimal control to the singular optimal control problem
(P2), i.e., û(t) = v̂ is an optimal control to the singular optimal control problem (P).
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Fig. 1 Optimal control and optimal trajectory of Example 8.1

8 Example

Example 8.1 Consider the following optimal control problem

min J (u) = ∫ T
0 [x4(t) + x2(t) + 1

2ru
2(t) + cu(t)]dt,

s.t. ẋ(t) = ax(t) + bu(t),
x(0) = x0 ∈ R

n,

u(t) ∈ U = {u : uTu ≤ 1} ⊂ R
m, t ∈ [0, T ].

(61)

According to the Pontryagin principle and Theorem 6.1, the Pontryagin pair
(x̂(t), û(t), λ̂(t)) satisfies

˙̂x = Hλ(t, x̂, û, λ̂) = Ax̂ + Bû, x̂(0) = x0
˙̂
λ = −Hx (t, x̂, û, λ̂) = −Fx (x̂) − ATλ̂, λ̂(T ) = 0

ûλ =
{

−[R + ρλ I ]−1(BTλ + b), if ‖R−1(BTλ + b)‖ > 1

−R−1(BTλ + b), if ‖R−1(BTλ + b)‖ ≤ 1
. (62)

By computation, we have

˙̂x = ax̂ + bû
˙̂
λ = −4x̂3 − 2x̂ − aλ̂

û =
⎧
⎨

⎩

− bλ̂+c
r , if |bλ̂ + c| ≤ |r |

− bλ̂+c
|bλ̂+c| , if |bλ̂ + c| > |r | . (63)

By an iterative algorithm, we can solve this equation. For example, r = 10, c = 1,
a = 1, b = 2, T = 1 and x0 = 1.We figure out the optimal control û(·) and coordinate
trajectory x̂(·) in Fig. 1, and the optimal value is 130.3525.
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Fig. 2 Optimal control and the optimal trajectory of Example 8.2

Example 8.2 Consider another example where m = 2, i.e., u ∈ R
2.

min J (u) = ∫ T
0 [ 16 x61(t) + 1

4 x
4
2 (t) + 1

2u
T(t)u(t) + bTu(t)]dt,

s.t. ẋ(t) = Ax(t) + Bu(t),
x(0) = x0 ∈ R

n,

u(t) ∈ U = {u : uTu ≤ 1} ⊂ R
m, t ∈ [0, T ],

(64)

where T = 1, b =
(
2
4

)

, A =
(
1 3
2 5

)

, B =
(
2 2
3 7

)

and x0 =
(
1
2

)

.

Same as Example 8.1, the Pontryagin pair (x̂(t), û(t), λ̂(t)) satisfies

˙̂x1 = x̂1 + 3x̂2 + 2û1 + 4û2
˙̂x2 = 2x̂1 + 5x̂2 + 2û1 + 4û2
˙̂
λ1 = −x̂1

5 − λ̂1 − 2λ̂1
˙̂
λ2 = −x̂2

3 − 2λ̂1 − 5λ̂1 (65)

and

û =
{

− BTλ̂+b
||BTλ̂+b|| , if ||BTλ̂ + b|| > 1,

−(BTλ̂ + b), if ||BTλ̂ + b|| < 1.
(66)

Figure 2 shows the optimal control and corresponding trajectory, and the optimal
value is 3.4688 × 105.

9 Conclusions

In this paper, a new approach to constrained finite-horizon optimal control problems
with linear systems has been investigated using the canonical backward differential
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flows method, which can produce an analytic form of the optimal feedback control to
the optimal control problems. Meanwhile, we give the extremal control explicitly with
the trajectory by canonical backward differential flows. The existence of the optimal
solution for this optimal control problem has been proved (see Theorem 7.2). More
research needs to be done for the development of applicable canonical differential
flows theory.
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