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Abstract In this paper, we provide sufficient conditions entailing the existence of
weak sharp efficient points of a multiobjective optimization problem. The approach
uses variational analysis techniques, like regularity and subregularity of the diagonal
subdifferential map related to a suitable scalar equilibrium problem naturally associ-
ated to the multiobjective optimization problem.
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1 Introduction

In the last decades, the theory and themethods ofmultiobjective optimization problems
(MOP, in what follows) have attractedmuch attention from the researchers community
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(for a thorough presentation see, for instance [1–3]). Along the years, different solution
concepts for MOP have been introduced and studied. Among them, without a doubt,
one of the most investigated is the weak efficiency. Aiming at investigating the Hölder
regularity of the solution set-valuedmapping of perturbedmultiobjective optimization
problems, Bednarczuk considered in [4] (see also [5], and [6] for a slightly different
definition) the more restrictive notion of weak sharp efficiency, where a growth con-
dition on the vector-valued function is imposed. This approach was first proposed
by Burke and Ferris [7] for scalar optimization problems, in order to overcome the
strong condition of isolatedness of the local sharp minima. Later, it was applied in
many other optimality frameworks, like variational inequalities and vector optimiza-
tion problems, in order to analyse the finite convergence of approximation algorithms
(see, for instance [8–10] and the references therein).

Inspired by the aforementioned ideas, in this paper we focus on the weak sharp
efficiency proposed in [4]. Our purpose is to find sufficient conditions on the objective
function entailing the existence of weak sharp efficient points, in their local version.
The approach takes advantage of variational analysis techniques, already used by the
authors, when studying sensitivity of equilibrium problems (see [11]), like regularity
and subregularity of the diagonal subdifferential map.

In [4], the condition of weak sharp efficiency is investigated through the Hölder
regularity of the ε-solution multifunction. Our goal is rather to find conditions on the
components of a vector function, that guarantee the existence of weak sharp efficient
points. The idea goes through a reformulation of the MOP via a suitable equilibrium
problem, whose solution set is exactly the set of weak efficient points of the afore-
mentioned vector function. In the same way, the set of its weak sharp efficient points
can be identified with the solution set of a “stronger” equilibrium problem, whose
solutions can be characterized by a suitable metric regularity of the so-called diagonal
subdifferential operator already studied by the authors in [11].

The paper is organized as follows: in Sect. 2, we recall some regularity and subreg-
ularity notions of maps needed in the sequel, together with some lemmata. In Sect. 3,
we investigate how the regularity properties of each function belonging to a finite
family are inherited by the convex hull map of this family. In the last section, we use
the previous results to give sufficient conditions for weak sharp efficiency.

2 Preliminaries and Notations

Let E, F be metric spaces, and T : E ⇒ F be a set-valued map. Denote by gph T the
graph of T defined as gph T := {(x, y) ∈ E × F : y ∈ T (x)}, by dom T the domain
of T defined as dom T := {x ∈ E : T (x) �= ∅}, and by T−1 : F ⇒ E the inverse
map defined as T−1(y) := {x ∈ E : y ∈ T (x)}. For any subsets A, B of a metric
space E , the excess of A beyond B is defined as

e(A, B) := sup
a∈A

d(a, B) = sup
a∈A

inf
b∈B d(a, b),

under the convention e(∅, B) := 0, and e(A,∅) := +∞, for A �= ∅.
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Let us now recall some preliminary notions concerning the regularity of a map (see,
for instance [12,13]).Wewill denote by B(x, r) the open ball centered at x with radius
r . Given a point (x, y) ∈ gph T, the set-valued map T is said to be:

(i) Metrically regular around (x, y), iff there is a positive constant k, along with
neighbourhoods U of x and V of y, such that

d(x, T−1(y)) ≤ kd(y, T (x)), ∀x ∈ U , y ∈ V; (1)

(ii) Metrically subregular at (x, y), iff there is a positive constant k, along with a
neighbourhood U of x, such that

d(x, T−1(y)) ≤ kd(y, T (x)), ∀x ∈ U; (2)

(iii) Strongly metrically subregular at (x, y), iff there is a positive constant k, along
with a neighbourhood U of x, such that

d(x, x) ≤ kd(y, T (x)), ∀x ∈ U; (3)

(iv) Calm at (x, y), iff there exist a positive constant k, and neighbourhoods U of x
and V of y, such that

e(T (x) ∩ V, T (x)) ≤ kd(x, x), ∀x ∈ U .

The metric regularity of T around (x, y), with constant k, is equivalent to the linear
openness of T around (x, y); that is, there exist positive constants k and τ, along with
neighbourhoods U of x and V of y, such that

B(y, ρ) ⊂ T (B(x, kρ)), ∀(x, y) ∈ gph T ∩ (U × V), 0 < ρ < τ.

Similarly, the metric subregularity of T at (x, y) is equivalent to the calmness of T−1

at (y, x) (see, for instance, Propositions 2.7 and 2.2 in [14]). Moreover, it follows
directly from the definition that, if T is strongly metrically subregular at (x, y), then
T−1(y) ∩ U = {x}.

In the sequel, our results will be stated in the framework of Euclidean spaces.
The space R

k will be endowed with the �1-norm, i.e., ‖x‖ = ∑k
i=1 |xi |, for every

x = (x1, . . . , xk) ∈ R
k . Denote by �k−1 the simplex in Rk given by

�k−1 =
{
λ ∈ R

k+ : ‖λ‖ = 1
}

.

The usual inner product will be denoted by 〈·, ·〉.
Let us consider a vector function F = ( f1, f2, . . . , fm) : R

n → R
m , and the

associated multiobjective optimization problem

min
x∈Rn

F(x), (MOP)

where the ordering cone in R
m is given by the nonnegative orthant.
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We will denote by WEF the set of all global weakly efficient points of the MOP,
i.e., x ∈ WEF if and only if F(z) /∈ F(x) − int(Rm+), for all z ∈ R

n .

Under the assumption that fi is differentiable for every i = 1, 2, . . . ,m, we asso-
ciate to F the set-valued map HF : Rn ⇒ R

n defined as

x �→ HF (x) = conv(∇ f1(x), . . . ,∇ fm(x)),

where conv(y1, y2, . . . , ym) = {∑m
i=1 λi yi , λi ≥ 0,

∑m
i=1 λi = 1}. It is well

known that, under the additional assumption that fi was convex on R
n for every

i = 1, 2, . . . ,m, 0 ∈ HF (x̄) if and only if x ∈ WEF ; that is,

WEF = H−1
F (0).

Indeed, the convexity of the functions fi entails that the set F(Rn) + R
m+ is a convex

subset of Rm . From [1], Ch. 5, Corollary 5.29, x ∈ WEF , if and only if there exists
λ ∈ �m−1 such that

〈λ, F(x)〉 ≤ 〈λ, F(x)〉, ∀x ∈ R
n,

i.e., x is a global minimum for the function x �→ 〈λ, F(x)〉. By the differentiability
assumption on fi , i = 1, 2, . . . ,m, this is equivalent to

∑m
i=1 λi∇ fi (x) = 0, i.e.,

0 ∈ HF (x).
The more restrictive notion of weak sharp efficient points of order β > 0, WSEβ

F ,

of the function F, has been defined in [4] as

x ∈ R
n : F(z) /∈ F(x) + αdβ(z,WEF )B(0, 1) − R

m+, (4)

for some positive α, and for all z ∈ R
n \ WEF .

Let us now recall some monotonicity notions, that will play a significant role in the
next results. A map f : Rn → R

n is said to be locally monotone at x ∈ R
n, iff there

exists a neighbourhood U(x) of x such that

〈 f (x) − f (x), x − x〉 ≥ 0, ∀x ∈ U(x). (5)

In particular, if

〈 f (x) − f (x), x − x〉 ≥ α‖x − x‖2, ∀x ∈ U(x), (6)

for some α > 0, then we say that f is locally strongly monotone at x .Note that, if f is
locally strongly monotone at x, then it is strongly metrically subregular at (x, f (x)),
with constant 1/α. In addition, f : Rn → R

n is said to be locally monotone around
x ∈ R

n, iff there exists U(x) such that

〈 f (x) − f (x ′), x − x ′〉 ≥ 0, ∀x, x ′ ∈ U(x). (7)
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Moreover, if

〈 f (x) − f (x ′), x − x ′〉 ≥ α‖x − x ′‖2, ∀x, x ′ ∈ U(x), (8)

for some α > 0, we say that f is locally strongly monotone around x . In the sequel,
when the neighbourhood is already given, the local monotonicity around a point will
be simply denoted by monotonicity in the neighbourhood.

Let us now prove a relationship between strong monotonicity and metric regularity.

Lemma 2.1 Let f : Rn → R
n be continuous and locally strongly monotone around

x, with constant α > 0. Then, f is metrically regular around (x, f (x)) along with a
suitable U ′(x) and V( f (x)) = R

n, and constant k = 1/α.

Proof Denote by U(x) the neighbourhood of x where f is strongly monotone. Let
r > 0 be such that B(x, 2r) ⊂ U(x), and set B ′ = cl B(x, 2r). We will prove that
f is open at linear rate around (x, f (x)), i.e., there exists τ > 0 such that, for every
ρ ∈]0, τ [ and every x ∈ B(x, r) = U ′(x),

B( f (x), ρ) ⊂ f (B(x, ρ/α)).

Then, the result will follow by the well-known equivalence between metric regularity
and openness at linear rate (see, for instance [14]). Consider the normal cone NB′(x)
to B ′ at x ∈ B ′, i.e.,

NB′(x) := {u ∈ R
n : 〈u, x ′ − x〉 ≤ 0, ∀x ′ ∈ B ′},

and define the operator T : Rn ⇒ R
n as follows:

T (x) =
{
f (x) + NB′(x), x ∈ B ′,
∅, x /∈ B ′.

By a classical result on monotone operators (see for instance [15]), T is maximal
monotone. Since dom T is bounded, Theorem 2.17 in [16] entails that T is surjective.
In addition,

〈u − u′, x − x ′〉 ≥ α‖x − x ′‖2, ∀x, x ′ ∈ B ′,∀u ∈ T (x), u′ ∈ T (x ′). (9)

Fix now τ = rα, let ρ ∈]0, τ [, and choose x ∈ B(x, r), and y′ ∈ B( f (x), ρ). By
(9), T is one-to-one, therefore, taking into account the surjectivity of T, there exists a
unique x ′ ∈ B ′ such that y′ ∈ T (x ′). Since T (x) = { f (x)}, by (9), where u = f (x),
u′ = y′, we get

‖x ′ − x‖ ≤ 1

α
‖y′ − f (x)‖ <

ρ

α
,
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hence x ′ ∈ B(x, ρ/α). Moreover, ‖x ′ − x‖ < ρ/α + r < 2r; this implies that
x ′ ∈ B(x, 2r), and thus T (x ′) = { f (x ′)}, and y′ ∈ f (B(x, ρ/α)), thereby proving
the openness of f around (x, f (x)), with constant 1/α. ��

3 Regularity Properties of the Convex Hull Map

Let R
nm be the product space R

n × · · · × R
n

︸ ︷︷ ︸
m times

, and define the convex hull map

conv : Rnm ⇒ R
n as follows:

conv
(
x1, x2, . . . , xm

)
=

{
m∑

i=1

λi x
i , λ ∈ �m−1

}

.

Given the functions gi : Rn → R
n , i = 1, . . . ,m, let us consider the closed and

convex valued map conv(g1, g2, . . . , gm) : Rn ⇒ R
n defined as

conv(g1, . . . , gm)(x) := conv(g1(x), g2(x), . . . , gm(x)).

This section is devoted to the investigation ofmetric regularity and calmness properties
of the map conv(g1, g2, . . . , gm).

Following [12], Section 1.3., let us first recall that a map h : Rn → R
l is said to be

calm at x ∈ R
n with constant k, iff there exists a neighbourhood U(x) of x such that

‖h(x) − h(x)‖ ≤ k‖x − x‖, ∀x ∈ U(x).

When the inequality is satisfied for every point x ′ ∈ U(x), and not only for x, then h
is said to be locally Lipschitz at x, or Lipschitz on U(x). The following proposition
holds:

Proposition 3.1 Let gi : Rn → R
n, i = 1, . . . ,m and let x ∈ R

n . If we suppose
that all the functions gi are calm at x with constant ki and common neighbour-
hood U(x), then the set-valued map conv(g1, g2, . . . , gm) is calm at (x, y) for every
y ∈ conv(g1, g2, . . . , gm)(x), with constant k = m · maxi {ki } and neighbourhood
U(x).

Proof Let us first prove that the map conv : Rnm ⇒ R
n satisfies

e
(
conv(x1, x2, . . . , xm), conv(y1, y2, . . . , ym)

)
≤

m∑

i=1

‖xi − yi‖ (10)

for every (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈ R
nm . Indeed, let us take two points

(x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈ R
nm and λ ∈ �m−1. Hence,
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∑m
i=1 λi x i ∈ conv(x1, x2, . . . , xm),

∑m
i=1 λi yi ∈ conv(y1, y2, . . . , ym). Then,

∥
∥
∥
∥
∥

(
m∑

i=1

λi x
i

)

−
(

m∑

i=1

λi y
i

)∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

m∑

i=1

λi (x
i − yi )

∥
∥
∥
∥
∥

≤
m∑

i=1

‖xi − yi‖.

This implies that, for every z ∈ conv(x1, x2, . . . , xm),

d
(
z, conv(y1, y2, . . . , ym)

)
≤

m∑

i=1

‖xi − yi‖,

and therefore (10) holds.
Now, for every x ∈ U(x), we obtain

e(conv(g1(x), . . . , gm(x)), conv(g1(x), . . . , gm(x))) ≤
m∑

i=1

‖gi (x) − gi (x)‖

≤ k‖x − x‖,

and the assertion easily follows with V(y) = R
n . ��

In order to investigate some metric regularity properties of the map
conv(g1, . . . , gm), we introduce the selections gλ : Rn → R

n, defined as

gλ(x) =
m∑

i=1

λi gi (x), λ ∈ �m−1.

Our first result provides a sufficient condition for the map gλ to be strongly metrically
subregular. The proof of this property is based on a result related to the inversemapping
theorem for strong metric subregularity (see [12], Section 3.9). As a matter of fact,
according to [12], such an inverse function theorem cannot be stated if strong metric
subregularity is relaxed to metric subregularity, since this last property is not stable
under perturbations.

Lemma 3.1 (Theorem 3I.7 in [12]) Let φ,ψ : Rn → R
n be maps, and let x ∈ R

n .

If φ is strongly metrically subregular at x with constant k, and ψ is calm at x with
constant L , with a common neighbourhood U(x), and Lk < 1, then φ +ψ is strongly
metrically subregular at x with constant k

1−Lk within U(x).

We can now prove the mentioned result about gλ:

Theorem 3.1 Let gi : Rn → R
n, i = 1, . . . ,m, and let x be a point in R

n . Suppose
that the maps satisfy the following assumptions:

(i) There exists i0 ∈ {1, 2, . . . ,m} such that gi0 is locally monotone and strongly
metrically subregular at x, with constant k;

(ii) For every i ∈ {1, 2, . . . ,m} \ {i0} , gi is calm at x, with constant Li , and locally
strongly monotone at x, with constant αi .
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Then the function gλ is strongly metrically subregular at (x, gλ(x)) with constant

k′ = k +
m∑

i=1, i �=i0

1 + kLi

αi
,

for every λ ∈ �m−1.

Proof Without loss of generality, let i0 = 1. Fix εi > 0, i = 2, . . . ,m, such that

m∑

i=2

(1 + kLi )εi < 1. (11)

Suppose first that λi ∈ [0, εi ] for every i = 2, . . . ,m. Then, by (11), we have∑m
i=2 εi < 1, and hence λ1 > 0.
Now, let us consider the map g : Rn → R

n defined as follows

g(x) =
m∑

i=2

λi gi (x).

Obviously, g is calm at x with constant
∑m

i=2 λi Li . Furthermore, since g1 is metrically
subregular at x with constant k, then λ1g1 is metrically subregular at x with constant
k/λ1. Since k

∑m
i=2 λi Li < λ1, then, by Lemma 3.1, the function gλ = λ1g1 + g is

strongly metrically subregular at (x, gλ(x)) with constant

k

λ1 − k
∑m

i=2 λi Li
. (12)

Moreover, since λi ∈ [0, εi ] for every i = 2, . . . ,m, we have

k

λ1 − k
∑m

i=2 λi Li
≤ k

(1 − ∑m
i=2 εi ) − k

∑m
i=2 εi Li

.

Therefore, the constant in (12) can be taken independent on λ, and is given by

k

(1 − ∑m
i=2 εi ) − k

∑m
i=2 εi Li

.

It remains to consider the case where the condition: λi ∈ [0, εi ] for every i =
2, . . . ,m, is not satisfied. In this case, λ = (λ1, . . . , λm) ∈ ∪m

i=2Si , where

Si = {λ ∈ �m−1 : λi ∈]εi , 1]}.

If λ ∈ Si , then the map λi gi is locally strongly monotone at x with constant λiαi ;
therefore, since λ j g j is locally monotone at x , for every j �= i (including j = 1),
the map gλ is locally strongly monotone with constant λiαi at the same point. Since
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λi > εi , the map gλ is also locally strongly monotone at x, with constant εiαi .

Therefore, from the inequality

εiαi‖x − x‖2 ≤ 〈gλ(x) − gλ(x), x − x〉 ≤ ‖gλ(x) − gλ(x)‖ ‖x − x‖,

it follows that gλ is strongly metrically subregular at x, with constant 1/εiαi .

The last part of the proof is devoted to find a uniform constant of strong metric
subregularity for every gλ,when λ is any point in�m−1. Let us consider the following
linear system of m − 1 equations with respect to m − 1 unknowns ε2, . . . , εm :

1 −
m∑

i=2

εi − k
m∑

i=2

εi Li = kε jα j , j = 2, . . . ,m

It gives, as the unique solution, ε2, . . . , εm such that:

1

ε j
= α j

(

k +
m∑

i=2

1

αi
+ k

m∑

i=2

Li

αi

)

, j = 2, . . . ,m.

Note that
∑m

i=2(1 + kLi )εi < 1. With such a choice of εi , we have that, for every
λ ∈ �m−1, the function gλ is strongly metrically subregular at x with constant k′,
where

k′ = k +
m∑

i=2

1

αi
+ k

m∑

i=2

Li

αi
= k +

m∑

i=2

1 + kLi

αi
.

��
Remark 3.1 In Theorem 3.1, themonotonicity assumption plays a central role in prov-
ing the strong metric subregularity of the selections gλ. Indeed, let
g1, g2 : R2 → R

2, given by

g1(x1, x2) = (x1, x2), g2(x1, x2) = (3, 0) + (x1,−x2)

and let x = (0, 0). The function g2 is not monotone. Since gλ(0, 0) = (3λ2, 0), the
inequality

‖x‖ ≤ k‖gλ(x1, x2) − gλ(0, 0)‖ = k‖(x1, (λ1 − λ2)x2)‖

cannot be fulfilled for any choice of k, if λ1 = λ2 = 1/2, and thus gλ is not strongly
metrically subregular. Moreover, for λi �= 1/2, the function gλ is strongly metrically
subregular at x, but the constant k cannot be chosen independent from λ.

Remark 3.2 The strong metric subregularity of the maps {gλ}λ∈�m−1 does not imply
the strong metric subregularity of the convex hull map. Take, for instance, g1, g2 :
R
2 → R

2 given by
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g1(x1, x1) = (x1, x2), g2(x1, x2) = (3, 0) + (x2,−x1).

These functions satisfy the assumptions of Theorem 3.1 at (0, 0), with all constants
equal to 1. From the final assertion of Theorem 3.1, the map gλ is strongly metri-
cally subregular at ((0, 0), gλ(0, 0)), for all λ ∈ �1. We show that the set-valued
map T (x) := conv{g1(x1, x2), g2(x1, x2)} is not strongly metrically subregular at
((0, 0), (0, 0)), i.e., it is not fulfilled that:

‖(x1, x2)‖ ≤ kd((0, 0), T (x1, x2)), (x1, x2) ∈ U(0, 0),

for any k > 0. Indeed, standard computations show that (0, 0) ∈ T (x1, x2) for every
(x1, x2) such that x21 + x22 + 3x2 = 0, and x1, x2 ≤ 0. Thus the right-hand side
evaluated at these points is 0, while the left-hand side is not.

For the reason explained in the remark above, we propose to study the metric
regularity property of the map conv(g1, g2, . . . , gm). To do this, a stronger version of
Theorem 3.1 is required. The next result is the counterpart of Lemma 3.1 for metric
regularity of the sum of two maps.

Lemma 3.2 (Theorem 3F.1 in [12]) Let φ,ψ : Rn → R
n be maps, and let x ∈ R

n .

If φ is metrically regular at x with constant k, and ψ is Lipschitz with constant L ,

with common neighbourhood U(x), and Lk < 1, then φ + ψ is metrically regular at
x with constant k

1−Lk within U(x).

Theorem 3.2 Let gi : Rn → R
n, i = 1, . . . ,m, and let x be a point in R

n . Suppose
that:

(i) There exists i0 ∈ {1, 2, . . . ,m} such that gi0 is metrically regular around
(x, gi0(x)) with constant k, and neighbourhoods U(x) and V(gi0(x)), monotone
and continuous on U(x);

(ii) For every i ∈ {1, 2, . . . ,m} \ {i0} , gi is Lipschitz, with constant Li , and strongly
monotone, with constant αi , on U(x).

Then, for every λ ∈ �m−1, the function gλ is metrically regular around (x, gλ(x))
with constant k′ = k + ∑m

i=1, i �=i0
1+kLi

αi
, along with U(x) and R

n .

Proof We follow the proof of Theorem 3.1. The case λi ∈ [0, εi ], i = 2, . . . ,m
can be similarly discussed via Lemma 3.2. When this condition is not satisfied, the
assumptions on the maps {g j }mj=2 entail that there exists i ∈ {2, 3, . . . ,m} such that

the map gλ is strongly monotone on U(x) with constant εiαi . Furthermore, gλ is
continuous as a sum of continuous maps. By Lemma 2.1, gλ is metrically regular with
constant 1

εiαi
. As in Theorem 3.1, we can find a uniform constant for metric regularity

of all the functions gλ, where λ ∈ �m−1. ��
Taking into account the uniform metric regularity of the selection maps gλ, we are

now able to prove the following result:

Theorem 3.3 Under the assumptions of Theorem 3.2, the set-valued map
conv(g1, . . . , gm) ismetrically regular around (x, y), for all y ∈ conv(g1, . . . , gm)(x),
with constant k′ = k + ∑m

i=1, i �=i0
1+kLi

αi
.
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Proof Let x ∈ U(x), and y ∈ conv(g1, . . . , gm)(x). Then y = gλ(x) for some
λ ∈ �m−1. By Theorem 3.2, gλ is metrically regular around (x, gλ(x)). By the
equivalence between metric regularity and linear openness, we have that

B(y, ρ) ⊂ gλ(B(x, ρk′)) ⊂ conv(g1, g2, . . . , gm)(B(x, ρk′)), 0 < ρ < τ,

for some positive τ. This proves the linear openness of conv(g1, . . . , gm) around
(x, y), and therefore, the assertion follows from the same equivalence. ��

Note that the conditions of the theorem above are not necessary, as the next example
highlights:

Example 3.1 Take, for instance, the functions

g1(x) =
{
x, x ∈ Q,

0, x /∈ Q,
g2(x) =

{
−x, x ∈ Q,

0, x /∈ Q.

Both of them are not open; indeed, for any x0 ∈ R, and for any positive r,

g1(B(x0, r)) ⊂ Q, g2(B(x0, r)) ⊂ Q,

therefore no open set can be included in the image of any ball. In particular, the
functions are not open at linear rate for any point x0. However, a trivial computation
shows that the set-valued map co(g1, g2), given by

conv(g1, g2)(x) =
{

[−x, x], x ∈ Q,

{0}, x /∈ Q,

is open at linear rate k = 1 around any point (x0, y0) ∈ gph conv(g1, g2).

4 Application: Weak Sharp Efficiency and Metric Subregularity

In this section, we deal with weak sharp efficiency, in its local version, for the mul-
tiobjective optimization problem. In particular, in our main result we will provide
sufficient conditions on the functions fi , that guarantee the existence of local weak
sharp efficient points.

Let F : R
n → R

m, F = ( f1, f2, . . . , fm), where fi is convex, for every i =
1, 2, . . . ,m. First of all, we reformulate the MOP as a suitable equilibrium problem,
which shares the solution set (see, for instance [17]). Denote by
ϕ : Rn × R

n → R the bifunction defined as follows:

ϕ(x, y) := max
z∈�m−1

〈z, F(y) − F(x)〉; (13)

it is easy to prove that x ∈ WEF if and only if x is a solution of (EP), i.e.,

ϕ(x, y) ≥ 0, ∀y ∈ R
n .
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Let us consider the diagonal subdifferential operator Aϕ : Rn ⇒ R
n associated to

ϕ and given by

Aϕ(x) := {x∗ ∈ R
n : ϕ(x, y) ≥ 〈x∗, y − x〉, ∀y ∈ R

n}.

Obviously, x is a solution of (EP), if and only if 0 ∈ Aϕ(x), i.e., x ∈ (Aϕ)−1(0). In
the next proposition, we strengthen this property.

Let us first recall a well-known formula for the subdifferentials of supremum func-
tions (see, for instance, Theorem 4.4.2 in [18]). Let S be a compact set in some metric
space, and let {hs}s∈S be a family of convex functions on R

n . Suppose that the map
s �→ hs(x) is upper semicontinuous for every x ∈ R

n, and the function h defined as
h(x) = sups∈S hs(x) is finite everywhere. Then

∂h(x) = cl conv(∪s∈S{∂hs(x) | hs(x) = h(x)}).

Proposition 4.1 Let F : Rn → R
m, F = ( f1, f2, . . . , fm), where fi is convex and

differentiable, for every i = 1, 2, . . . ,m, and let ϕ given by (13). Then

Aϕ(x) = HF (x), ∀x ∈ R
n,

where HF (x) = conv(∇ f1(x), . . . ,∇ fm(x)).

Proof Let x∗ ∈ HF (x), i.e., x∗ = ∑m
i=1 λi∇ fi (x), for some λ ∈ �m−1. Then, from

the convexity of fi , for every i, we get

m∑

i=1

λi ( fi (y) − fi (x)) ≥
m∑

i=1

〈λi∇ fi (x), y − x〉 = 〈x∗, y − x〉, ∀y ∈ R
n .

This implies that

ϕ(x, y) = max
z∈�m−1

〈z, F(y) − F(x)〉 ≥ 〈x∗, y − x〉, ∀y ∈ R
n, (14)

thereby implying that x∗ ∈ Aϕ(x).
Suppose now that x∗ ∈ Aϕ(x), i.e., (14) holds. Then,

x∗ ∈ ∂( max
z∈�m−1

〈z, F(·) − F(x)〉)|y=x

= cl conv

⎛

⎝
⋃

z∈�m−1

m∑

i=1

zi∇ fi (x)

⎞

⎠ = HF (x),

as required. ��
As well as a relationship holds between the solutions of the equilibrium problem

with bifunction ϕ and WEF , a connection between the set WSEβ
F and the solutions of

a “stronger” equilibrium problem defined by (13) can be highlighted.
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Proposition 4.2 Let x belong toWSEβ
F (with constant α); then,

ϕ(x, y) ≥ α

m
dβ(y, (Aϕ)−1(0)), ∀y ∈ R

n .

Conversely, if

ϕ(x, y) ≥ αdβ(y, (Aϕ)−1(0)), ∀y ∈ R
n,

then x belongs toWSEβ
F (with constant α).

Proof Note that the definition of WSEβ
F (4) can be equivalently restated as follows:

F(y) /∈ F(x) + αdβ(y,WEF )B(0, 1) − int(Rm+), ∀y ∈ R
n . (15)

By Proposition 4.1, we have that WEF = H−1
F (0) = (Aϕ)−1(0). If x ∈ WSEβ

F , then,
for every y ∈ R

n, there exists i ∈ {1, 2, . . . ,m} such that

fi (y) − fi (x) ≥ α

m
dβ(y,WEF ).

This implies that ϕ(x, y) ≥ α
m d

β(y,WEF ).

The converse implication can be easily proved, arguing by contradiction. If
x /∈ WSEβ

F , then, in particular, fi (y) − fi (x) < αdβ(y,WEF ) for every i ∈
{1, 2, . . . ,m} and for some y ∈ R

n . This implies that

〈z, F(y) − F(x)〉 < αdβ
(
y, (Aϕ)−1(0)

)
,

for every z ∈ �m−1, and thus x cannot satisfy the assumption. ��
The same result holds if we consider the local version: we say that x ∈ R

n is a
local weak sharp efficient minimum of order β > 0 (x ∈ LWSEβ

F ) iff

F(z) /∈ F(x) + αdβ(z,WEF )B(0, 1) − R
m+, (16)

for some positive α, and for all z ∈ U(x) \WEF , where U(x) is a suitable neighbour-
hood of x . In particular, if

ϕ(x, y) ≥ αdβ(y, (Aϕ)−1(0)), ∀y ∈ U(x), (17)

then x ∈ LWSEβ
F with constant α.

In the following, wewill focus on the case β = 2, and provide a sufficient condition
for (17). To this purpose, we need the next result (see Theorem 2 in [11]):

Lemma 4.1 Let ϕ : Rn × R
n → R be a bifunction, and let x ∈ R

n be such that

(i) ϕ(x, ·) is convex and lsc;
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(ii) ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y), for all y, z ∈ R
n;

(iii) Aϕ is metrically subregular at (x, 0), with neighbourhood U = B(x, r), and
k > 0.

Then, there exists U ′ = B(x, 2r/3), and 0 < c < 1/4k such that

ϕ(x, x) ≥ c d2(x, (Aϕ)−1(0)) ∀x ∈ U ′.

We can now apply Lemma 4.1 to the function ϕ defined in (13), and the next result
follows:

Proposition 4.3 Let HF be metrically subregular at (x, 0), with neighbourhood
B(x, r) and constant k. Then x ∈ LWSE2

F ,with U(x) = B(x, r ′), by taking α < k/4,
and r ′ = 2r/3.

Proof By Proposition 4.1, HF = Aϕ. By taking into account Proposition 4.2, the
assertion follows fromLemma 4.1. Indeed, condition (i) is satisfied from the convexity
of the functions fi . Moreover, for every y, y′ ∈ R

n,

ϕ(x, y) = max
z∈�m−1

〈z, F(y) − F(x)〉
≤ max

z∈�m−1
〈z, F(y′) − F(x)〉 + max

z∈�m−1
〈z, F(y) − F(y′)〉

= ϕ(x, y′) + ϕ(y′, y),

thereby (ii) holds. ��
Unfortunately, the example below shows that the local weak sharp efficiency cannot

be characterized via the metric subregularity of the map HF .

Example 4.1 Take F : R → R
2, F(t) = (|t |γ , |t |2γ ), with γ > 1 (in this case, both

functions are differentiable everywhere). For every γ, the image is the same, and t = 0
is the only weak efficient point. Note that the map HF given by

HF (t) = conv
(
γ sign(t)|t |γ−1, 2γ sign(t)|t |2γ−1

)

is never metrically subregular at (0, 0).
Indeed, d(t, H−1

F (0)) = |t |, while d(0, HF (t)) = 2γ |t |2γ−1. For t small, the
inequality d(t, H−1

F (0)) ≤ kd(0, HF (t)) does not hold for any k. On the other hand,
t = 0 belongs to LWSE2

F if and only if γ ≤ 2, since f1(t) = |t |γ ≥ α|t |2 for a
suitable α > 0, and for small values of t.

In order to get weak sharp efficient points of order 2, via Proposition 4.3, we are
now interested in giving sufficient conditions for metric subregularity of the map HF .
In the next proposition, we prove a stronger result, i.e., the metric regularity of the
map HF around a point (x, 0), which in its turn will entail that x is a local weak sharp
efficient point of order 2.
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Theorem 4.1 Let F = ( f1, f2, . . . , fm) : R
n → R

m, with fi convex and differ-
entiable for every i = 1, 2, . . . ,m. Let x ∈ WEF , and suppose that there exists a
neighbourhood U(x) of x such that:

(i) There exists i0 ∈ {1, 2, . . . ,m} such that ∇ fi0 is metrically regular around
(x,∇ fi0(x)) with constant k, along with U(x) and V(∇ fi0(x)), and continuous
on U(x);

(ii) For every i ∈ {1, 2, . . . ,m}\{i0} , ∇ fi is Lipschitz, with constant Li , and strongly
monotone, with constant αi , within U(x).

Then, HF is metrically regular around (x, 0) with constant

k′ = k +
m∑

i=1, i �=i0

1 + kLi

αi
,

along with U(x) and R
n . In particular, x ∈ LWSE2

F .

Proof By applying Theorem 3.3 for gi = ∇ fi , i = 1, 2, . . . ,m, we obtain the first
assertion. The second one is a consequence of Proposition 4.3. ��

Via Lemma 2.1, we can provide sufficient conditions on the functions { fi }mi=1, that
entail the metric regularity of HF and, as a by-product, the existence of a local weak
sharp efficient solution of MOP.

Corollary 4.1 Let F = ( f1, f2, . . . , fm) : Rn → R
m, and x ∈ WEF . Suppose that,

for some positive r , and for every i = 1, 2, . . . ,m, fi ∈ C2(B(x, r)) and is strongly
convex on B(x, r). Then, x ∈ LWSE2

F .

To conclude, note that the vector-valued function F = ( f1, f2) : R → R
2, where

f1(x) =
{
ax2, x < 0,

bx2, x ≥ 0,
f2(x) = (x − 1)2,

satisfies the assumptions of the theorem above at x = 0 for every a, b > 0, but not
those of the corollary, if a �= b.

5 Conclusions

In this paper, we study the existence of weak sharp efficient points for multiobjective
optimization problems in their local version. To obtain our results, we use differ-
ent techniques coming from variational analysis, like metric regularity and metric
subregularity of the diagonal subdifferential operator associated to a suitable chosen
equilibrium problem, strongly related to our multiobjective optimization problem.

The convex hull map built by the gradients of the objective functions plays an
important role in investigating the existence of weak sharp efficient points. Namely,
the metric regularity of this map around a certain point of its graph assures the local
weak sharpness of the first component of that point. To this aim, we first investigate
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how the regularity properties of each function belonging to a finite family are inherited
by the convex hull map of this family. We use these results to give sufficient condi-
tions for weak sharp efficiency in terms of the objective functions of the investigated
multiobjective optimization problem.
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