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1 Introduction

The image space analysis (ISA) has shown to be instrumental in unifying several
fields of the mathematical optimization theory, and to allow one to find new results,
in particular, in the field of vector optimization problems (VOPs). This Forum paper
aims at giving some perspectives on set-valued optimization by using the approach of
ISA described in [1]. Some definitions and formulas of [1] are here reproduced for the
reader’s convenience.

2 Preliminaries

Let n, �,m and k be positive integers, X a subset ofRn, andC ⊂ R
� be a convex, closed

and pointed cone with apex at the origin, which satisfies the condition C + cl C = C,

where cl denotes topological closure.∀a, b ∈ R
�,wedefine the following inequalities:
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a ≥C b ⇔ a − b ∈ C, a �C b ⇔ a − b /∈ C, a ≤C b ⇔ b − a ∈ C, a �C b ⇔ b − a /∈ C.

Assume we are given the functions f : X ⊆ R
n → R

�, and g : X ⊆ R
n → R

m and
consider the following constrained vector optimization problem:

minC0 f (x), s.t. x ∈ K := {x ∈ X : g(x) ≥ O}, (1)

where minC0 marks vector minimum with respect to the cone C0 := C\{O} : y ∈ K
is a (global) vector minimum point (in short, vmp) of (1), iff

f (y)�C 0 f (x), ∀x ∈ K . (2)

At C = R
�+, (1) becomes the classic Pareto Vector Problem.

Take an arbitrary y ∈ R
n . Consider the vector-valued map A from R

n to R
�+m

with A (x) := ( f (y) − f (x), g(x)), x ∈ X ⊆ R
n , and the sets

K := {(u, v) ∈ R
�+m : u = f (y) − f (x), v = g(x), x ∈ X},

H := {(u, v) ∈ R
�+m : u ≥C0 O�, v ≥ Om},

where R
�+m denotes the product space R

� × R
m . We observe that the setsK andH

are subsets of R
�+m , which is said to be the image space associated with (1) andK is

said to be the image of (1) under the function A . Take in particular y ∈ K . The ISA
is based on the following immediate remark: it is easy to verify that y is a vmp to (1)
if and only ifK ∩ H = ∅.

3 Some Perspectives

An extension of the fixed point approach of [2] to set-valued, in particular interval-
valued, extremum problems is conceivable. A first proposal in this direction may
consist in extending, to the set-valued case, the fixed point propositions of Sect. 4 of
[2], which characterize the solutions of a VOP. The scalarization, contained in such
a section, should produce an analogous vectorization. In this context, a special case
is that, where the image of an objective function is an interval of R. Let I denote
the set of (compact, for the sake of simplicity, due to the compulsory shortness of this
note) intervals of R. Let F be an interval-valued function; i.e., F : X ⊆ R

n → I ,
and assume that FL (and FU ) are the inferior (respectively, superior) extremum of
the interval F(x). We consider the problem:

min�
[
F(x) := (

FL(x),FU(x)
)]

, s.t. x ∈ K . (3)

K is that of (1), [a,b] denotes an interval of R, � denotes a partial order, min� denotes
minimum with respect to that partial order. Let A := [

aL , aU
]
and B := [

bL, bU
]
.
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Consider the following partial order. Pareto Partial Order (PPO): in this case, y is a
minimum point of (3), if and only if,

F(y) � F(x), ∀x ∈ K , (4)

where the symbol � means:

A � B ⇔
{
aL ≤ bL

aU ≤ bU
or

{
aL ≤ bL

aU ≥ bU
or

{
aL ≥ bL

aU ≤ bU
. (5)

We associate (3) with the following VOP:

minC(FL(x),FU(x)), s.t. x ∈ K, (6)

The meaning of minC is as for (1). If we consider the case of PPO, Condition (5)
suggests to set C := R

2+\{O} in (6). We have that y is a minimum point of (3), if and
only if it is a vmp of (6). Hence, a first step of this proposal consists in introducing
the ISA for the interval-valued problem (3), passing through the VOP (6). Note that
the case of (1) with � = 2 is not an elementary particular case, but an important one
for applications. Hence, the interest of exploiting the ISA for (1) in the case of � = 2
follows.

Remark 3.1 Because the scope is to introduce ISA in this field, and not to discuss
the partial orders, we consider only PPO. Obviously, there are infinite possible partial
orders. For instance, we could consider, the Classic Partial Order (CPO). In this case,
y is a minimum point of (3), if and only if, ∀x ∈ K , (4) holds, where the symbol �
means: A � B ⇔ aL ≤ bL , aU ≤ bU . Condition (4) suggests to set C := R

2\R
2− in

(6). Unfortunately, in this case the cone C is not convex and hence problem (6) cannot
be embedded in the format of problem (1). Anyway, in this case too, we have that y is
a minimum point of (3), if and only if it is a vmp of (6), and hence, in this case too one
can introduce the ISA for the interval-valued problem (3), passing through the VOP
(6).

A second step consists in generalizing the above approach to the classic interval-
valued optimization; more precisely, the previous familyI can be considered as a set
of intervals, which are compact subsets of a line of R

k . Also in this more general case,
we can reduce the interval-valued problem to a VOP. To this end, we suppose to be
able to introduce a (total) order on F(x), which leads to say what is FL(x) and what
FU (x), where FL(x) and FU (x) are k−vectors. In the previous case (for k = 1),
the order was not specified, because it was the usual one. Let A := [aL , aU ] and
B := [bL , bU ] elements ofI , and hence, aL , aU , bL , bU are k-vectors. We introduce
the following partial order for any pair of elements A and B of I :

A � B ⇔
{
aL ≤

R
k+ bL

aU ≤
R
k+ bU

or

{
aL ≤

R
k+ bL

aU ≥
R
k+ bU

or

{
aL ≥

R
k+ bL

aU ≤
R
k+ bU

. (7)
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Of course, instead ofRk+, we could have any cone of typeC .We consider (3), where the
objective functions are 2k andwe associatewith (3) problem (6), whereC := R

k+\{O}.
Henceforward, the development is the usual one for a VOP.

Let us now outline the third step, that is a possible application to set-valued opti-
mization. Given an ordering cone D ⊆ R

k , we want now to define the minimum of
the point-to-set map F : X ⇒ R

k . Because the present comment aims at making a
suggestion and not at giving any statement, for the sake of simplicity and shortness,
we assume that eachF (x) is compact with not empty interior, and that the following
operations are possible. ∀x ∈ X, set:

Fmin(x) := {z ∈ F (x) : (z − D) ∩ int F (x) = ∅},
Fmax(x) := {z ∈ F (x) : (z + D) ∩ int F (x) = ∅}.

Now, ∀z ∈ Fmin(x), we consider an optimization problem for which we assume that
the extremum exists and is unique; this means that ∀z ∈ Fmin(x) we can determine a
unique solution t (z) ∈ Fmax(x). An example of such a problem is :

min d(z, t), s.t. t ∈ Fmax(x), z, t ∈ R
k, (8)

where d(z, t) denotes distance function. The solution of (8) defines, ∀z ∈ Fmin(x),
the interval [z, t (z)] of R

k . Now, we consider the following interval-valued problem:

min�[z, t(z)], s.t. z ∈ Fmin(x), (9)

where, again, min� is defined as for (7), and [z, t (z)] is an interval A = [aL , aU ] of
R
k , where aL := z and aU := t (z). Again through a VOP, like described in the second

step, we achieve a solution of (9), say:

F(x) =
[
FL(x), FU (x)

]
= [

z∗(x), t (z∗(x))
]
. (10)

Now, through the above approach, the minimum of F is reduced to a VOP of type
(6).

Remark 3.2 Note that the above approach—described in the third step—takes into
account bothFmin andFmax. If we consider, for a set-valued optimization problem,
an approach only based on Fmin (as in some literature), then it could happen to have
2 sets, of the image of the set-valued map F , like F (x ′) and F (x′′), for which
Fmin(x ′) = Fmin(x ′′), but Fmax(x ′) is much different from Fmax(x ′′). In such a
case, we would not be sensitive to the difference betweenF (x ′) andF (x ′′). Instead,
this does not happen with the above approach.
An example of application of set-valued optimization to a real problem allows us to
better understand the difference between the two approaches. Consider a set of weather
stations that—for each position x of a station and possibly also as a function of time
t—take bearing of temperature, pressure and humidity. The classic approach takes into
account onlyFmin(x, t) and therefore the minimum values of the set-valued function.
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The approach proposed here also takes into accountFmax(x, t); in the above example
this means taking into consideration the excursions of the temperature, pressure and
humidity. Clearly, this second approach is more complete and more meaningful than
the classic one.

In the vector case, namely F (x) = f (x) : X → R
�, (10) becomes:

[
fmin(x), f max(x)

]
, (11)

where fmin(x) := min {f1(x), ..., f�(x)}, fmax(x) := max{f1(x), ..., f�(x)}. Ifwe adopt
PPO, then the above approach shrinks to the classic Pareto VOP. In the scalar case,
namely � = 1 and F(x) = f (x) : X → R, (10) and (11) become just f (x), and the
above approach shrinks to the classic scalar optimization.

4 Conclusions

In this note, some short and rough comments are presented on the possibility of
applying the ISA on set-valued optimization. The presentation has been outlined in
3 steps. In the first one, the ISA has been introduced for an interval-valued problem
with 2 objective functions. The second step consists in generalizing the first step to
a classic interval-valued optimization problem in R

k , where the objective functions
are 2k. Lastly, in the third step, a possible application to a set-valued optimization
problem has been suggested.
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