
J Optim Theory Appl (2018) 177:153–180
https://doi.org/10.1007/s10957-018-1272-y

Local Convergence of the Heavy-Ball Method and
iPiano for Non-convex Optimization

Peter Ochs1

Received: 18 October 2016 / Accepted: 21 March 2018 / Published online: 27 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract A local convergence result for an abstract descent method is proved. The
sequence of iterates is attracted by a local (or global) minimum, stays in its neigh-
borhood, and converges within this neighborhood. This result allows algorithms to
exploit local properties of the objective function. In particular, the abstract theory in
this paper applies to the inertial forward–backward splitting method: iPiano—a gen-
eralization of the Heavy-ball method. Moreover, it reveals an equivalence between
iPiano and inertial averaged/alternating proximal minimization and projection meth-
ods.Key for this equivalence is the attraction to a localminimumwithin a neighborhood
and the fact that, for a prox-regular function, the gradient of the Moreau envelope is
locally Lipschitz continuous and expressible in terms of the proximal mapping. In a
numerical feasibility problem, the inertial alternating projection method significantly
outperforms its non-inertial variants.

Keywords Inertial forward–backward splitting · Non-convex feasibility · Prox-
regularity · Gradient of Moreau envelopes · Heavy-ball method · Alternating
projection · Averaged projection · iPiano

Mathematics Subject Classification 90C26 · 90C30 · 65K05 · 49J52

1 Introduction

In non-convex optimization, we often content ourselves with local properties of
the objective function. Exploiting local information, such as smoothness or prox-
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regularity around the optimum, yields a local convergence theory. Local convergence
rates can be obtained or iterative optimization algorithms can be designed, which
depend on properties that are available only locally around a local optimum. For
revealing such results, it is crucial that the generated sequence, once entered such a
neighborhood of a local optimum, stays within this neighborhood and converges to a
limit point in the same neighborhood.

As an illustrative example, suppose a point close to a local minimizer can be found
by a global method, for example, by exhaustive search. In a neighborhood of the local
minimizer, we can switch to a more efficient local algorithm. The local attraction
of the local minimum assures that the generated sequence of iterates stays in this
neighborhood, i.e., the sequence does not escape to a different local minimum, and
there is no need to switch back to the (slow) global method, exhaustive search.

An important example of local properties, which we are going to exploit in this
paper, is the fact that the Moreau envelope of a prox-regular function is locally well
defined and its gradient is Lipschitz continuous and expressible using the proximal
mapping—a result that is well known for convex functions. Locally, this result can
be applied to gradient-based iterative methods for minimizing objective functions that
involve aMoreau envelope of a function.Wepursue this idea for theHeavy-ballmethod
[1,2] and iPiano [3,4] (inertial version of forward–backward splitting) and obtain new
algorithms for non-convex optimization such as inertial alternating/averaged proximal
minimization or projectionmethods. The convergence result of the Heavy-ball method
and iPiano translates directly to these newmethods in the non-convex setting. The fact
that a wide class of functions is prox-regular extends the applicability of these inertial
methods significantly.

Prox-regularity was introduced in [5] and comprises primal-lower-nice (introduced
byPoliquin [6]), second-order subsmooth, strongly amenable (see for instance [7]), and
proper lower semi-continuous convex functions. It is known that prox-regular functions
(locally) share some favorable properties of convex functions, e.g., the formula for
the gradient of a Moreau envelope. Indeed, a function is prox-regular if and only if
there exists a (function value attentive) localization of the subgradient mapping that is
monotone up to a multiple of the identity mapping [5]. In [8], prox-regularity is key to
prove local convergence of the averaged projection method using the gradient descent
method, which is a result that has motivated this paper.

The convergence proof of the gradient method in [8] follows a general paradigm
that is currently actively used for the convergence theory in non-convex optimiza-
tion. The key is the so-called Kurdyka–Łojasiewicz (KL) property [9–13], which is
known to be satisfied by semi-algebraic [14], globally subanalytic functions [15], or,
more generally, functions that are definable in an o-minimal structure [13,16]. Global
convergence of the full sequence generated by an abstract algorithm to a stationary
point is proved for functions with the KL property. The algorithm is abstract in the
sense that the generated sequence is assumed to satisfy a sufficient descent condition,
a relative error condition, and a continuity condition; however, no generation process
is specified.

The following works have also shown global convergence using the KL property
or earlier versions thereof. The gradient descent method is considered in [8,17], and
the proximal algorithm is analyzed in [8,18–20] and the non-smooth subgradient
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method in [21,22]. Convergence of forward–backward splitting (proximal gradient
algorithm) is proved in [8]. Extensions to a variable metric are studied in [23] and in
[24] with line search. A block coordinate descent version is considered in [25] and a
block coordinate variable metric method in [26]. A flexible relative error handling of
forward–backward splitting and a non-smooth version of the Levenberg–Marquardt
algorithm is explored in [27]. For proximal alternating minimization, we refer to [28]
for an early convergence result of the iterates and to [29] for proximal alternating
linearized minimization.

Inertial variants of these algorithmshave also been examined. [3] establishes conver-
gence of an inertial forward–backward splitting algorithm, called iPiano. [3] assumes
the non-smooth part of the objective to be convex, whereas [4] and [30] prove conver-
gence in the full non-convex setting, i.e., when the algorithm is applied to minimizing
the sum of a smooth non-convex function with Lipschitz gradient and a proper lower
semi-continuous function. An extension to an inertial block coordinate variable met-
ric version was studied in [31]. Bregman proximity functions are considered in [30].
A similar method was considered in [32] by the same authors. The convergence of
a generic multi-step method is proved in [33] (see also [34]). A slightly weakened
formulation of the popular accelerated proximal gradient algorithm from convex opti-
mization was analyzed in [35]. Another fruitful concept from convex optimization
is that of composite objective functions involving linear operators. This problem is
approached in [36,37]. Key for the convergence results is usually a decrease condition
on the objective function or an upper bound of the objective. TheLyapunov-type idea is
studied in [37–39]. Convergence of the abstract principle ofmajorizationminimization
methods was also analyzed in a KL framework [40,41].

The global convergence theory of an unbounded memory multi-step method was
proposed in [33]. Local convergencewas analyzed under the additional partial smooth-
ness assumption. In particular, local linear convergence of the iterates is established.
Although the fruitful concept of partial smoothness is very interesting, in this paper,
we focus on convergence results that can be inferred directly from the KL property.
In the general abstract setting, local convergence rates were analyzed in [27,42] and
for inertial methods in [34,42]. More specific local convergence rates can be found in
[18,26,28,29,43,44].

While the abstract concept in [8] can be used to prove global convergence in the
non-convex setting for the gradient descent method, forward–backward splitting, and
several other algorithms, it seems to be limited to single-step methods. Therefore, [3]
proved a slightly different result for abstract descent methods, which is applicable to
multi-step methods, such as the Heavy-ball method and iPiano. In [31], an abstract
convergence result is proved that unifies [3,4,8,27].

Contribution In this paper, we develop the local convergence theory for the abstract
setting in [3], in analogy to the local theory in [8]. Our local convergence result shows
that, for multi-step methods such as the Heavy-ball method or iPiano, a sequence that
is initialized close enough to a local minimizer

– stays in a neighborhood of the local minimum and
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– converges to a local minimizer instead of a stationary point.

This result allows us to apply the formula for the gradient of the Moreau envelope of
a prox-regular function to all iterates, which has far-reaching consequences and has
not been explored algorithmically before. We obtain several new algorithms for non-
convex optimization problems. Conceptionally, the algorithms are known from the
convex setting or from their non-inertial versions; however, there are no guarantees
for the inertial versions in the non-convex setting.

– The Heavy-ball method applied to the sum of distance functions to prox-regular
sets (resp. the sum of Moreau envelopes of prox-regular functions) coincides with
the inertial averaged projection method (resp. the inertial averaged proximal min-
imization) for these prox-regular sets (resp. functions).

– iPiano applied to the sum of the distance function to a prox-regular set (resp.
the Moreau envelope of a prox-regular function) and a simple non-convex set
(resp. function) leads to the inertial alternating projection method (resp. inertial
alternating proximal minimization) for these two sets (resp. functions).

Of course, these algorithms are only efficient when the associated proximal mappings
or projections are simple (efficient to evaluate). Beyond these local results, we provide
global convergence guarantees (see Proposition 5.5(2)) for the following methods:

– The (relaxed) alternating projection method for the feasibility problem of a convex
set and a non-convex set.

– An inertial version of the alternating projection method (iPiano applied to the
distance function to a convex set over a non-convex constraint set).

– An inertial version of alternating proximal minimization (iPiano applied to the
sum of the Moreau envelope of a convex function and a non-convex function).

Moreover, we transfer local convergence rates depending on the KL exponent of
the involved functions to the methods listed above. This result builds on a recent
classification of local convergence rates depending on the KL exponent from [34,42]
(which extends results from [27]).

Outline Section 2 introduces the notation and definitions that are used in this paper.
In Sect. 3.1, the conditions for global convergence of abstract descent methods [3,4]
are recapitulated. The main result for abstract descent methods, the attraction of local
(or global) minima, is developed and proved in Sect. 3.2. Then, the abstract local
convergence results are verified for iPiano (hence the Heavy-ball method) in Sect. 4.
The equivalence to inertial averaged/alternating minimization/projection methods is
analyzed in Sect. 5. Section 5.4 shows a numerical example of a feasibility problem.

1.1 Perspectives and Open Problems

Key for this paper is the formula for the gradient of the Moreau envelope of a func-
tion and the local capturing result that proves existence of a neighborhood of a local
minimizer containing all iterates. Exemplarily, we used this formula for iPiano (a
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forward–backward splitting-like method). However, any scheme based on gradient
steps, e.g., PALM [29], iPALM [45], variable metric iPiano [31], the quasi-Newton
method in [36], applied to objective functions involving Moreau envelopes could
make use of the Moreau envelope gradient formula, which will reveal connections to
other algorithms. Conversely, gradient-free schemes that involve proximal steps, e.g.,
Peaceman–Rachford [38], Douglas–Rachford [39], ADMM [37], can be translated
using the same formula. Since the Moreau envelope of a function is a special instance
of an infimal convolution, the gradient formula may be generalized, leading again,
to new algorithms and relations. Possibly, this requires the investigation of functions
beyond prox-regularity. Finally, using the capturing result, other local properties may
be explored, possibly allowing for an algorithmic realization of non-convex duality
results.

2 Preliminaries

Throughout this paper, we will always work in a finite-dimensional Euclidean vector
space R

N of dimension N ∈ N, where N := {1, 2, . . .}. The vector space is equipped
with the standard Euclidean norm | · | that is induced by the standard Euclidean inner
product | · | := √〈·, ·〉. The ball of radius ε > 0 around x̄ ∈ R

N , we denote by
Bε(x̄) := {x ∈ R

N : |x − x̄ | ≤ ε}.
As usual, we consider extended real-valued functions f : R

N → R, where R :=
R ∪ {+∞}, which are defined on the whole space with domain given by dom f :=
{x ∈ R

N : f (x) < +∞}. A function is called proper, if dom f 
= ∅. We define
the epigraph of f as epi f := {(x, μ) ∈ R

N+1 : μ ≥ f (x)}. The indicator function
δC of a set C ⊂ R

N is defined by δC (x) := 0, if x ∈ C , and δC (x) := +∞,
otherwise. A set-valued mapping T : R

N ⇒ R
M , with M, N ∈ N, is defined by its

graph Graph T := {(x, v) ∈ R
N × R

M : v ∈ T (x)}. The range of a set-valued
mapping is defined as rge T := ⋃

x∈RN T (x).
Akey concept in optimization andvariational analysis is that ofLipschitz continuity,

which is also known as strict continuity, is defined as in [7]:

Definition 2.1 (Strict continuity [7,Def. 9.1])A single-valuedmapping F : D → R
M

defined on D ⊂ R
N is strictly continuous at x̄ ∈ D, if

lipF(x̄) := lim sup
x,x ′→x̄

x 
=x ′

|F(x ′) − F(x)|
|x ′ − x |

is finite and lipF(x̄) is the Lipschitz modulus of F at x̄ . This is the same as saying F
is locally Lipschitz continuous at x̄ on D.

We introduce the term f -attentive convergence: A sequence (xk)k∈N is said to f -

converge to x̄ , if (xk, f (xk)) → (x̄, f (x̄)) as k → ∞, and we write xk f→ x̄ .
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Definition 2.2 (Subdifferentials [7, Def. 8.3]) The Fréchet subdifferential of f at
x̄ ∈ dom f is the set ∂̂ f (x̄) of elements v ∈ R

N such that

lim inf
x→x̄
x 
=x̄

f (x) − f (x̄) − 〈v, x − x̄〉
|x − x̄ | ≥ 0 .

For x̄ /∈ dom f , we set ∂̂ f (x̄) = ∅. The so-called (limiting) subdifferential of f at
x̄ ∈ dom f is defined by

∂ f (x̄) := {v ∈ R
N : ∃ xn f→ x̄, vn ∈ ∂̂ f (xn), vn → v} ,

and ∂ f (x̄) := ∅ for x̄ /∈ dom f .

A point x̄ ∈ dom f , for which 0 ∈ ∂ f (x̄) holds, is a called a critical point. As a direct
consequence of the definition of the limiting subdifferential, we have the following
closedness property at any x̄ ∈ dom f :

xk f→ x̄, vk → v̄, and for all k ∈ N : vk ∈ ∂ f (xk) �⇒ v̄ ∈ ∂ f (x̄) .

Definition 2.3 (Moreau envelope and proximal mapping [7, Def. 1.22]) For
f : R

N → R and λ > 0, we define the Moreau envelope

eλ f (x) := inf
w∈RN

f (w) + 1

2λ
|w − x |2 ,

and the proximal mapping

Pλ f (x) := arg min
w∈RN

f (w) + 1

2λ
|w − x |2 .

For a general function f , it might happen that eλ f (x) takes the values −∞ and the
proximal mapping is empty, i.e., Pλ f (x) = ∅. Therefore, the analysis of the Moreau
envelope is usually coupled with the following property.

Definition 2.4 (Prox-boundedness [7, Def. 1.23]) We call f : R
N → R prox-

bounded, if there exists λ > 0 such that eλ f (x) > −∞ for some x ∈ R
N . The

supremum of the set of all such λ is the threshold λ f of prox-boundedness.

In this paper, we focus on so-called prox-regular functions. These functions havemany
favorable properties locally, which otherwise only convex functions exhibit.

Definition 2.5 (Prox-regularity of functions, [7, Def. 13.27])A function f : R
N → R

is prox-regular at x̄ for v̄, if f is finite and locally lsc at x̄ with v̄ ∈ ∂ f (x̄), and there
exists ε > 0 and λ > 0 such that

f (x ′) ≥ f (x) + 〈
v, x ′ − x

〉 − 1

2λ
|x ′ − x |2 ∀x ′ ∈ Bε(x̄)

123



J Optim Theory Appl (2018) 177:153–180 159

when v ∈ ∂ f (x), |v − v̄| < ε, |x − x̄ | < ε, f (x) < f (x̄) + ε .

When this holds for all v̄ ∈ ∂ f (x̄), f is said to be prox-regular at x̄ .

The largest value λ > 0 for which this property holds is called the modulus of prox-
regularity at x̄ .

Definition 2.6 (Prox-regularity of sets, [7, Ex. 13.31]) A set C is prox-regular at x̄
for v̄ when the indicator function δC of the set C is prox-regular at x̄ for v̄. It is called
prox-regular at x̄ , when this is true for all v̄ ∈ ∂δC (x̄).

We provide several examples to show that most functions in practice are prox-
regular.

Example 2.1 A function f : R
N → R is prox-regular if, for example,1 f is

– proper lower semi-continuous (lsc) convex [7, Ex. 13.30],
– locally representable in the form f = g − ρ| · |2 with g being finite (g < +∞)
convex and ρ > 0 [7, Thm. 10.33],

– strongly amenable [7, Def. 10.23, Prop. 13.32] (e.g., C2-functions, functions of
the form g ◦ F with F being C2 and g being proper lsc convex, the maximum of
C2-function),

– lower-C2 [7, Def. 10.29, Prop. 13.33] (functions of the formmaxt∈T f (x, t), where
the zeroth, first, and second derivatives of f : R

N × T → R w.r.t. to the first block
of coordinates are continuous and T is a compact space),

– a C2-perturbation of a prox-regular function [7, Ex. 13.35],
– an indicator function of a closed convex set or of a strongly amenable set [7, Def.
10.23],

– the Moreau envelope of a prox-regular prox-bounded function [7, Prop. 13.37 and
13.34] (e.g., the distance function of a prox-regular set), or

– the indicator function of a closed set C and the distance function w.r.t. C is con-
tinuously differentiable on C � U for some open neighborhood U [46, Thm. 1.3].

– For examples of prox-regular spectral functions, we refer to [47].

Example 2.2 (Imaging problems) Several problems (image denoising, deblurring/
deconvolution, zooming, depth map fusion, etc.) may be modeled as an optimiza-
tion problem of the following form

min
x∈RN

1

2
|Ax − b|2 +

N∑

i=1

ϕ

(√
(Dx)2i + (Dx)2i+N

)

,

where A ∈ R
M×N (e.g., blurr operator), b ∈ R

M (e.g., blurry input image), D ∈
R
2N×N (e.g., finite differences) with a continuous non-decreasing function ϕ : R+ →

R+. The objective is prox-regular, for example, under the following conditions: ϕ is
convex and non-decreasing; ϕ(t) = t (TV regularization); ϕ(t) = log(1+ t2) (student
t regularization); ϕ(t) = log(1 + |t |) (at 0 where it is not C2, the power series of log
shows that log(1+|t |)−|t | ∈ C2; hence, ϕ is a C2-perturbation of a convex function).

1 For the exact statements, we provide accurate references.
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Example 2.3 (Support vector machine) The goal to find a linear decision functionmay
be formulated as the following optimization problem

min
w∈RN , b∈R

M∑

i=1

L (〈w, zi 〉 + b, yi ) + ϕ(w) ,

where, for i = 1, . . . , M , (zi , yi ) ∈ R
N × {±1} is the training set, L is a loss, and

ϕ is a regularizer. Examples are the hinge loss L (ȳi , yi ) = max(0, 1 − ȳi yi ) (which
is a maximum of C2-functions), the squared hinge loss, the logistic loss L (ȳi , yi ) =
log(1+e−ȳi yi ) (which areC2 function), etc. Prox-regular regularization functionsϕ are,
for example, the squared �2-norm |x |2, ormore in general p-norms‖x‖p

p = ∑N
i=1 |xi |p

with p > 0 (xi �→ |xi |p is C2 on R � {0} and obviously prox-regular at x̄ = 0).

For the proof of the Lipschitz property of the Moreau envelope, it will be helpful
to consider a so-called localization. A localization of ∂ f around (x̄, v̄) is a mapping
T : R

N ⇒ R
N whose graph is obtained by intersecting Graph ∂ f with some neighbor-

hood of (x̄, v̄), i.e., Graph T = Graph ∂ f ∩U for a neighborhood U of (x̄, v̄). We talk
about an f -attentive localization when Graph T = {(x, v) ∈ Graph ∂ f : (x, v) ∈
U and f (x) ∈ V } for a neighborhood U of (x̄, v̄) and a neighborhood V of f (x̄).

Finally, the convergence result we build on is only valid for functions that have the
KL property at a certain point. This property is shared, for example, by semi-algebraic
functions, globally subanalytic functions, or, more generally, functions definable in
an o-minimal structure. For details, we refer to [12,13].

Definition 2.7 (Kurdyka–Łojasiewicz property/KL property [8]) Let f : R
N → R be

an extended real-valued function and let x̄ ∈ dom ∂ f . If there exists η ∈ [0,∞], a
neighborhood U of x̄ and a continuous concave function φ : [0, η[→ R+ such that

φ(0) = 0, φ ∈ C1(0, η), and φ′(s) > 0 for all s ∈]0, η[ ,

and for all x ∈ U ∩ [ f (x̄) < f (x) < f (x̄) + η] the Kurdyka–Łojasiewicz inequality

φ′( f (x) − f (x̄))‖∂ f (x)‖− ≥ 1 (1)

holds; then, the function has the Kurdyka–Łojasiewicz property at x̄ , where
‖∂ f (x)‖− := infv∈∂ f (x) |v| is the non-smooth slope (note: inf ∅ := +∞).

If, additionally, the function is lsc and the property holds for each point in dom ∂ f ,
then f is called Kurdyka–Łojasiewicz function.

If f is closed and semi-algebraic, it is well known [9,13] that f has the KL property
at any point in dom ∂ f , and the desingularization function φ in Definition 2.7 has the
form φ(s) = c

θ
sθ for θ ∈]0, 1] and some constant c > 0. The parameter θ is known

as the KL exponent.
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3 Abstract Convergence Result for KL Functions

In this section, we establish a local convergence result for abstract descent methods,
i.e., the method is characterized by properties (H1), (H2), (H3) (see below) instead of a
specific update rule. The local convergence result is inspired by a global convergence
result proved in [3] for KL functions (see Theorem 3.1), which itself is motivated
by a slightly different result in [8]. The abstract setting in [8] can be used to prove
global and local convergence of gradient descent, proximal gradient descent, and other
(single-step) methods. However, it does not apply directly to inertial variants of these
methods. Therefore, in this section, we prove the required adaptation of the framework
in [8] to the one in [3]. We obtain a local convergence theory that also applies to the
Heavy-ball method and iPiano (see Sect. 4).

3.1 Global Convergence Results

The convergence result in [3] is based on the following three abstract conditions for
a sequence (zk)k∈N := (xk, xk−1)k∈N in R

2N , xk ∈ R
N , x−1 ∈ R

N . Fix two positive
constants a > 0 and b > 0 and consider a proper lower semi-continuous (lsc) function
F : R

2N → R. Then, the conditions for (zk)k∈N are as follows:

(H1) For each k ∈ N, it holds that

F(zk+1) + a|xk − xk−1|2 ≤ F(zk) .

(H2) For each k ∈ N, there exists wk+1 ∈ ∂F(zk+1) such that

|wk+1| ≤ b

2
(|xk − xk−1| + |xk+1 − xk |) .

(H3) There exists a subsequence (zk j ) j∈N such that

zk j → z̃ and F(zk j ) → F(z̃) , as j → ∞ .

Theorem 3.1 (Abstract global convergence, [3, Thm. 3.7]) Let the sequence
(zk)k∈N = (xk, xk−1)k∈N satisfy (H1), (H2), and (H3) for a proper lsc function
F : R

2N → R which has the KL property at the cluster point z̃ specified in (H3).
Then, the sequence (xk)k∈N has finite length, i.e.,

∞∑

k=1

|xk − xk−1| < +∞ , (2)

and converges to z̄ = z̃ where z̄ = (x̄, x̄) is a critical point of F .

Remark 3.1 In view of the proof of this statement, obviously, the same result can be
established when (H1) is replaced by F(zk+1) + a|xk+1 − xk |2 ≤ F(zk) .
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3.2 Local Convergence Results

The upcoming local convergence result shows that, once entered a region of attraction
(around a local minimizer), all iterates of a sequence (zk)k∈N satisfying (H1), (H2),
and the following growth condition (H4) stay in a neighborhood of this minimum and
converge to a minimizer in the same neighborhood (not just a stationary point). For
the convergence to a global minimizer, the growth condition (H4) is not required.

In the following, for z ∈ R
2N we denote by z1, z2 ∈ R

N the first and second block
of coordinates, i.e., z = (z1, z2). The same holds for other vectors in R

2N .

(H4) Fix z∗ ∈ R
N . For any δ > 0, there exist 0 < ρ < δ and ν > 0 such that

z ∈ Bρ(z∗) , F(z) < F(z∗) + ν , y2 /∈ Bδ(z
∗
2) ⇒ F(z) < F(y) + a

4
|z2 − y2|2

where a is the same as in (H1)–(H3).
A simple condition that implies (H4) is provided by the following lemma:

Lemma 3.1 Let F : R
2N → R be proper lsc and z∗ = (x∗, x∗) ∈ dom F a local

minimizer of F . Suppose, for any δ > 0, F satisfies the growth condition

F(y) ≥ F(z∗) − a

16
|y2 − z∗

2|2 ∀y ∈ R
2N , y2 /∈ Bδ(z

∗
2) .

Then, F satisfies (H4).

Proof Let δ > ρ and ν be positive numbers. For y = (y1, y2) ∈ R
2N with y2 /∈ Bδ(z∗

2)

and z = (z1, z2) ∈ Bρ(z∗) such that F(z) < F(z∗) + ν, we make the following
estimation:

F(y) ≥ F(z∗) − a

16
|y2 − z∗

2|2

> F(z) − ν − a

8
|y2 − z∗

2|2 + a

16
|y2 − z∗

2|2

≥ F(z) − ν − a

4
|y2 − z2|2 − a

4
|z2 − z∗

2|2 + a

16
|y2 − z∗

2|2

≥ F(z) − a

4
|y2 − z2|2 +

(
−ν − a

4
ρ2 + a

16
δ2

)
.

For sufficiently small ν and ρ the term in the parenthesis becomes positive, which
implies (H4). ��
We need another preparatory lemma, which is proved in [3]

Lemma 3.2 ( [3, Lem. 3.5]) LetF : R
2N → R be a proper lsc function which satisfies

the Kurdyka–Łojasiewicz property at some point z∗ = (z∗
1, z∗

2) ∈ R
2N . Denote by U,

η and φ : [0, η[→ R+ the objects appearing in Definition 2.7 of the KL property at
z∗. Let σ, ρ > 0 be such that Bσ (z∗) ⊂ U with ρ ∈]0, σ [.

Furthermore, let (zk)k∈N = (xk, xk−1)k∈N satisfy (H1), (H2), and

∀k ∈ N : zk ∈ Bρ(z∗) ⇒ zk+1 ∈ Bσ (z∗) with F(zk+1),F(zk+2) ≥ F(z∗) , (3)
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moreover, z0 = (x0, x−1) be such that F(z∗) ≤ F(z0) < F(z∗) + η and

|x∗ − x0| +
√
F(z0) − F(z∗)

a
+ b

a
φ(F(z0) − F(z∗)) <

ρ

2
. (4)

Then, the sequence (zk)k∈N satisfies

∀k ∈ N : zk ∈ Bρ(z∗),
∞∑

k=0

|xk −xk−1| < ∞, F(zk) → F(z∗), as k → ∞ , (5)

(zk)k∈N converges to a point z̄ = (x̄, x̄) ∈ Bσ (z∗) such that F(z̄) ≤ F(z∗). If,
additionally, (H3) is satisfied, then 0 ∈ ∂F(z̄) and F(z̄) = F(z∗).

Under Assumption (H4), the following theorem establishes the local convergence
result. Note that, thanks to Lemma 3.1, a global minimizer automatically satisfies
(H4).

Theorem 3.2 (Abstract local convergence) LetF : R
2N → R be a proper lsc function

which has the KL property at some local (or global) minimizer z∗ = (x∗, x∗) of F .
Assume (H4) holds at z∗.

Then, for any r > 0, there exist u ∈]0, r [ and μ > 0 such that the conditions

z0 ∈ Bu(z∗) , F(z∗) < F(z0) < F(z∗) + μ , (6)

imply that any sequence (zk)k∈N that starts at z0 and satisfies (H1) and (H2) has the
finite length property (2) and remains in Br (z∗) and converges to some z̄ ∈ Br (z∗), a
critical point of F with F(z̄) = F(z∗). For r sufficiently small, z̄ is a local minimizer
of F .

Proof Let r > 0. Since F satisfied the KL property at z∗, there exist η0 ∈]0,+∞],
δ ∈]0, r/

√
2[ and a continuous concave function φ : [0, η0[→ R such that φ(0) = 0,

φ is continuously differentiable and strictly increasing on ]0, η0[, and for all

z ∈ B√
2δ(z

∗) ∩ [F(z∗) < F(z) < F(z∗) + η0]

theKL inequality holds.As z∗ is a localminimizer, by choosing a smaller δ if necessary,
one can assume that

F(z) ≥ F(z∗) for all z ∈ B√
2δ(z

∗) . (7)

Let 0 < ρ < δ and ν > 0 be the parameters appearing in (H4) with δ as in (7). We
want to verify the implication in (3) with σ = √

2δ. Let η := min(η0, ν) and k ∈ N.
Assume z0, . . . , zk ∈ Bρ(z∗), with zk =: (zk

1, zk
2) = (xk, xk−1) ∈ R

N×2 and w.l.o.g.
F(z∗) < F(z0), . . . ,F(zk) < F(z∗) + η (note that if F(zk) = F(z∗), the sequence
is stationary (xk = xk+1 = xk+2 = . . .) by (H1) and the result follows directly).

123



164 J Optim Theory Appl (2018) 177:153–180

z2

z1

z∗ = (x∗, x∗)

δ
√
2δ

ρ

zk = (xk, xk−1)

zk+1 = (xk+1, xk)zk+2 = (xk+2, xk+1)

Fig. 1 An essential step of the proof of Theorem 3.2 is to show: zk ∈ Bρ(z∗) = Bρ(x∗, x∗) implies
xk+2, xk+1 ∈ Bδ(z

∗
2) = Bδ(x∗) which restricts zk+1 and zk+2 to the rectangle in the plot and thus to

B√
2δ(z

∗)

See Fig. 1 for the idea of the following steps. First, note that xk ∈ Bδ(z∗
2) as

zk ∈ Bδ(z∗). Suppose zk+2
2 = xk+1 /∈ Bδ(z∗

2). Then by (H4) and (H1), we observe
(use (u + v)2 ≤ 2(u2 + v2))

F(zk) < F(zk+2) + a

4
|xk−1 − xk+1|2

≤ F(zk) − a
(
|xk+1 − xk |2 + |xk − xk−1|2

)
+ a

4
|xk−1 − xk+1|2 ≤ F(zk) ,

which is a contradiction and therefore zk+2
2 ∈ Bδ(z∗

2).
Hence, we have zk+1 = (xk+1, xk) ∈ B√

2δ(z
∗), due to the equivalence of norms

in finite dimensions. Thanks to (7), we have F(zk+1) ≥ F(z∗). In order to verify (3),
we also need F(zk+2) ≥ F(z∗), which can be shown analogously; however, we need
to consider three iteration steps (that is the reason for the factor a

4 instead of a
2 on

the right-hand side of (H4)). The assumption that zk+3
2 = xk+2 /∈ Bδ(z∗

2) yields the
following contradiction:

F(zk) < F(zk+3) + a

4
|xk−1 − xk+2|2

≤ F(zk) − a
(
|xk+2 − xk+1|2 + |xk+1 − xk |2 + |xk − xk−1|2

)

+a

4
|xk−1 − xk+2|2

≤ F(zk) − a
(
|xk+2 − xk+1|2 + |xk+1 − xk |2 + |xk − xk−1|2

)

+a

4

(
2|xk+2 − xk+1|2 + 4|xk+1 − xk |2 + 4|xk − xk−1|2

)
≤ F(zk) .

Thus, F(zk+1),F(zk+2) ≥ F(z∗) holds, which is property (3) with σ = √
2δ.

Now, choose u, μ > 0 in (6) such that μ < η , u <
ρ
6 ,

√
μ
a + b

a φ(μ) <
ρ
3 . If z0

satisfies (6), we have
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|x∗ − x0| +
√
F(z0) − F(z∗)

a
+ b

a
φ(F(z0) − F(z∗)) <

ρ

2
,

which is (4) with μ in place of η. Using Lemma 3.2, we conclude that the sequence
has finite length, remains in Bρ(z∗), converges to z̄ ∈ Bσ (z∗), and F(zk) → F(z∗)
andF(z̄) ≤ F(z∗), which is only allowed forF(z̄) = F(z∗). Therefore, the sequence
also has property (H3), and thus, z̄ is a critical point of F . Property (7) shows that z̄
is a local minimizer for sufficiently small r . ��
Remark 3.2 The assumption in (H4) and Lemma 3.1 only restrict the behavior of the
function along the second block of coordinates of z = (z1, z2) ∈ R

2N . This makes
sense, because, for sequences that we consider, the first and second block depend on
each other.

Remark 3.3 Unlike Theorem 3.1, the local convergence theorem (Theorem 3.2) does
not require (H3) explicitly. If Theorem 3.1 assumes the KL property at some z∗ (not
the cluster point z̃ of (H3)), convergence to a point z̄ in a neighborhood of z∗ with
F(z̄) ≤ F(z∗) can be shown. However,F(z̄) < F(z∗)might happen, which disproves
F-attentive convergence of zk → z̄; thus, z̄ would not be a critical point. Assuming
z̃ = z∗ by (H3) assures the F-attentive convergence, and thus, z̄ is a critical point.
Because of the local minimality of z∗ in Theorem 3.2, F(z̄) < F(z∗) cannot occur,
and therefore, (H3) is implied.

Before deriving the convergence rates, we apply Theorem 3.2 and Lemma 3.1 to show
a useful example of a feasibility problem.

Example 3.1 (Semi-algebraic feasibility problem) Let S1, . . . , SM ⊂ R
N be semi-

algebraic sets such that
⋂M

i=1 Si 
= ∅ and let F : R
N → R be given by F(x) =

1
2

∑M
i=1 dist(x, Si )

2. For a constant c ≥ 0, we consider the function F(z) =
F(z1, z2) = F(z1) + c|z1 − z2|2. Suppose z∗ = (x∗, x∗) is a global minimizer
of F , i.e., x∗ ∈ ⋂M

i=1 Si . Then, for z0 = (x0, x−1) sufficiently close to z∗, any algo-
rithm that satisfies (H1) and (H2) and starts at z0 generates a sequence that remains in
a neighborhood of z∗ has the finite length property and converges to a point z̄ = (x̄, x̄)

with x̄ ∈ ⋂M
i=1 Si .

Finally, we complement our local convergence result by the convergence rate esti-
mates from [34,42]. Assuming the objective function is semi-algebraic, in [34, Thm.s
2 and 4] which build on [27, Thm. 3.4], a list of qualitative convergence rate estimates
in terms of the KL exponent is proved. For estimations on the KL exponent, the inter-
ested reader is referred to [42,48–50], which include estimations of the KL exponent
for convex polynomials, functions that can be expressed as the maximum of finitely
many polynomials, functions that can be expressed as supremum of a collection of
polynomials over a semi-algebraic compact set under suitable regularity assumptions,
and relations to the Luo–Tseng error bound.

Theorem 3.3 (Convergence rates) Let (zk)k∈N = (xk, xk−1)k∈N satisfy (H1), (H2),
and (H3) for a proper lsc function F : R

2N → R with KL exponent θ , which has the
KL property at the critical point z̃ = z∗ specified in (H3).
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1. If θ = 1, then zk converges to z∗ in a finite number of iterations.
2. If 1

2 ≤ θ < 1, then F(zk) → F(z∗) and xk → x∗ linearly.

3. If 0 < θ < 1
2 , then F(zk) − F(z∗) ∈ O(k

1
2θ−1 ) and |xk − x∗| ∈ O(k

θ
2θ−1 ).

Proof Using Theorem 3.1, (zk)k∈N converges to z∗ and F(zk) → F(z∗) as k →
∞. W.l.o.g. we can assume that F(zk) > F(z∗) for all k ∈ N. By convergence of
(zk)k∈N and (H1), there exists k0 such that the KL inequality (1) with f = F holds
for all k ≥ k0. Let U , φ, η be the objects appearing in Definition 2.7. Now, using
(u + v)2 ≤ 2(u2 + v2) for u, v ∈ R to bound the terms on the right-hand side of (H2)
and substituting (H1) into the resulting terms, the squared KL inequality (1) at index
k yields

b2

2a

(
φ′(F(zk) − F(z∗))

)2(F(zk−1) − F(zk+1)
) ≥ 1 .

As φ′(s) = csθ−1 is non-increasing for θ ∈ [0, 1], we have φ′(F(zk) − F(z∗)) ≤
φ′(F(zk+1) − F(z∗)). The remainder of the proof is identical to [34] starting from
[34, Inequality (7)], which yields the rates for (F(zk))k∈N.

In the following, we prove the rates for (xk)k∈N. We make use of an intermediate
result from the proof of [3, Lem. 3.5] (cf. Lemma 3.2). The starting point is [3,
Inequality (6)], restricted to terms with index k ≥ K , K ∈ N:

∑

k≥K

|xk − xk−1| ≤ 1

2
|x K − x K−1| + b

a
φ(F(zK ) − F(z∗)) .

The triangle inequality shows that the left-hand side is an upper bound for |x K −x∗|.
Using (H1) to bound the right-hand side yields:

|x K − x∗| ≤
∑

k≥K

|xk − xk−1| ≤ c′′ (φ(F(zK ) − F(z∗)) +
√
F(zK ) − F(z∗)

)

for some constant c′′ > 0. If θ ∈ [ 12 , 1[, for F(zK ) − F(z∗) < 1, the second term
upper-bounds the first one, and F(zK ) → F(z∗) is linear. For θ ∈]0, 1

2 [ the first term
dominates, hence |x K − x∗| ∈ O(φ(F(zK ) − F(z∗))). ��

4 Local and Global Convergence of iPiano

In this section, we briefly review the method iPiano and verify that the abstract con-
vergence results from Sect. 3 hold for this algorithm.

iPiano applies to structured non-smooth and non-convex optimization problems
with a proper lower semi-continuous (lsc) function h : R

N → R, N ≥ 1:

min
x∈RN

h(x) , h(x) = f (x) + g(x) (8)

that satisfies the following assumption.
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Assumption 1 For U ⊂ R
N , the following properties hold:

– The function f : U → R is assumed to be C1-smooth (possibly non-convex) with
L-Lipschitz continuous gradient on dom g ∩ U , L > 0.

– The function g : U → R is proper, lsc, possibly non-smooth and non-convex,
simple and prox-bounded.

– The function h restricted to U is bounded from below by h > −∞ and coercive,
i.e., |x | → ∞ with x ∈ U implies that h(x) → ∞.

Remark 4.1 As we will use Assumption 1, either with U = R
N or with U = Br ′(x∗)

for some r ′ > 0, the coercivity assumption reduces either to the usual definition
(U = R

N ) or is empty (since Br ′(x∗) is bounded). The coercivity property could be
replaced by the assumption that the sequence that is generated by the algorithm is
bounded.

Remark 4.2 Simple refers to the fact that the associated proximal map can be solved
efficiently for the global optimum.

iPiano is outlined in Algorithm 1. For g = 0, iPiano coincides with the Heavy-ball
method (inertial gradient descent or gradient descent with momentum).

In [4], functions g that are semi-convex received special attention. The resulting step
size restrictions for semi-convex functions g are similar to those of convex functions.
A function is said to be semi-convex with modulus m ∈ R, if m is the largest value
such that g(x)− m

2 |x |2 is convex. For convex functions, m = 0 holds, and for strongly
convex functions m > 0. We assume m < L . According to [7, Thm. 10.33], saying a
function g is (locally) semi-convex on an open set V ⊂ dom g is the same as saying g
is lower-C2 on V . Nevertheless, the function g does not need to be semi-convex. This
property is just used to improve the bounds on the step size parameters.

Remark 4.3 For simplicity, we describe the constant step size version of iPiano. How-
ever, all results in this paper are also valid for the backtracking line-search version of
iPiano.

Algorithm 1 iPiano

– Optimization problem:

(8) with Assumption 1 for

{
U = R

N

U = Br ′(x∗) for a local minimizer x∗ and r ′ > 0.

– Initialization: Choose a starting point x0 ∈ dom h ∩ U and set x−1 = x0.
– Iterations (k ≥ 0): Update:

yk = xk + β(xk − xk−1)

xk+1 ∈ arg min
x∈RN

g(x) +
〈
∇ f (xk), x − xk

〉
+ 1

2α
|x − yk |2 .

(9)

– Parameter setting: See Table 1.
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Table 1 Convergence of iPiano as stated in Corollaries 4.1, 4.2, and 4.3 is guaranteed for the parameter
settings listed in this table (for g convex, see [3, Algorithm 2], otherwise see [4, Algorithm 3])

Method f g α β

Gradient descent f ∈ C1+ g ≡ 0 α ∈]0, 2
L [ β = 0

Heavy-ball method f ∈ C1+ g ≡ 0 α ∈]0, 2(1−β)
L [ β ∈ [0, 1[

PPA f ≡ 0 g convex α > 0 β = 0

FBS f ∈ C1+ g convex α ∈]0, 2
L [ β = 0

FBS (non-convex) f ∈ C1+ g non-convex α ∈]0, 1
L [ β = 0

iPiano f ∈ C1+ g convex α ∈]0, 2(1−β)
L [ β ∈ [0, 1[

iPiano f ∈ C1+ g non-convex α ∈]0, (1−2β)
L [ β ∈ [0, 1

2 [
iPiano f ∈ C1+ g m-semi-convex α ∈]0, 2(1−β)

L−m [ β ∈ [0, 1[
Note that for local convergence, also the required properties of f and g are required to hold only locally.
iPiano has several well-known special cases, such as the gradient descent method, Heavy-ball method,
proximal point algorithm (PPA), and forward–backward splitting (FBS). C1+ denotes the class of functions
whose gradient is strictly continuous (Lipschitz continuous)

The following convergence results hold for iPiano.

Corollary 4.1 (Global convergence of iPiano [4, Thm. 6.6])Let (xk)k∈N be generated
by Algorithm 1 with U = R

N . Then, the sequence (zk)k∈N with zk = (xk, xk−1)

satisfies (H1), (H2), (H3) for the function (for some κ > 0)

Hκ : R
2N → R ∪ {∞} , (x, y) �→ h(x) + κ|x − y|2 . (10)

Moreover, if Hκ(x, y) has the Kurdyka–Łojasiewicz property at a cluster point
z∗ = (x∗, x∗), then the sequence (xk)k∈N has the finite length property, xk → x∗ as
k → ∞, and z∗ is a critical point of Hκ ; hence, x∗ is a critical point of h.

Corollary 4.2 (Local convergence of iPiano) Let (xk)k∈N be generated by Algo-
rithm 1 with U = Br ′(x∗) for some r ′ > 0, where x∗ is a local (or global) minimizer
of h. Then, z∗ = (x∗, x∗) is a local (or global) minimizer of Hκ (defined in (10)).
Suppose (H4) holds at z∗ and Hκ has the KL property at z∗.

Then, for any r > 0 (in particular for r = r ′), there exist u ∈]0, r [ and μ > 0 such
that the conditions

x0 ∈ Bu(x∗) , h(x∗) < h(x0) < h(x∗) + μ ,

imply that the sequence (xk)k∈N has the finite length property and remains in Br (x∗)
and converges to some x̄ ∈ Br (x∗), a critical point of h that satisfies h(x̄) = h(x∗).
For r sufficiently small, z̄ is a local minimizer of h.

Proof Corollary 4.1 shows that Algorithm 1 generates a sequence that satisfies (H1),
(H2), (H3) with Hκ . Therefore, obviously, Theorem 3.2 can be applied. ��
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Corollary 4.3 (Convergence rates for iPiano) Let (xk)k∈N be generated by Algo-
rithm 1 and set zk := (xk, xk−1). If Hκ , defined in (10), has the KL property at
z∗ = (x∗, x∗) specified in (H3) with KL exponent θ , then the following rates of con-
vergence hold for some C > 0:

1. If θ = 1, then xk converges to x∗ in a finite number of iterations.
2. If 1

2 ≤ θ < 1, then h(xk) → h(x∗) and xk → x∗ linearly.

3. If 0 < θ < 1
2 , then h(xk) − h(x∗) ∈ C(k

1
2θ−1 ) and |xk − x∗| ∈ O(k

θ
2θ−1 ).

Proof Corollary 4.1 shows that Algorithm 1 generates a sequence that satisfies (H1),
(H2), (H3) for Hκ . Therefore, the statement follows from Theorem 3.3 and the facts
that Hκ(x∗, x∗) = h(x∗) and h(xk) ≤ Hκ(xk, xk−1). ��
Remark 4.4 In [42, Thm. 3.6], Li and Pong show that if h has the KL exponent
θ ∈]0, 1

2 ] at x∗, then Hκ has the same KL exponent at z∗ = (x∗, x∗).

5 Inertial Averaged/Alternating Minimization

In this section, we transfer the convergence result developed for iPiano in Sect. 4 to
various non-convex settings (Sects. 5.1, 5.2, 5.3 ). This yields inertial algorithms for
non-convex problems that are known from the convex setting as averaged or alternating
proximal minimization (or projection) methods. Key for the generalization to the
non-convex and inertial setting is an explicit formula for the gradient of the Moreau
envelope of a prox-regular function (Proposition 5.2), which is well known for convex
functions (Proposition 5.1), and the local convergence results in Theorem 3.2. For
completeness, we state the formula in the convex setting, before we devote ourselves
to the prox-regular setting.

Proposition 5.1 ([51, Prop. 12.29]) Let f : R
N → R be a proper lower semi-

continuous (lsc) convex function and λ > 0. Then, eλ f is continuously differentiable
and has the λ−1-Lipschitz continuous gradient

∇eλ f (x) = 1

λ
(x − Pλ f (x)) . (11)

Proposition 5.2 Suppose that f : R
N → R is prox-regular at x̄ for v̄ = 0 and that f

is prox-bounded. Then for all λ > 0 sufficiently small, there is a neighborhood of x̄
on which

1. Pλ f is monotone, single-valued and Lipschitz continuous and Pλ f (x̄) = x̄ .
2. eλ f is differentiable with ∇(eλ f )(x̄) = 0, in fact ∇(eλ f ) is strictly continuous

with
∇eλ f = λ−1(I − Pλ f ) = (λI + T −1)−1 (12)

for an f -attentive localization T of ∂ f at (x̄, 0), where I denotes the identity
mapping. This localization can be chosen so that the set Uλ := rge (I + λT )

serves for all λ > 0 sufficiently small as a neighborhood of x̄ on which these
properties hold.
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3. There is a neighborhood of x̄ on which for small enough λ the local Lipschitz
constant of ∇eλ f is λ−1. If λ0 is the modulus of prox-regularity at x̄ , then λ ∈
]0, λ0/2[ is a sufficient condition.

4. Any point x̃ ∈ Uλ with ∇eλ f (x̃) = 0 is a fixed point of Pλ f and a critical point
of f .

Proof While Items 1 and 2 are proved in [7, Prop. 13.37], Items 3 (estimation of the
local Lipschitz constant) and 4 are not explicitly verified. To prove Items 3 and 4, we
develop the basic objects that are required in the same way as [7, Prop. 13.37]. Thus,
the first part of the proof coincides with [7, Prop. 13.37].

Without loss of generality, we can take x̄ = 0. As f is prox-bounded, the condition
for prox-regularity may be taken to be global, cf. [7, Prop. 8.46(f)], i.e., there exists
ε > 0 and λ0 > 0 such that

f (x ′) > f (x) + 〈
v, x ′ − x

〉 − 1

2λ0
|x ′ − x |2 ∀x ′ 
= x (13)

when v ∈ ∂ f (x), |v| < ε, |x | < ε, f (x) < f (0) + ε . (14)

Let T : R
N ⇒ R

N be the f -attentive localization of ∂ f specified in (14), i.e., defined
by Graph T = {(x, v) : v ∈ ∂ f (x), |v| < ε, |x | < ε, f (x) < f (0) + ε}. Inequality
(13) is valid for any λ ∈]0, λ0[. Setting u = x + λv, inequality (13) (with λ instead of
λ0) implies f (x ′)+ 1

2λ |x ′ −u|2 > f (x)+ 1
2λ |x −u|2. Therefore, Pλ f (x +λv) = {x}

when v ∈ T (x). In general, for any u sufficiently close to 0, thanks to Fermat’s
rule on the minimization problem of Pλ f (u), we have for any x ∈ Pλ f (u) that
v = (u − x)/λ ∈ T (x) holds. Thus, Uλ = rge (I + λT ) is a neighborhood of 0 on
which Pλ f is single-valued and coincides with (I + λT )−1.

3. Let u = x+λv and u′ = x ′+λv′ be any two elements inUλ such that x = Pλ f (u)

and x ′ = Pλ f (u′). Then, (x, v) and (x ′, v′) belong to Graph T . Thus, we can add two
copies of (13) where in the second copy the roles of x and x ′ are swapped. This sum
yields for any λ1 ∈]0, λ0[ instead of λ0 in (13):

0 ≥ 〈
v − v′, x ′ − x

〉 − 1

λ1
|x ′ − x |2 . (15)

We substitute v with (u − x)/λ and v′ with (u′ − x ′)/λ which yields

0 ≤ 1

λ1
|x ′ − x |2 + 1

λ

〈
(u′ − x ′) − (u − x), x ′ − x

〉

= 1

λ

〈
u′ − u, x ′ − x

〉 +
(

1

λ1
− 1

λ

)

|x ′ − x |2

or, equivalent to that
〈
u′ − u, x ′ − x

〉 ≥ (1 − λ
λ1

)|x ′ − x |2.
This expression helps to estimate the local Lipschitz constant of the gradient of the

Moreau envelope. Using the closed-form description of ∇eλ f on Uλ, we verify the
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λ−1-Lipschitz continuity of ∇eλ f as follows, when λ ≤ 1
2λ1:

λ2|∇eλ f (u) − ∇eλ f (u′)|2 = |(u − u′) − (Pλ f (u) − Pλ f (u′))|2
= |x − x ′|2 − 2

〈
u − u′, x − x ′〉 + |u − u′|2

≤ (2 λ
λ1

− 1)|x − x ′|2 + |u − u′|2 ≤ |u − u′|2

4. Now, let x̃ ∈ Uλ be a point for which ∇eλ f (x̃) = 0 holds. Then, according to
(12), we have x̃ = Pλ f (x̃) or x̃ = (I + λT )−1(x̃) for the localization selected above.
Inverting the mapping shows that x̃ ∈ x̃ + λT (x̃), which implies that 0 ∈ T (x̃), thus
0 ∈ ∂ f (x̃). ��
Remark 5.1 The proof of Item (iii) of Proposition 5.2 is motivated by a similar deriva-
tion for distance functions and projection operators in [52]. See [53], for a recent
analysis of the differential properties of the Moreau envelope in the infinite- dimen-
sional setting.

5.1 Heavy-Ball Method on the Moreau Envelope

Proposition 5.3 (Inertial proximal minimizationmethod) Let the function f : R
N →

R be prox-regular at x∗ for v∗ = 0 with modulus λ0 > 0 and prox-bounded with
threshold λ f > 0. Let 0 < λ < min(λ f , λ0/2), β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[.
Suppose that h = eλ f has a local minimizer x∗ and Hκ , defined in (10), satisfies
(H4) and the KL property at (x∗, x∗). Let x0 = x−1 with x0 ∈ R

N and (xk)k∈N be
generated by

xk+1 ∈ (1 − αλ−1)xk + αλ−1Pλ f (xk) + β(xk − xk−1) .

If x0 is sufficiently close to x∗, then sequence (xk)k∈N
– is uniquely determined,
– has the finite length property,
– remains in a neighborhood of x∗,
– and converges to a critical point x̃ of f with f (x̃) = f (x∗).

If f is convex, and λ > 0, β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[, then (xk)k∈N has finite
length and converges to a global minimizer x̃ of f for any x0 ∈ R

N .

Proof The statement is an application of the results for the Heavy-ball method (i.e.,
(8) with g ≡ 0) to the Moreau envelope eλ f of the function f . Note that Hκ inherits
the KL property from h (see Remark 4.4).

Since f is prox-bounded with threshold λ f , the function is bounded from below
and coercive for λ < λ f . As λ < λ0/2, Proposition 5.2 can be used to conclude that
there exists a neighborhood Uλ of x∗ such that eλ f is differentiable on Uλ and ∇eλ f
is λ−1-Lipschitz continuous.

There exists a neighborhood U ⊂ Uλ of x∗ which contains x0 and Corollary 4.2
can be applied. Therefore, the Heavy-ball method (Algorithm 1 with g ≡ 0) with
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0 < α < 2(1−β)λ and β ∈ [0, 1[ generates a sequence (xk)k∈N that lies in U . Using
the formula in (12), the update step of the Heavy-ball method applied to eλ f reads as
follows:

xk+1 = xk − α∇eλ f (xk) + β(xk − xk−1)

= xk − αλ−1(xk − Pλ f (xk)) + β(xk − xk−1)

= (1 − αλ−1)xk + αλ−1Pλ f (xk) + β(xk − xk−1) .

By Proposition 5.21, Pλ f is single-valued, and by Proposition 5.24, 0 ∈ ∂ f (x̃). The
remaining statements follow from Corollary 4.2.

The statement about convex functions follows analogously by using Proposition 5.1
instead of Proposition 5.2 and Corollary 4.1 instead of Corollary 4.2. ��

Remark 5.2 Corollary 4.3 provides convergence rates for Proposition 5.3.

Remark 5.3 The question, whether h = eλ f has the KL property, if f has the KL
property, has been analyzed for convex functions in [42]. For non-convex functions,
this is a non-trivial open problem.

5.2 Heavy-Ball Method on the Sum of Moreau Envelopes

Proposition 5.4 (Inertial averaged proximal minimization method) Suppose
fi : R

N → R, i = 1, . . . , M are prox-regular functions at x∗ for v∗ = 0 with mod-
ulus λ0 > 0 and prox-bounded with threshold λ f > 0. Let 0 < λ < min(λ f , λ0/2),
β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[. Suppose that h = ∑M

i=1 eλ fi has a local mini-
mizer x∗ and Hκ , defined in (10), satisfies (H4) and the KL property at (x∗, x∗). Let
x0 = x−1 with x0 ∈ R

N and (xk)k∈N be generated by

xk+1 ∈ (1 − αλ−1)xk + α

M
λ−1

M∑

i=1

Pλ fi (xk) + β(xk − xk−1) .

If x0 is sufficiently close to x∗, then sequence (xk)k∈N

– is uniquely determined,
– has the finite length property,
– remains in a neighborhood of x∗,
– and converges to a critical point x̃ of h with h(x̃) = h(x∗).

If all fi are convex, and λ > 0, β ∈ [0, 1[, and α ∈]0, 2(1 − β)λ[, then (xk)k∈N has
finite length and converges to a global minimizer x̃ of h for any x0 ∈ R

N .
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Proof The proof is analogously to that of Proposition 5.3 except for the fact that the
Heavy-ball method is applied to

∑M
i=1 eλ fi :

xk+1 = xk − α

M

M∑

i=1

∇eλ fi (xk) + β(xk − xk−1)

= xk − α

M
λ−1

M∑

i=1

(xk − Pλ fi (xk)) + β(xk − xk−1)

= (1 − αλ−1)xk + α

M
λ−1

M∑

i=1

Pλ fi (xk) + β(xk − xk−1) .

Instead of scaling the feasible range of step sizes for α, the scaling 1
M is included in

the update formula. ��
Remark 5.4 Corollary 4.3 provides convergence rates for Proposition 5.4.

Remark 5.5 In contrast to Proposition 5.3, the sequence of iterates converges to a
point x̃ for which

∑M
i=1 ∇eλ fi (x̃) = 0 holds. We cannot directly conclude that 0 ∈

∂(
∑

i fi )(x̃). However, if ∇eλ fi (x̃) = 0 for all i = 1, . . . , M , then under suitable
qualification and regularity conditions (see [7, Cor. 10.9]), we can conclude that x̃ is
a critical point of

∑M
i=1 fi .

Example 5.1 (Inertial averaged projection method for the semi-algebraic feasibility
problem) The algorithm described in Proposition 5.4 can be used to solve the semi-
algebraic feasibility problem of Example 3.1. The conditions in Example 3.1 are
satisfied.

5.3 iPiano on an Objective Involving a Moreau Envelope

Proposition 5.5 (Inertial alternating proximal minimization method) Suppose
f : R

N → R is prox-regular at x∗ for v∗ = 0 with modulus λ0 > 0 and prox-
bounded with threshold λ f > 0. Let 0 < λ < min(λ f , λ0/2). Moreover, suppose
that g : R

N → R is proper, lsc, and simple. Let x0 = x−1 with x0 ∈ R
N and let the

sequence (xk)k∈N be generated by the following update rule

xk+1 ∈ Pαg
(
(1 − αλ−1)xk + αλ−1Pλ f (xk) + β(xk − xk−1)

)
.

We obtain the following cases of convergence results:

1. Assume that h = g+eλ f has a local minimizer x∗ and Hκ , defined in (10), satisfies
(H4) and the KL property at (x∗, x∗). If x0 is sufficiently close to x∗, and α, β are
selected according the property of g in one of the last three rows of Table 1 with
L = λ−1, then the sequence (xk)k∈N
– has the finite length property,
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– remains in a neighborhood of x∗,
– and converges to a critical point x̃ of h with h(x̃) = h(x∗).

2. Assume that f is convex, h = g+eλ f and x∗ is a cluster point of (xk)k∈N. Suppose
Hκ , defined in (10), has the KL property at (x∗, x∗). Then, for any x0 ∈ R

N , and
α, β selected according the property of g in one of the last three rows of Table 1
with L = λ−1, the sequence (xk)k∈N

– has the finite length property,
– and converges to a critical point x̃ of h with h(x̃) = h(x∗).

If g is convex, the sequence (xk)k∈N is uniquely determined.

Proof The proof follows analogously to that of Proposition 5.3 by, either invoking
Proposition 5.2 and Corollary 4.2 or Proposition 5.1 and Corollary 4.1. ��

Remark 5.6 Corollary 4.3 provides convergence rates for Proposition 5.5.

Example 5.2 (Inertial alternating projection for the semi-algebraic feasibility prob-
lem)

– The algorithm described in Proposition 5.5 can be used to solve the semi-algebraic
feasibility problem of Example 3.1 with M = 2. The conditions in Example 3.1
are satisfied.

– If S1 is non-convex and S2 convex, the second case of Proposition 5.5 yields
a globally convergent relaxed alternating projection method with g = δS1 and
f = δS2 . Table 1 requires the step size conditions β ∈ [0, 1

2 [ and α ∈]0, 1 − 2β[
(note that λ = 1), which for β = 0 yields α ∈]0, 1[, which leads to the following
update step:

xk+1 ∈ projS1((1 − α)xk + α projS2(xk))

Example 5.3 The algorithm described in Proposition 5.5 can be used to solve a relaxed
version of the following problem:

min
x1,...,xM ∈RN

M∑

i=1

gi (xi ) , s.t. x1 = . . . = xM ,

where the convex constraint is replaced by the associated distance function. The func-
tions gi : R

N → R, i = 1, . . . , M , M ∈ N, are assumed to be proper, lsc, simple, and
x = (x1, . . . , xM ) ∈ R

N×M is the optimization variable. This problem belongs to the
second case of Proposition 5.5, i.e., the sequence generated by the inertial alternating
proximal minimizationmethod converges globally to a critical point x∗ of the function∑M

i=1 gi (xi ) + 1
2 (dist(x, C))2 where C := {(x1, . . . , xM ) ∈ R

N×M : x1 = . . . =
xM }. The proximal mapping of 1

2 (dist(x, C))2 is the projection onto C , which simply
averages x1, . . . , xM .
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5.4 Application: A Feasibility Problem

We consider the example from [54] that demonstrates (local) linear convergence of
the alternating projection method. The goal is to find an N × M matrix X of rank R
that satisfies a linear system of equations A(X) = B, i.e.,

find X in {X ∈ R
N×M : A(X) = B}

︸ ︷︷ ︸
=:A

∩ {X ∈ R
N×M : rank(X) = R}

︸ ︷︷ ︸
=:R

,

where A : R
N×M → R

D is a linear mapping and B ∈ R
D . Such feasibility problems

are well suited for split projection methods, as the projection onto each set might be
easy to conduct. The projections are given by

projA (X) = X − A∗(AA∗)−1(A(X) − B) and projR(X) =
R∑

i=1

σi uiv
�
i ,

where U SV � is the singular value decomposition of X with U = (u1, u2, . . . , uN ),
V = (v1, v2, . . . , vM ) and singular values σ1 ≥ σ2 ≥ . . . ≥ σN sorted in decreasing
order along the diagonal of S. Note that the set of rank-R matrices is a C2-smooth
manifold [55, Ex. 8.14], hence prox-regular [7, Prop. 13.33].

We perform the same experiment as in [54], i.e., we randomly generate an
operator A by constructing random matrices A1, …, AD and setting A(X) =
(〈A1, X〉 , . . . , 〈AD, X〉), 〈Ai , X〉 := trace(A� X), selecting B such that A(X) = B
has a rank R solution, and the dimensions are chosen as M = 110, N = 100, R = 4,
D = 450. The performance is measured w.r.t. |A(X) − B| where X is the result of
the projection onto R in the current iteration.

We consider the alternating projection method Xk+1 = projR(projA (Xk)), the
averaged projection method Xk+1 = 1

2

(
projA (Xk) + projR(Xk)

)
, the globally

convergent relaxed alternating projection method from Example 5.2 (glob-altP,
α = 0.99), and their inertial variants proposed in Sects. 5.2 and 5.3. For Heavy-ball
method/inertial averaged projection (loc-hb-avgP-bt, β = 0.75) in Sect. 5.2
applied to the objective dist(X,A )2 + dist(X,R)2, we use the backtracking
line-search version of iPiano [3, Algorithm 4] to estimate the Lipschitz constant
automatically. For iPiano/inertial alternating projection (glob-ipiano-altP) in
Sect. 5.3 applied to minX∈R 1

2 (dist(X,A ))2 (i.e., g non-convex, f smooth con-
vex), we use β = 0.45 ∈ [0, 1

2 [ and α = 0.99(1 − 2β)/L with L = 1, which
guarantees global convergence to a stationary point, and a backtracking version
(glob-ipiano-altP-bt) [4,Algorithm5].Moreover, for the same setting,weuse
a heuristic version (heur-ipiano-altP,β = 0.75, theoretically infeasible)withα

such that αλ−1 = 1 in Proposition 5.5. Finally, we also consider the locally convergent
version of iPiano in Proposition 5.5 (loc-ipiano-altP-bt, β = 0.75) applied to
the objective2 minX∈A 1

2 (dist(X,R))2 (i.e., g convex, f prox-regular, non-convex)
with backtracking. For the local convergence results, we assume that we start close

2 The error is measured after projecting the current iterate to the set of rank R matrices.
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Fig. 2 Convergence plots for the feasibility problem in Sect. 5.4. The inertial methods developed in this
paper significantly outperform all other methods with respect to the number of iterations (left plot) and the
actual computation time (right plot)

enough to a feasible point. Experimentally, all algorithms converge to a feasible point.
In theory, backtracking is not required; however as the radius of the neighborhood of
attraction is hard to quantify, the algorithm is more stable with backtracking.

We also compare our method against the recently proposed globally convergent
Douglas–Rachford splitting for non-convex feasibility problems [39]. The algorithm
depends on a parameter γ , which in theory is required to be rather small: γ0 :=√
3/2 − 1. The basic model Douglas–Rachford uses the maximal feasible value

for this γ -parameter. Douglas–Rachford 75 is a heuristic version3 proposed in
[39].

Table 2 compares the methods on a set of 200 randomly generated problems
with a maximum of 1000 iterations for each method. Also local methods seem to
reliably find a feasible point. This seems to be true also for the heuristic methods
Douglas–Rachford 75 and heur-ipiano-altP, which shows that there is
still a gap between theory and practice. The inertial algorithms that use backtrack-
ing significantly outperformmethods without backtracking or inertia. Considering the
actual computation time makes this observation even more significant, since back-
tracking algorithms require to compute the objective value several times per iteration.

3 The heuristic version of Douglas–Rachford splitting in [39] guarantees boundedness of the iterates. We
set γ = 150γ0 and update γ by max(γ /2, 0.9999γ0) if ‖yk − yk−1‖ > t/k. We refer to [39] for the
meaning of yk . Since the proposed value t = 1000 did not work well in our experiment, we optimized t
manually. t = 75 worked best.
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Interestingly, the globally convergent version of iPiano converged the fastest to a fea-
sible point. The convergence behavior of the methods is visualized in Fig. 2 for a
representative example.

6 Conclusions

In this paper, we proved a local convergence result for abstract descent methods, which
is similar to that of Attouch et al. [8]. This local convergence result is applicable
to an inertial forward–backward splitting method, called iPiano [3]. For functions
that satisfy the Kurdyka–Łojasiewicz inequality at a local optimum, under a certain
growth condition, we verified that the sequence of iterates stays in a neighborhood
of a local (or global) minimum and converges to the minimum. As a consequence,
the properties that imply convergence of iPiano are required to hold locally only.
Combined with a well-known expression for the gradient of Moreau envelopes in
terms of the proximal mapping, relations of iPiano to an inertial averaged proximal
minimization method and an inertial alternating proximal minimization method are
uncovered. These considerations are conducted for functions that are prox-regular
instead of the stronger assumption of convexity. For a non-convex feasibility problem,
experimentally, iPiano significantly outperforms the alternating projectionmethod and
a recently proposed non-convex variant of Douglas–Rachford splitting.
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