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Abstract Weconsider a class of regular–singular stochastic differential games arising
in the optimal investment and dividend problem of an insurer under model uncertainty.
The information available to the two players is asymmetric partial information and the
control variable of eachplayer consists of two components: regular control and singular
control. We establish the necessary and sufficient optimality conditions for the saddle
point of the zero-sum game. Then, as an application, these conditions are applied to
an optimal investment and dividend problem of an insurer under model uncertainty.
Furthermore, we generalize our results to the nonzero-sum regular–singular gamewith
asymmetric information, and then the Nash equilibrium point is characterized.
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1 Introduction

We study a class of two-person regular–singular stochastic differential games with
asymmetric information, which is motivated by the optimal investment and dividend
problem of an insurer under model uncertainty.

In actuarial science, finding optimal investment strategy and dividend policy are
two fundamental problems. Compared with the classic optimal investment problem in
financial economics (see, for example, [1,2]), the investment problem of an insurer is
different and more complex, for the insurer is exposed to both financial risk and insur-
ance risk, instead of only financial risk. Financial risk is occurred due to the fluctuations
of financial market, while insurance risk is caused by the liabilities related to insurance
claims. Therefore, there has been much interest in the study of optimal investment and
dividend problem of an insurer under different realistic model assumptions; see, for
example, [3–6].

Model uncertainty, the uncertainty on the choice of model, is pervasive in the mod-
eling of economic, financial, and insurance dynamics (see, for example, [7,8]). The
robust approach is widely adopted to deal with model uncertainty, where a family
of probability measures equivalent to the original probability measure is generated
and the optimal decision is made in the worst-case scenario over these probability
measures (see, for example, [7,9]). With the dissemination of quantitative models in
actuarial science, the issue of model uncertainty has been incorporated in the invest-
ment problem of an insurer with or without reinsurance (see, for example, [10–13]).
However, it seems that relatively little attention has been paid to optimal investment
and dividend problems of an insurer under model uncertainty.

We consider the optimal investment and dividend problemof an insurer undermodel
uncertainty. The information available to the insurer is partial information,which is less
than the full information generated by the market events (see, for example, [14–16]).
The insurer decides the investment strategy and dividend payment policy based on this
partial information. We apply the robust approach to incorporate model uncertainty,
where a family of probabilitymeasures is generated byGirsanov transform. Then three
sources of risk are included in our model: financial risk, insurance risk, and model
uncertainty. With the presence of model uncertainty, the investment and dividend
problem of an insurer can be formulated as a zero-sum regular–singular stochastic
differential game between the insurer and the market under asymmetric information.

In most cases, the regular–singular stochastic control problems or stochastic differ-
ential games are solved through solvingHJB integro-variational inequalities (HJBIVI),
which is possible under assumption that the underlying dynamics of the controlled
system is Markovian (see, for example, [3–5,17]). However, because of the non-
Markovian nature of the partial information, our game cannot be solved by the
well-established HJBIVI technique. This motivates us to derive the corresponding
maximum principles to handle the partial information case.
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The stochastic maximum principle that covers singular control problem was
obtained byCadenillas andHaussmann [18], where a convex cost function is to bemin-
imized subject to linear dynamics. Since then, many papers on maximum principles
for singular control problems undermore general assumptions have appeared in the lit-
erature (see, for example, [15,19–23] and the references therein, this list of references
is not exhaustive). For a regular–singular stochastic control problem/stochastic differ-
ential game, a maximum principle was established by the relaxed control approach
in [24], where the control system governed by forward-backward stochastic differ-
ential equation (SDE) driven by Brownian motion. Hafayed, Abba, and Abbas [25]
considered a similar problem for the case of partial information, where the system
was governed by mean-field controlled SDE driven by Teugels martingales associ-
ated with some Lévy processes and an independent Brownian motion. Hu et al. [26]
derived maximum principles for a regular–singular mean-field stochastic differential
game and reduced it to a Skorohod problem. In our situation, model uncertainty is
incorporated in the problem, an additional controllable Lévy diffusion is added into
the system to model the insurance risk and the information available to the two players
is asymmetric information. Therefore, the existing maximum principles are no longer
valid for our games.

In this paper, we consider a class of regular–singular stochastic differential games
with asymmetric information arising in the optimal investment and dividend prob-
lem of an insurer under model uncertainty. The necessary and sufficient optimality
conditions for the saddle points of the zero-sum games are derived. The derivation
of these optimality conditions follows an approach similar to that adopted by An and
Øksendal [14], where the necessary and sufficient optimality conditions for regular
stochastic differential game under partial information are derived. Since the control
variable consists of two components: the regular control and the singular control in
our games, our results can be regarded as the generalization of [14] to regular–singular
case.

The rest of the paper is structured as follows: In Sect. 2, we introduce optimal invest-
ment and dividend problem of an insurer under model uncertainty as a motivation
example. In Sect. 3, we formulate a zero-sum regular–singular stochastic differential
game with asymmetric information and establish necessary and sufficient optimality
conditions for the saddle point of the game. As an application, in Sect. 4 these con-
ditions are applied to characterize the solution of optimal investment and dividend
problem of an insurer under model uncertainty. In Sect. 5, the necessary and sufficient
optimality conditions obtained in Sect. 3 are generalized to nonzero-sum regular–
singular game with asymmetric information. Finally, some concluding remarks are
made in Sect. 6.

2 Optimal Investment and Dividend Problem of an Insurer Under
Model Uncertainty

In order to illustrate the application background of a regular–singular stochastic dif-
ferential game with asymmetric information, we introduce optimal investment and
dividend problem of an insurer under model uncertainty as a motivation example.
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Suppose there is a continuous-time financial market with two investment possibil-
ities:

– A risk free asset (e.g., a bond), with unit price S0(t) at time t given by

dS0(t) = ρ(t)S0(t)dt, S0(0) = 1, for all t ∈ [0, T ], T ∈]0,∞[. (1)

– A risky asset (e.g., a stock), with unit price S1(t) at time t given by

dS1(t) = S1(t) [ζ(t)dt + π(t)dB(t)] , S1(0) > 0, for all t ∈ [0, T ], (2)

where B(t) is a standard Brownian motion on a probability space (Ω,F , P) with
respect to its right-continuous P-complete filtration

{F B
t : t ∈ [0, T ]}, the coeffi-

cients ρ(t), ζ(t) and π(t) are the interest rate of the risk free asset, the appreciation
rate, and the volatility of the risky asset at time t , respectively. We assume that ρ(t),
ζ(t) and π(t) are F B

t -predictable processes such that

∫ T

0

(
|ρ(t)| + |ζ(t)| + π2(t)

)
dt < ∞, a.s..

Let Z(t) be an aggregate insurance claim process of the insurer, which represents
the amount of claim up to and including time t . For s ∈ [0, T ], the claim size of Z(·)
at time s is denoted by

�Z(s) := Z(s) − Z(s−).

The space of claim size is R0 := R\{0}. Then Z(t) is given by

Z(t) =
∑

0≤s≤t

�Z(s), Z(0) = 0, a.s., t ∈ [0, T ].

Let τk denote the arrival time of the kth claim and let �Z(τk) be the amount of the
kth claim at the time τk . Then Poisson random measure N (·, ·) on [0, T ] ×R0, which
is induced by claim arrivals and sizes �Z(s), is defined by

N (ds, dz) =
∑

k≥1

δ(�Z(τk),τk )(dz, ds)χ{�Z(τk) �=0,τk<∞}.

Here, δ(�Z(τk),τk )(·, ·) is the random delta function at (�Z(τk), τk) and χE is the
indicator function of an event E . Thus, the process Z(t) is a pure jump Lévy process
given by

Z(t) =
∫ t

0

∫

R0

zN (ds, dz), t ∈ [0, T ].

Suppose that Z(t) is bounded on [0, T ]. Then, Z(t) can be written as:

Z(t) =
∫ t

0

∫

R0

z Ñ (ds, dz) +
∫ t

0

∫

R0

zν(dz)ds, t ∈ [0, T ],
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where Ñ (·, ·) is the compensation of the jump measure N (·, ·) and ν is Lévy measure
of a Lévy process Z(·). We refer to [17,27] for background on Lévy process and
Poisson random measures.

For t ∈ [0, T ], let κ(t) be the premium rate at time t and let R(t) denote the surplus
process of the insurer in the absence of investment and dividend. Then, we have

R(t) = R0 +
∫ t

0
κ(s)ds − Z(t) + QB̃(t)

= R0 +
∫ t

0

(
κ(s) −

∫

R0

zν(dz)

)
ds −

∫ t

0

∫

R0

z Ñ (ds, dz) + QB̃(t),

where R0 ∈ R is the initial surplus and Q ∈ R is the diffusion coefficient. The stochas-
tic process B̃(t) is another Brownian motion defined on (Ω,F , P) with respect to its

right-continuous P-complete filtration
{
F B̃
t : t ∈ [0, T ]

}
. It describes an additional

source of the uncertainty, which may be attributed to uncertainty about premium
incomes or uncertainty about aggregate claims (see, e.g., [28]). We assume that B(t),
B̃(t) and Ñ (dt, dz) are mutually independent under P , for t ∈ [0, T ].

The insurer is responsible tomange his risk through themanagement of the dividend
payment and the investment strategy. Let u(t) = u(t, ω) denote the amount invested
in the risky asset which we call portfolio strategy. And let the singular control ξ(t) =
ξ(t, ω) represent the cumulative amount of dividends paid up to time t .

Definition 2.1 For eachω ∈ Ω , ξ(t) = ξ(t, ω), t ∈ [0, T ], is a càdlàg non-decreasing
stochastic process of bounded variation with ξ(0) = 0, which is referred to as a
singular.

The surplus process Y (t) in the presence of investment and dividend is given by

dY (t) =
{
κ(t) + ρ(t)Y (t) + u(t) [ζ(t) − ρ(t)] +

∫

R0

zν(dz)

}
dt

+ π(t)u(t)dB(t) + Qd B̃(t) −
∫

R0

z Ñ (dt, dz) − dξ(t),

Y (0) =R0. (3)

The control (u(t), ξ(t)) is to be decided by the insurer, which is referred to as a
regular–singular control.

Now, we specify the information structure of the model. As we have defined above,

the filtrations
{F B

t : t ∈ [0, T ]} and
{
F B̃
t : t ∈ [0, T ]

}
are the right-continuous, P-

complete, natural filtration generated by B(t) and B̃(t), respectively. Let
{F Z

t : t ∈
[0, T ]} denote the P-augmentation of the σ -field generated by the insurance claims
process Z(t). For each t ∈ [0, T ], the enlarged σ -algebra Ft is defined by

Ft := F Z
t ∨ F B

t ∨ F B̃
t ,
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which is the minimal σ -field generated by F Z
t , F B

t and F B̃
t . Then the filtration

{Ft : t ∈ [0, T ]} represents the full information generated by the surplus process of
the insurer and the price process of the risky asset.

In real world, however, the insurer can only get partial information instead of full
information. That is, there is a subfiltration Gt ⊆ Ft for t ∈ [0, T ]. The insurer decides
the portfolio strategy u(t) and the dividend policy ξ(t) based on the information Gt .
Therefore (u(t), ξ(t)) is required to be Gt -adapted.

We use a robust approach to incorporatemodel uncertainty. TheGirsanov transform
theorem is used to generate a family of real-world probability measures, which are
absolutely continuous with respect to the original probability measure P . Suppose
θ(t) ∈ Θ is a real-valued stochastic process on (Ω,F , P) satisfying: θ(t) is Ft -
progressive measurable for t ∈ [0, T ]; θ(t) < 1 for almost all (t, ω) ∈ [0, T ] × Ω;

And E
[∫ T

0 θ2(t)dt
]

< ∞ for t ∈ [0, T ]. Then, for θ(t) ∈ Θ , we define

Mθ (t) = exp

{
−
∫ t

0
θ(s)dB(s) −

∫ t

0
θ(s)d B̃(s) −

∫ t

0
θ2(s)ds

+
∫ t

0

∫

R0

ln (1 − θ(s)) Ñ (ds, dz)

+
∫ t

0

∫

R0

[ln (1 − θ(s)) + θ(s)] ν(dz)ds

}
.

Applying Itô formula to Mθ (t), we have

dMθ (t) = −Mθ (t)

[
θ(t)dB(t) + θ(t)d B̃(t) +

∫

R0

θ(t)Ñ (dt, dz)

]

Mθ (0) = 1, P − a.s.

Obviously, Mθ (t) is a P-local martingale for θ(t) ∈ Θ . Let θ(t) be bounded, P-a.s.,
such that Mθ (t) is a P-martingale. Then, we have

E
[
Mθ (t)

] = E
[
Mθ (0)

] = 1.

For each θ(t) ∈ Θ , we define a new probability measure Pθ on FT by

dPθ

dP

∣∣∣∣FT

= Mθ (T ).

Then Pθ is absolutely continuous with respect to P onFT . By choosing different pro-
cesses θ(t) ∈ Θ , we obtain a family of real-world probabilitymeasures

{
Pθ : θ ∈ Θ

}
.

For a given strategy (u(t), ξ(t)), the utility function of the insurer under Pθ is
defined by

J (u, ξ, θ) = Eθ
[
Y (T ) + ∫ T

0 e− ∫ t0 ρ(s)dsdξ(t)
]
,
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where Eθ is the expectation with respect to Pθ .
LetA(1)

G be a family of admissible controls (u, ξ), contained in the set ofGt -adapted
(u, ξ) such that (3) has a unique strong solution and for all θ ∈ Θ ,

Eθ

[
|Y (T )| +

∫ T

0
e− ∫ t0 ρ(s)dsdξ(t)

]
< ∞. (4)

Let A(2)
F be a family of admissible controls θ(t), contained in the set of Ft -adapted

θ(t) ∈ Θ such that (4) holds for all (u, ξ).
With the presence of model uncertainty, the insurer’s control problem can be for-

mulated as a zero-sum stochastic differential game between the insurer and the market
with asymmetric information:

(1) The objective of the insurer is to select optimal investment and dividend strat-

egy
(
û, ξ̂

)
with partial information {Gt : t ∈ [0, T ]}, which maximizes the utility

function in the “worst-case” scenario, i.e.,

Φ(x) = sup
(u,ξ)∈A(1)

G

inf
θ∈A(2)

F
J (u, ξ, θ);

(2) The market reacts antagonistically under full information {Ft : t ∈ [0, T ]} by
choosing an admissible strategy θ̂ over all scenario

{
Pθ : θ ∈ Θ

}
to minimize the

maximal expected utility of the insurer, i.e.,

Φ(x) = inf
θ∈A(2)

F
sup

(u,ξ)∈A(1)
G

J (u, ξ, θ).

We say that the game has a value, if

Φ(x) := Φ(x) = Φ(x). (5)

And a pair
(
û, ξ̂ ; θ̂

)
∈ A(1)

G ×A(2)
F (if exists) is called a saddle point of the zero-sum

game (5).

3 Necessary and Sufficient Optimality Conditions for Zero-Sum
Regular–Singular Stochastic Differential Game with Asymmetric
Information

In this section, we consider a class of general zero-sum regular–singular stochastic
differential games with asymmetric information. Then, the necessary and sufficient
optimality conditions for the saddle points of the zero-sum games are derived. Our
results can be regarded as the generalization of [14] to regular–singular case.
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3.1 Problem Formulation

We start with a complete filtered probability space
(
Ω,F , {F}t≥0 , P

)
. Suppose that

the state process X (t) = X (t, ω); t ∈ [0, T ], ω ∈ Ω , is described by the following
Lévy diffusion:

dX (t) = b
(
t, X (t), u(1)(t), u(2)(t), ω

)
dt + σ

(
t, X (t), u(1)(t), u(2)(t), ω

)
dB(t)

+ �
(
t, X (t), u(1)(t), u(2)(t), ω

)
d B̃(t)

+
∫

Rn
γ
(
t, X (t), u(1)(t), u(2)(t), z, ω

)
Ñ (dt, dz)

+ α(t, X (t), ω)dξ (1)(t) + λ(t, X (t), ω)dξ (2)(t), (6)

X (0) = x ∈ R
n,

where the coefficients

b : [0, T ] × R
n × U1 × U2 × Ω → R

n,

σ : [0, T ] × R
n × U1 × U2 × Ω → R

n×n,

� : [0, T ] × R
n × U1 × U2 × Ω → R

n×n,

γ : [0, T ] × R
n × U1 × U2 × R0 × Ω → R

n×n,

α : [0, T ] × R
n × Ω → R

n×n,

λ : [0, T ] × R
n × Ω → R

n×n

are C1 with respect to x , and U1, U2 are given nonempty open convex subsets of Rn .
Here, B(t), B̃(t) are n-dimensional Brownian motions and Ñ (dt, dz) are n indepen-
dent compensated Poisson random measures of a Lévy process Z with jump measure
N . We assume that B(t), B̃(t) and Ñ (dt, dz) are mutually independent under P ,
t ∈ [0, T ]. For a given process F(t, z), we denote

∫

R0

F({t}, z)N ({t}, dz) :=
{
F(t, z), if Z has a jump of size z at t,

0 , else.

The stochastic process u(i)(t) = u(i)(t, ω) ∈ Ui is a regular control, while the stochas-
tic process ξ (i)(t) = ξ (i)(t, ω) ∈ Ii is a singular control with ξ (i)(0) = 0, where Ii
is a nonempty open convex subset of Rn . The pair

(
u(i)(t), ξ (i)(t)

)
is referred to as

the regular–singular control, i = 1, 2. In system (6), there are two different kinds of
jumps: One is the jump of X (t) stemming from Poisson random measure N , and the
other is the jump caused by singular control ξ .

We consider a zero-sum stochastic differential game with two players (player 1 and
player 2). For t ∈ [0, T ], the regular–singular control (u(i)(t), ξ (i)(t)) is controlled
by the player i , i = 1, 2. Suppose that the information available to the two players are
asymmetric partial information (see, e.g., [29]). Thismeans there are two subfiltrations
G(1)
t and G(2)

t of Ft satisfying
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G(i)
t ⊆ Ft ; t ∈ [0, T ], i = 1, 2.

The player i decides his strategy
(
u(i)(t), ξ (i)(t)

)
based on the partial informationG(i)

t .

Then the regular–singular control
(
u(i)(t), ξ (i)(t)

)
is G(i)

t -adapted, i = 1, 2. Assume

in addition that t → α(t, x) is continuous G(1)
t -adapted and t → λ(t, x) is continuous

G(2)
t -adapted.
Let

f : [0, T ] × R
n × U1 × U2 × Ω → R,

h : [0, T ] × R
n × Ω → R

n,

k : [0, T ] × R
n × Ω → R

n

be given Ft -predictable processes and let g : R
n × Ω → R be a FT -measurable

random variable for each x . Assume that f , g, h and k are C1 with respect to x . Let
the performance functional of the two players be defined as follows:

J
(
u(1), ξ (1); u(2), ξ (2)

)
= E

[∫ T

0
f
(
t, X (t), u(1)(t), u(2)(t), ω

)
dt

+ g(X (T ), ω) +
∫ T

0
h(t, X (t), ω)dξ (1)(t)

+
∫ T

0
k(t, X (t), ω)dξ (2)(t)

]
, (7)

where E is the expectation with respect to P .
Let A(i)

G denote a given family of controls
(
u(i), ξ (i)

)
, contained in the set of G(i)

t -

adapted (u(i), ξ (i)) such that system (6) has a unique strong solution and

E

[∫ T

0

∥∥∥ f (t, X (t), u(1)(t), u(2)(t), ω)

∥∥∥ dt + ‖g(X (T ), ω)‖

+
∫ T

0
‖h(t, X (t), ω)‖ dξ (1)(t) +

∫ T

0
‖k(t, X (t), ω)‖ dξ (2)(t)

]
< +∞.

Then, A(i)
G is called the admissible control set of the player i , i = 1, 2.

In the zero-sum game, the actions of the two players are antagonistic, namely, the
payoffJ (u(1), ξ (1); u(2), ξ (2)

)
is the reward for the player 1 and the cost for the player

2. The player 1 decides
(
u(1), ξ (1)

)
to maximize the reward based on G(1)

t , while the

player 2 chooses
(
u(2), ξ (2)

)
to minimize the cost based on G(2)

t . We are thus led to
the zero-sum regular–singular stochastic differential game under asymmetric partial
information, with

ΦG = sup
(u(1),ξ (1))∈A(1)

G

inf
(u(2),ξ (2))∈A(2)

G
J
(
u(1), ξ (1); u(2), ξ (2)

)
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= inf
(u(2),ξ (2))∈A(2)

G
sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); u(2), ξ (2)

)

= J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
. (8)

We say the game (8) has a value, if ΦG ∈ R exists. Meanwhile, the pair(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G ×A(2)
G (if exists) is called a saddle point of the game (8).

Intuitively, the strategy
(
û(1), ξ̂ (1)

)
is the best response of the player 1 to the player 2

who uses the control
(
û(2), ξ̂ (2)

)
and vice versa.

3.2 Necessary Optimality Conditions for the Zero-Sum Regular–Singular Game

To give Hamiltonian-based optimality conditions, we define the Hamiltonian function
for the zero-sum game (8):

Definition 3.1 Let �ξ (i)(t) = ξ (i)(t) − ξ (i)(t−) be the pure discontinuous part of
ξ (i)(·) at time t , t ∈ [0, T ], i = 1, 2. Then, the Hamiltonian function

H : [0, T ] × R
n × U1 × U2 × R

n × R
n×n × R

n×n × R → D

is defined by

H
(
t, x, u(1), u(2), p, q, q̃, r(·)

) (
dt, dξ (1), dξ (2)

)

= f
(
t, x, u(1), u(2)

)
dt + bT

(
t, x, u(1), u(2)

)
pdt

+ tr
(
σ T
(
t, x, u(1), u(2)

)
q
)
dt

+
n∑

j,l=1

∫

R

γ jl

(
t, x, u(1), u(2), z

)
r jl(t, z)νl(dz)dt

+ tr
(
� T

(
t, x, u(1), u(2)

)
q̃
)
dt +

[
pTα(t, x) + h(t, x)

]
dξ (1)(t)

+
[
pT λ(t, x) + k(t, x)

]
dξ (2)(t) +

n∑

j,l,m=1

[
α jl ({t}, x) �ξ

(1)
l (t)

+ λ jl ({t}, x) �ξ
(2)
l (t)

] ∫

R0

r jm({t}, z)Nm({t}, dz). (9)

Here, R is the set of functions r(·, ·) : [0, T ] × R0 → R
n×n such that (9) is well

defined and D is the set of all sums of stochastic dt-, dξ1- and dξ2-differentials. And
the adjoint processes (p(t), q(t), q̃(t), r(t, ·)) associated to (u(1), ξ (1); u(2), ξ (2)) are
given by the following backward SDE:

dp(t) = − �x H
(
t, X (t), u(1)(t), u(2)(t), p(t), q(t), q̃(t), r(t, ·)

)
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×
(
dt, dξ (1), dξ (2)

)

+ q(t)dB(t) + q̃(t)d B̃(t) +
∫

Rn
r(t, z)Ñ (dt, dz), t ∈ [0, T ],

p(T ) =�g(X (T )), (10)

where �x H(·)(·) =
(

∂H
∂x1

, . . . , ∂H
∂xn

)T
is the gradient of H with respect to x =

(x1, . . . , xn).

Assumption 3.1 We make the following assumptions:

(1) For all t , h satisfying 0 ≤ t < t + h ≤ T , and all bounded G(i)
s -measurable

random variables θ
(i)
j (ω), s ∈ [0, T ], the regular–singular control

(
β(i)(s), 0

)

belongs to A(i)
G , where

β(i)(s) :=
(
0, . . . , β(i)

j (s), . . . , 0
)

, j = 1, . . . , n

with
β

(i)
j (s) = θ

(i)
j (ω)χ[t,t+h](s); t ∈ [0, T ], i = 1, 2.

(2) For all
(
u(i), ξ (i)

) ∈ A(i)
G and all bounded

(
β(i), ς(i)

) ∈ A(i)
G , there exists a

constant δ > 0 such that
(
u(i)(t) + yβ(i)(t), ξ (i)(t) + yς(i)(t)

)
∈ A(i)

G

for all y ∈] − δ, δ[, t ∈ [0, T ], i = 1, 2.

For the sake of brevity, we introduce the following short hand notations:

X
(
t, u(1) + yβ(1), ξ (1) + yς(1)

)
= X

(
t, u(1) + yβ(1), ξ (1) + yς(1), u(2), ξ (2)

)
,

X
(
t, u(2) + yβ(2), ξ (2) + yς(2)

)
= X

(
t, u(1), ξ (1), u(2) + yβ(2), ξ (2) + yς(2)

)
,

�u(i)b(t) = �u(i)b
(
t, X (t), u(1)(t), u(2)(t), ω

)
; �x H(t)

(
dt, dξ (1), dξ (2)

)

= �x H
(
t, X (t), u(1)(t), u(2)(t), p(t), q(t), q̃(t), r(t, ·)

) (
dt, dξ (1), dξ (2)

)

and similarly for other derivatives.
For a bounded

(
β(i), ς(i)

)
, i = 1, 2, let the derivative process X̆

(
u(i),ξ (i)

)
(t) be

defined by

X̆
(
u(i),ξ (i)

)
(t)

=
(
X̆
(
u(i),ξ (i)

)

1 (t), X̆
(
u(i),ξ (i)

)

2 (t), . . . , X̆
(
u(i),ξ (i)

)

n (t)

)T
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:= lim
y→0+

1

y

[
X
(
t, u(i) + yβ(i), ξ (i) + yς(i)

)
− X

(
t, u(1), ξ (1), u(2), ξ (2)

)]
.

Set

ϑ

(
u(i),ξ (i)

)

j (t) = �xb j (t)
T X̆

(
u(i),ξ (i)

)
(t) + �u(i)b j (t)

Tβ(i)(t),

ι

(
u(i),ξ (i)

)

jl (t) = �xσ jl(t)
T X̆

(
u(i),ξ (i)

)
(t) + �u(i)σ jl(t)

Tβ(i)(t),

κ

(
u(i),ξ (i)

)

jl (t) = �x� jl(t)
T X̆

(
u(i),ξ (i)

)
(t) + �u(i)� jl(t)

Tβ(i)(t),

�

(
u(i),ξ (i)

)

jl (t) = �xγ jl(t)
T X̆

(
u(i),ξ (i)

)
(t) + �u(i)γ jl(t)

Tβ(i)(t),

for i = 1, 2 and j, l = 1, . . . , n. Then, it follows from (6) that X̆
(
u(1),ξ (1)

)

j (t), the j th

element of X̆
(
u(1),ξ (1)

)
(t), satisfies the following SDE:

d X̆
(
u(1),ξ (1)

)

j (t) = ϑ

(
u(1),ξ (1)

)

j (t)dt +
n∑

l=1

ι

(
u(1),ξ (1)

)

jl (t)dBl(t)

+
n∑

l=1

κ

(
u(1),ξ (1)

)

jl (t)d B̃l(t) +
n∑

l=1

∫

R

�

(
u(1),ξ (1)

)

jl (t)Ñl(dt, dz)

+
n∑

l=1

�xα jl(t)
T X̆

(
u(1),ξ (1)

)
(t)dξ (1)

l (t) +
n∑

l=1

α jl(t, x)dς
(1)
l (t)

+
n∑

l=1

�xλ jl(t)
T X̆

(
u(1),ξ (1)

)
(t)dξ (2)

l (t) (11)

X̆
(
u(1),ξ (1)

)

j (0) = 0

and X̆
(
u(2),ξ (2)

)

j (t), the j th element of X̆
(
u(2),ξ (2)

)
(t), is described by

d X̆
(
u(2),ξ (2)

)

j (t) = ϑ

(
u(2),ξ (2)

)

j (t)dt +
n∑

l=1

ι

(
u(2),ξ (2)

)

jl (t)dBl(t)

+
n∑

l=1

κ

(
u(2),ξ (2)

)

jl (t)d B̃l(t) +
n∑

l=1

∫

R

�

(
u(2),ξ (2)

)

jl (t)Ñl(dt, dz)

+
n∑

l=1

�xλ jl(t)
T X̆

(
u(2),ξ (2)

)
(t)dξ (2)

l (t) +
n∑

l=1

λ jl(t, x)dς
(2)
l (t)

+
n∑

l=1

�xα jl(t)
T X̆

(
u(2),ξ (2)

)
(t)dξ (1)

l (t) (12)

X̆
(
u(2),ξ (2)

)

j (0) = 0.
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Moreover, we denote

U (t) = (U1(t), . . . ,Ul(t), . . . ,Un(t)) , V (t) = (V1(t), . . . , Vl(t), . . . , Vn(t)) ,

W (t) = (W1(t), . . . ,Wl(t), . . . ,Wn(t)) , ϒ(t) = (ϒ1(t), . . . , ϒl(t), . . . , ϒn(t)) ,

where

Ul(t) =
n∑

j=1

p j (t)α jl(t, X (t)) + hl(t, X (t)), (13)

Vl(t) =
n∑

j=1

α jl(t, X (t))

(
n∑

m=1

∫

R0

r jm({t}, z)Ñm({t}, dz) + p j (t)

)

+ hl(t, X (t)), (14)

Wl(t) =
n∑

j=1

p j (t)λ jl(t, X (t)) + kl(t, X (t)), (15)

ϒl(t) =
n∑

j=1

λ jl(t, X (t))

(
n∑

m=1

∫

R0

r jm({t}, z)Ñm({t}, dz) + p j (t)

)

+ kl(t, X (t)). (16)

Now, we state and prove the necessary optimality conditions for the saddle point
of the game (8).

Theorem 3.2 (Necessary optimality conditions for zero-sum game) Suppose(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G × A(2)
G is the saddle point of the game (8). Let X̂(t),

p̂(t), q̂(t), ˆ̃q(t), r̂(t, ·), X̆
(
û(1),ξ̂ (1)

)

(t), X̆

(
û(2),ξ̂ (2)

)

(t) be the solutions of (6), (10), (11),

(12) corresponding to
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
and let Û (t), V̂ (t), Ŵ (t), ϒ̂(t) be the

corresponding coefficients (see (13)–(16) ). Moreover, for i = 1, 2, assume that

E

[∫ T

0
X̆

(
û(i),ξ̂ (i)

)

(t)T
{
q̂q̂T (t) + ˆ̃q ˆ̃qT (t)

+
∫

Rn
r̂ r̂ T (t, z)ν(dz)

}
X̆

(
û(i),ξ̂ (i)

)

(t)dt

]
< ∞,

E

[∫ T

0
p̂T (t)

{

ι

(
û(i),ξ̂ (i)

)

ι

(
û(i),ξ̂ (i)

) T

(t, X̂(t), û(1)(t), û(2)(t))

+ κ

(
û(i),ξ̂ (i)

)

κ

(
û(i),ξ̂ (i)

) T

(t, X̂(t), û(1)(t), û(2)(t))

+
∫

Rn
γ γ T (t, X̂(t), û(1)(t), û(2)(t))ν(dz)

}
p̂(t)dt

]
< ∞.
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Then, for almost all t ∈ [0, T ], the saddle point
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G ×A(2)
G

satisfies:

0 = E
[
�u(1) H

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(1)
t

]

= E
[
�u(2) H

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(2)
t

]
; (17)

E
[
Ûl(t)

∣∣∣ G(1)
t

]
≤ 0 and E

[
Ûl(t)

∣∣∣ G(1)
t

]
dξ̂ (1),C

l (t) = 0; (18)

E
[
Ŵl(t)

∣∣∣ G(2)
t

]
≥ 0 and E

[
Ŵl(t)

∣∣∣ G(2)
t

]
dξ̂ (2),C

l (t) = 0; (19)

E
[
V̂l(t)

∣∣∣ G(1)
t

]
≤ 0 and E

[
V̂l(t)

∣∣∣ G(1)
t

]
�ξ̂

(1)
l (t) = 0; (20)

E
[
ϒ̂l(t)

∣∣∣ G(2)
t

]
≥ 0 and E

[
ϒ̂l(t)

∣∣∣ G(2)
t

]
�ξ̂

(2)
l (t) = 0, (21)

where ξ̂
(i)
l (t) is the lth element of ξ̂ (i)(t), l = 1, . . . , n, ξ̂ (i),C

l (t) is the continuous part

of ξ̂
(i)
l (t) and �ξ̂

(i)
l (t) = ξ̂

(i)
l (t) − ξ̂

(i)
l (t−) is the pure discontinuous part of ξ̂

(i)
l at

time t, i = 1, 2.

Proof See “Appendix A.” 
�

3.3 Sufficient Optimality Conditions for Zero-Sum Regular–Singular Game

In Theorem 3.2, we have presented the necessary optimality conditions (17), (18),
(19), (20) and (21) for the saddle point of the game (8). In this subsection, we impose
some additional conditions such that these necessary optimality conditions are also
sufficient for the saddle point. For the sake of simplicity, we denote

X
(
u(1),ξ (1)

)
(t) = X

(
t, u(1)(t), û(2)(t), ξ (1)(t), ξ̂ (2)(t)

)
,

X
(
u(2),ξ (2)

)
(t) = X

(
t, û(1)(t), u(2)(t), ξ̂ (1)(t), ξ (2)(t)

)
.

Let X̂(t), p̂(t), q̂(t), ˆ̃q(t), r̂(·)(t, z) be the solutions of Eqs. (6) and (10) corresponding
to
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G × A(2)
G . Assume that for all

(
u(1), ξ (1)

) ∈ A(1)
G and

(
u(2), ξ (2)

) ∈ A(2)
G , we have

E

[∫ T

0

(
X̂(t) − X

(
u(i),ξ (i)

)
(t)
)T {

q̂q̂T (t) + ˆ̃q ˆ̃qT (t)

+
∫

Rn
r̂ r̂ T (t, z)ν(dz)

}(
X̂(t) − X

(
u(i),ξ (i)

)
(t)
)
dt

]
< ∞,
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E

[∫ T

0
p̂T (t)

{
σσ T

(
t, X

(
u(i),ξ (i)

)
(t)
)

+ �� T
(
t, X

(
u(i),ξ (i)

)
(t)
)

+
∫

Rn
γ γ T

(
t, X

(
u(i),ξ (i)

)
(t), z

)
ν(dz)

}
p̂(t)dt

]
< ∞, i = 1, 2.

Theorem 3.3 (Sufficient optimality conditions for zero-sum game) Assume that(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
satisfies (18), (19), (20), (21) and

sup
u(1)

E
[
H
(
t, X̂(t), u(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(1)
t

]

= E
[
H
(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(1)
t

]
(22)

and

inf
u(2)

E
[
H
(
t, X̂(t), û(1), u(2) p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(2)
t

]

= E
[
H
(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(2)
t

]
. (23)

(I) Suppose that x → g(x) and

(
x, u(1), ξ (1)

)
→ H

(
t, x, u(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ (1), dξ̂ (2)

)

are concave. Then,

J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
= sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
. (24)

(II) Suppose that x → g(x) and

(
x, u(2), ξ (2)

)
→ H

(
t, x, û(1), u(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ (2)

)

are convex. Then,

J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
= inf

(u(2),ξ (2))∈A(2)
G
J
(
û(1), ξ̂ (1); u(2), ξ (2)

)
.

(III) Suppose that both cases (I) and (II) hold. Then the regular–singular control(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
is a saddle point for the zero-sum game (8).

Proof See “Appendix B.” 
�
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4 Application to the Optimal Investment and Dividend Problem of an
Insurer Under Model Uncertainty

We come back to the investment and dividend problem of an insurer under model
uncertainty in Sect. 2 and apply the necessary and sufficient optimality conditions

(Theorems 3.2 and 3.3) to characterize the saddle point
(
û(·), ξ̂ (·), θ̂

)
of the zero-

sum game (5).
First, we put

dX (t) =
(
dX1(t)
dX2(t)

)
=
(

dY (t)
dMθ (t)

)

=
(

κ(t) + ρ(t)Y (t) + u(t) [ζ(t) − ρ(t)] − ∫
R0

zν(dz)
0

)
dt

+
(

π(t)u(t)
−θ(t)Mθ (t)

)
dB(t) +

(
Q

−θ(t)Mθ (t)

)
d B̃(t)

−
(

z
θ(t)Mθ (t)

)
Ñ (dt, dz) −

(
1
0

)
dξ(t). (25)

With the notations of Sect. 4, we have, for the game (5),

u(1)(t) = u(t), u(2)(t) = θ(t), ξ (1)(t) = ξ(t),

ξ (2)(t) = 0, G(1)
t = Gt , G(2)

t = Ft ,

b(t, x, u(1), u(2)) =
(

κ(t) + ρ(t)x(t) + u(t) [ζ(t) − ρ(t)] − ∫
R0

zν(dz)
0

)
,

σ (t, x, u(1), u(2)) =
(

π(t)u(t)
−θ(t)Mθ (t)

)
; �(t, x, u(1), u(2)) =

(
Q

−θ(t)Mθ (t)

)
,

γ (t, x, u(1), u(2), z) = −
(

z
θ(t)Mθ (t)

)
, α(t, x) = −

(
1
0

)
, λ(t, x) =

(
0
0

)
,

f (t, x, u(1), u(2)) = 0, g(x) = x2x1, h(t, x) = e− ∫ t0 ρ(s)ds x2, k(t, x) = 0.

Then, by (9), the Hamiltonian is

H(t, x1, x2, u, θ, p, q, q̃, r(·))(dt, dξ)

=
{[

κ(t) + ρ(t)x1 + u(t) [ζ(t) − ρ(t)] +
∫

R0

zν(dz)

]
p1

+πuq1 − θx2q2 + Qq̃1 − θx2q̃2 −
∫

R

{zr1(t, z) + θx2r2(t, z)} ν(dz)

}
dt

+
[
−p1 + x2e

− ∫ t0 ρ(s)ds
]
dξ(t) −

∫

R0

r1({t}, z)N ({t}, dz)�ξ(t),

where the adjoint processes pi (t), qi (t), q̃i (t), ri (·)(t, z), i = 1, 2, are given by the
following backward SDEs:
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dp1(t) = −ρ(t)p1(t)dt + q1(t)dB(t) + q̃1(t)d B̃(t) +
∫

R0

r1(t, z)Ñ (dt, dz),

p1(T ) = X2(T ) (26)

and

dp2(t) =
[
θ(t)q2(t) + θ(t)q̃2(t) +

∫

R

θ(t)r2(t, z)ν(dz)

]
dt + q2(t)dB(t)

+ q̃2(t)d B̃(t) +
∫

R0

r2(t, z)Ñ (dt, dz) − e− ∫ t0 ρ(s)dsdξ(t),

p2(T ) =X1(T ). (27)

Moreover, we have

U (t) = −p1(t) + e− ∫ t0 ρ(s)ds X2(t), W (t) = 0, ϒ(t) = 0,

V (t) = −
∫

R0

r1({t}, z)N ({t}, dz) − p1(t) + e− ∫ t0 ρ(s)ds X2(t).

Let (û, ξ̂ , θ̂ ) ∈ A(1)
G × A(2)

G be a saddle point of the game (5) and let X̂(t), X̂i (t),

p̂i (t), q̂i (t), ˆ̃qi (t), r̂i (·)(t, z), i = 1, 2, be the corresponding solutions of (25), (26)
and (27). Then, by Theorems 3.2 and 3.3, the optimality condition (17) leads to

[ζ(t) − ρ(t)] E
[
p̂1(t)

∣∣ Gt
]+ π(t)E

[
q̂1(t)

∣∣ Gt
] = 0. (28)

By the optimality condition (18), it follows that ξ̂C (t), which is the continuous part
of ξ̂ (t), satisfies:

e− ∫ t0 ρ(s)ds E
[
X̂2(t)

∣∣∣ Gt
]

≤ E
[
p̂1(t)

∣∣ Gt
]

(29)

and
E
[{

e− ∫ t0 ρ(s)ds X̂2(t) − p̂1(t)
} ∣∣∣ Gt

]
dξ̂C (t) = 0. (30)

Furthermore, by the optimality condition (20), we see that

E

[
e− ∫ t0 ρ(s)ds X̂2(t) −

∫

R0

r̂1({t}, z)N ({t}, dz) − p̂1(t)

∣∣∣∣ Gt
]

≤ 0 (31)

and

E

[
e− ∫ t0 ρ(s)ds X̂2(t) −

∫

R0

r̂1({t}, z)N ({t}, dz) − p̂1(t)

∣∣∣∣ Gt
]

�ξ̂ (t) = 0 (32)

hold for all t ∈ [0, T ], where �ξ̂ (t) = ξ̂ (t) − ξ̂ (t−) is the pure discontinuous part of
ξ̂ (t).
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On the other hand, minimizing E
[
H(t, x1, x2, u, θ, p, q, q̃, r(·))(dt, dξ) | Ft

]

over all θ , we obtain a minimum point θ̂ such that

E

[
X̂2(t)q̂2(t) + X̂2(t) ˆ̃q2(t) +

∫

R

X̂2(t)r̂2(t, z)ν(dz)

∣∣∣∣ Ft

]
= 0. (33)

We summarize the results obtained above in the following theorem.

Theorem 4.1 Let (û, ξ̂ ; θ̂ ) ∈ A(1)
G × A(2)

F be a saddle point of the investment and

dividend problem of an insurer under model uncertainty (5) if and only if (û, ξ̂ ; θ̂ )

satisfies (28), (29), (30), (31), (32) and (33), where p̂i (t), q̂i (t), ˆ̃qi (t), r̂i (·)(t, z),
i = 1, 2, are solutions of the backward SDEs (26) and (27).

In Theorem 4.1, the adjoint processes p̂i (t), q̂i (t), ˆ̃qi (t), r̂i (·)(t, z), i = 1, 2, are
obtained through solving the backward SDEs (26) and (27), which are usually very
difficult to solve. Here, we leave the solution methods of these backward SDEs for
future research.

5 Necessary and Sufficient Optimality Conditions for Nonzero-Sum
Regular–Singular Stochastic Differential Game with Asymmetric
Information

In this section, we consider the nonzero-sum game between the two players, who
intervene on the system with their regular–singular controls. Their actions are not
necessarily antagonistic, namely, they have different payoffs and each of them acts to
maximize his own payoff.

Let X (t) be the stochastic process given by (6). Suppose that the player i , i = 1, 2,
controls the system with strategy

(
u(i), ξ (i)

) ∈ A(i)
G and his utility functional is of the

form

Ji

(
u(1), ξ (1); u(2), ξ (2)

)
= E

[∫ T

0
f (i)

(
t, X (t), u(1)(t), u(2)(t), ω

)
dt

+ g(i)(X (T ), ω) +
∫ T

0
h(i)(t, X (t), ω)dξ (1)(t)

+
∫ T

0
k(i)(t, X (t), ω)dξ (2)(t)

]
.

As the game is typically nonzero-sum, we seek a Nash equilibrium point
(
û(1), ξ̂ (1);

û(2), ξ̂ (2)
)

∈ A(1)
G × A(2)

G such that

J1

(
u(1), ξ (1); û(2), ξ̂ (2)

)
≤ J1

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
,
(
u(1), ξ (1)

)
∈ A(1)

G ; (34)

J2

(
û(1), ξ̂ (1); u(2), ξ (2)

)
≤ J2

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
,
(
u(2), ξ (2)

)
∈ A(2)

G . (35)
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The existence of a Nash equilibrium point shows that, by an appropriate design of(
û(1), ξ̂ (1)

)
, the player 1 can induce the player 2 to choose the best control

(
û(2), ξ̂ (2)

)

and vice versa.
In order to give the necessary and sufficient optimality conditions, let the Hamil-

tonian functions H1 and H2 for the nonzero-sum game (34)–(35) be defined in the
following definition.

Definition 5.1 For i = 1, 2, the Hamiltonian function

Hi : [0, T ] × R
n × U1 × U2 × R

n × R
n×n × R

n×n × R → D

is defined as follows:

Hi

(
t, x, u(1), u(2), p(i), q(i), q̃(i), r (i)(·)

) (
dt, dξ (1), dξ (2)

)

= f (i)
(
t, x, u(1), u(2)

)
dt + bT

(
t, x, u(1), u(2)

)
p(i)dt

+ tr
(
σ T
(
t, x, u(1), u(2)

)
q(i)

)
dt + tr

(
� T

(
t, x, u(1), u(2)

)
q̃(i)

)
dt

+
n∑

j,l=1

∫

R

γ jl

(
t, x, u(1), u(2), z

)
r (i)
jl (t, z)νl(dz)dt

+
[
p(i)Tα(t, x) + h(i)(t, x)

]
dξ (1)(t) +

[
p(i)T λ(t, x) + k(i)(t, x)

]
dξ (2)(t)

+
n∑

j,l,m=1

[
α jl ({t}, x) �ξ

(1)
l (t)

+ λ jl ({t}, x)�ξ
(2)
l (t)

] ∫

R0

r (i)
jm({t}, z)Nm({t}, dz), (36)

where the adjoint processes
(
p(i)(t), q(i)(t), r (i)(·)(t, z)) are solutions of the following

backward SDEs:

dp(i)(t) = −�x Hi

(
t, X (t), u(1), u(2), p(i), q(i), r (i)(·)

) (
dt, dξ (1), dξ (2)

)

+ q(i)(t)dB(t) + q̃(i)(t)d B̃(t) +
∫

R
n
0

r (i)(t, z)Ñ (dt, dz), t ∈ [0, T ],

p(i)(T ) = �g(i)(X (T )), i = 1, 2. (37)

Let
U (1)(t) =

(
U (1)
1 (t), . . . ,U (1)

l (t), . . . ,U (1)
n (t)

)
,

V (1)(t) =
(
V (1)
1 (t), . . . , V (1)

l (t), . . . , V (1)
n (t)

)
,

W (2)(t) =
(
W (2)

1 (t), . . . ,W (2)
l (t), . . . ,W (2)

n (t)
)

,

ϒ(2)(t) =
(
ϒ

(2)
1 (t), . . . , ϒ(2)

l (t), . . . , ϒ(2)
n (t)

)
,
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where

U (1)
l (t) =

n∑

j=1

p(1)
j (t)α jl(t, X (t)) + h(1)

l (t, X (t)),

V (1)
l (t) =

n∑

j=1

α jl(t, X (t))

(

p(1)
j (t) +

n∑

m=1

∫

R0

r (1)
jm ({t}, z)Ñm({t}, dz)

)

(38)

+ h(1)
l (t, X (t)), (39)

W (2)
l (t) =

n∑

j=1

p(2)
j (t)λ jl(t, X (t)) + k(2)

l (t, X (t)),

ϒ
(2)
l (t) =

n∑

j=1

λ jl(t, X (t))

(

p(2)
j (t) +

n∑

m=1

∫

R0

r (2)
jm ({t}, z)Ñm({t}, dz)

)

(40)

+ k(2)
l (t, X (t)). (41)

Next, we give the necessary optimality conditions and the sufficient conditions
for the nonzero-sum game (34)–(35), which are the generalizations of Theorems 3.2
and 3.3.

Theorem 5.1 (Necessary optimality conditions for nonzero-sum game) Let(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G × A(2)
G be a Nash equilibrium point for the nonzero-

sum regular–singular game (34)–(35). Suppose that X̂(t), p̂(i)(t), q̂(i)(t), ˆ̃q(i)(t),

r̂ (i)(·)(t, z),X̆
(
û(1),ξ̂ (1)

)

(t), X̆

(
û(2),ξ̂ (2)

)

(t) are the solutions of (6), (37), (11), (12)

corresponding to
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
and Û (1)

l (t), V̂ (1)
l (t), Ŵ (2)

l (t), ϒ̂
(2)
l (t) are

the corresponding coefficients (see (38)–(41) ). Then, for almost all t ∈ [0, T ],(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
satisfies the following:

E
[
�u(1) H1

(
t, X̂(t), û(1), û(2), p̂(1), q̂(1), ˆ̃q(1), r̂ (1)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(1)
t

]
= 0;

E
[
�u(2) H2

(
t, X̂(t), û(1), û(2), p̂(2), q̂(2), ˆ̃q(2), r̂ (2)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(2)
t

]
= 0;

E
[
Û (1)
l (t)

∣∣∣G(1)
t

]
≤ 0 and E

[
Û (1)
l (t)

∣∣∣G(1)
t

]
dξ̂ (1),C

l (t) = 0; (42)

E
[
Ŵ (2)

l (t)
∣∣∣G(2)

t

]
≤ 0 and E

[
Ŵ (2)

l (t)
∣∣∣G(2)

t

]
dξ̂ (2),C

l (t) = 0; (43)

E
[
V̂ (1)
l (t)

∣∣∣ G(1)
t

]
≤ 0 and E

[
V̂ (1)
l (t)

∣∣∣ G(1)
t

]
�ξ̂

(1)
l (t) = 0; (44)

E
[
ϒ̂

(2)
l (t)

∣∣∣ G(2)
t

]
≤ 0 and E

[
ϒ̂

(2)
l (t)

∣∣∣ G(2)
t

]
�ξ̂

(2)
l (t) = 0. (45)

Theorem 5.2 (Sufficient optimality conditions for nonzero-sum game) Let X̂(t),
p̂(i)(t), q̂(i)(t), r̂ (i)(·)(t, z) be the solutions of (6) and (37) corresponding to
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(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G × A(2)
G . Suppose that

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
satisfies

(42), (43), (44), (45),

E
[
H1

(
t, X̂(t), u(1), û(2), p̂(1), q̂(1), r̂ (1)(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(1)
t

]

≤ E
[
H1

(
t, X̂(t), û(1), û(2), p̂(1), q̂(1), r̂ (1)(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(1)
t

]

and

E
[
H2

(
t, X̂(t), û(1), u(2) p̂(2), q̂(2), r̂ (2)(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(2)
t

]

≤ E
[
H2

(
t, X̂(t), û(1), û(2), p̂(2), q̂(2), r̂ (2)(·)

) (
dt, dξ̂ (1), dξ̂ (2)

) ∣∣∣ G(2)
t

]
.

Moreover, suppose that for all t ∈ [0, T ], x → g(i)(x) and

(
x, u(i), ξ (i)

)
→ Hi

(
t, x, u(1), û(2), p̂(1), q̂(1), r̂ (1)(·)

) (
dt, dξ (1), dξ̂ (2)

)

are concave, i = 1, 2. Then, the pair
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
is a Nash equilibrium

point of the nonzero-sum game (34)–(35).

The proofs are similar to those of Theorems 3.2 and 3.3. Therefore we omit the
detail.

6 Conclusions

Motivated by optimal investment and dividend problem of an insurer under model
uncertainty, we first studied the zero-sum regular–singular stochastic differential game
with asymmetric partial information. It is worth noting that three sources of risk are
included in our model: financial risk, insurance risk and model uncertainty. The nec-
essary and sufficient optimality conditions are derived for the saddle point of the
zero-sum game. Then, with these necessary and sufficient optimality conditions, we
investigated the insurer’s optimal investment anddividendproblemundermodel uncer-
tainty. Furthermore, our results were generalized to nonzero-sum regular–singular
game with asymmetric partial information. The necessary and sufficient optimality
conditions obtained in this paper are expected to have potential application in various
areas, such as mathematical finance and actuarial mathematics. However, in our nec-
essary and sufficient optimality conditions, the adjoint processes are obtained through
solving backward SDEs. This task is extremely difficult to achieve. Therefore, the
solution methods of these backward SDEs will be explored in our subsequent work.
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Appendix A: Proof of Theorem 3.2

For convenience, we use the short-hand notations:

�x f̂ (t) = �x f
(
t, X̂(t), û(1)(t), û(2)(t)

)

and �u(1) f̂ (t) = �u(1) f
(
t, X̂(t), û(1)(t), û(2)(t)

)

and similarly for other gradients.

Suppose that
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
∈ A(1)

G × A(2)
G is a saddle point of the games

(8). Then,

lim
y→0+

1

y

[
J
(
û(1) + yβ(1), ξ̂ (1) + yς(1); û(2), ξ̂ (2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)]
≤ 0

(46)
holds for all bounded

(
β(1), ς(1)

) ∈ A(1)
G . According to the definition of J in (7), it

follows from (46) that

E

[∫ T

0

{
�x f̂ (t)T X̆

(
u(1),ξ (1)

)
(t) + �u(1) f̂ (t)T β(1)(t)

}
dt

+ �g(X̂(T ))T X̆
(
u(1),ξ (1)

)
(T ) +

n∑

l=1

∫ T

0
�xhl(t, X̂(t))X̆

(
u(1),ξ (1)

)
(t)dξ̂ (1)

l (t)

+
∫ T

0
h(t, X̂(t))dς(1)(t) +

n∑

l=1

∫ T

0
�xkl(t, X̂(t))X̆

(
u(1),ξ (1)

)
(t)dξ̂ (2)

l (t)

]

≤ 0.

(47)

Now, by applying Itô formula to �g(X (T ))T X̆
(
u(1),ξ (1)

)
(T ), we obtain

E
[
�g(X̂(T ))T X̆

(
u(1),ξ (1)

)
(T )

]
= E

[
p̂(T )T X̆

(
u(1),ξ (1)

)
(T )

]

= E

⎡

⎣
n∑

j=1

{∫ T

0

[

p̂ j (t)
(
�x b̂ j (t)

T X̆
(
u(1),ξ (1)

)
(t) + �u(1) b̂ j (t)

Tβ(1)(t)
)

+
n∑

l=1

q̂ jl(t)
(
�x σ̂ jl(t)

T X̆
(
u(1),ξ (1)

)
(t) + �u(1) σ̂ jl(t)

Tβ(1)(t)
)

+
n∑

l=1

ˆ̃q jl(t)
(
�x�̂ jl(t)

T X̆
(
u(1),ξ (1)

)
(t) + �u(1) �̂ jl(t)

Tβ(1)(t)
)

+
n∑

l=1

∫

R

r̂ jl(t, z)
(
�x γ̂ jl(t, z)

T X̆
(
u(1),ξ (1)

)
(t)+�u(1) γ̂ jl(t, z)

Tβ(1)(t)
)

νl(dz)

]

dt

−
(
�x Ĥ (t)

(
dt, dξ̂ (1), dξ̂ (2)

))

j
X̆
(
u(1),ξ (1)

)

j (t)
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+
n∑

l=1

p̂ j (t)�xα jl(t, X̂(t))T X̆
(
u(1),ξ (1)

)
(t)dξ̂ (1)

l (t)

+
n∑

l=1

p̂ j (t)α jl(t, X̂(t))dς(1)
l (t)

+
n∑

l=1

p̂ j (t)�xλ jl(t, X̂(t))T X̆
(
u(1),ξ (1)

)
(t)dξ̂ (2)

l (t)

+
∑

0≤t≤T

n∑

l,m=1

(
�xα jl({t}, X̂(t))T X̆

(
u(1),ξ (1)

)
(t)�ξ̂

(1)
l (t)

+ �xλ jl({t}, X̂(t))T X̆
(
u(1),ξ (1)

)
(t)�ξ̂

(2)
l (t)

+α jl({t}, X̂(t))�ς
(1)
l (t)

) ∫

R0

r̂ jm({t}, z)Nm({t}, dz)
}]

, (48)

where �ς
(i)
l (t) = ς

(i)
l (t) − ς

(i)
l (t−) is the pure discontinuous part of ς

(i)
l (t) and

ς
(i),C
l (t) is the continuous part of ς

(i)
l (t), i = 1, 2.

Next, by the definition of Hamiltonian (9), we have

�x H
(
t, x, u(1), u(2), p, q, q̃, r(·)

) (
dt, dξ (1), dξ (2)

)

=
⎡

⎣�x f (t) +
n∑

j=1

�xb j (t) p j +
n∑

j,l=1

�xσ jl (t) q jl

+
n∑

j,l=1

∫

R

�xγ jl (t, z) r jl(t, z)νl(dz) +
n∑

j,l=1

�x� jl (t) q̃ jl

⎤

⎦ dt

+
n∑

l=1

⎡

⎣

⎛

⎝
n∑

j=1

p j �x α jl(t, x) + �xhl(t, x)

⎞

⎠ dξ (1)
l (t)

+
⎛

⎝
n∑

j=1

p j �x λ jl(t, x) + �xkl(t, x)

⎞

⎠ dξ (2)
l (t)

⎤

⎦

+
n∑

j,l,m=1

[
�xα jl ({t}, x) �ξ

(1)
l (t)

+ �x λ jl ({t}, x)�ξ
(2)
l (t)

] ∫

R0

r jm({t}, z)Nm({t}, dz) (49)

and

�u(1) H
(
t, x, u(1), u(2), p, q, r(·)

) (
dt, dξ (1), dξ (2)

)
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=
⎡

⎣�u(1) f (t) +
n∑

j=1

�u(1)b j (t) p j +
n∑

j,l=1

�u(1)σ jl (t) q jl

+
n∑

j,l=1

�u(1)� jl (t) q̃ jl +
n∑

j,l=1

∫

R

�u(1)γ jl (t, z) r jl(t, z)νl(dz)

⎤

⎦ dt. (50)

Then, substituting (48), (49), (50) into (47), we get

E

[∫ T

0
�u(1) H

(
t, X̂(t), û(1), û(2), p̂, q̂, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)T
β(1)(t)

+
∫ T

0
Û T (t)dς(1),C (t) +

∑

0≤t≤T

V̂ T (t)�ς(1)(t)

⎤

⎦ ≤ 0, (51)

where Ul(t) and Vl(t) are defined by (13) and (14), respectively.
Since the inequality (51) holds for all bounded (β(1), ς(1)) ∈ A(1)

G , one can choose

ς(1) ≡ 0 and hence

E

[∫ T

0
�u(1) H

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)T
β(1)(t)

]
≤ 0.

(52)
In particular, given t ∈ [0, T ], the inequality (52) holds for all bounded (β(1)(s), 0

) ∈
A(1)
G , where

β(1)(s) :=
(
0, . . . , β(1)

j (s), . . . , 0
)

, j = 1, . . . , n

with
β

(1)
j (s) = θ

(1)
j χ[t,t+h)(s), s ∈ [0, T ].

Here, t + h ≤ T and θ
(1)
j = θ

(1)
j (ω) is a bounded G(1)

t -measurable random variable.
Then (52) can be written as

E

[∫ t+h

t
θ

(1)
j

∂H

∂u(1)
j

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)]

≤ 0.

(53)
Since (53) holds for both θ

(1)
j and −θ

(1)
j , we have

E

[∫ t+h

t
θ

(1)
j

∂H

∂u(1)
j

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)]

= 0.

(54)
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Differentiating (54) with respect to h at h = 0, it follows that

E

[

θ
(1)
j

∂H

∂u(1)
j

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)]

= 0

holds for all bounded G(1)
t -measurable random variable θ

(1)
j . As a result, we conclude

that

E

[
∂H

∂u(1)
j

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)
∣∣∣∣∣
G(1)
t

]

= 0,

j = 1, . . . , n,

which leads to

E
[
�u(1) H

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(1)
t

]
= 0.

Next, we prove (18) and (20). Note that the inequality (51) holds for all bounded
(β(1), ς(1)) ∈ A(1)

G . Thus, by letting β(1) = 0, we obtain

E

⎡

⎣
∫ T

0
Û T (t)dς(1),C (t) +

∑

0≤t≤T

V̂ T (t)�ς(1)(t)

⎤

⎦ ≤ 0. (55)

In order to prove (18), we choose ς(1) in the following way:

ς(1)(t) :=
(
0, . . . , ς(1)

l (t), . . . , 0
)

, l = 1, . . . , n.

with
dς(1)

l (t) = a(1)
l (t)dt, t ∈ [0, T ],

where a(1)
l (t) ≥ 0 is continuous G(1)

t -adapted stochastic process. Then, it follows from
(55) that

E

[∫ T

0
Ûl(t)a

(1)
l (t)dt

]
≤ 0 (56)

holds for all G(1)
t -adapted a(1)

l (t) ≥ 0, which implies that

E
[
Ûl(t)

∣∣∣ G(1)
t

]
≤ 0, for almost all t ∈ [0, T ], l = 1, 2, . . . , n. (57)

Moreover, by choosing

ς(1)(t) :=
(
0, . . . , ς(1)

l (t), . . . , 0
)

, l = 1, . . . , n,
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where
ς

(1)
l (t) = ξ̂

(1),C
l (t), t ∈ [0, T ],

together with (55), we have

E

[∫ T

0
Ûl(t)dξ̂

(1),C
l (t)

]
≤ 0. (58)

Similarly, by letting ς
(1)
l (t) = −ξ̂

(1),C
l (t), we get

E

[∫ T

0
Ûl(t)dξ̂

(1),C
l (t)

]
≥ 0. (59)

Combining (58) and (59), we obtain

E

[∫ T

0
Ûl(t)dξ̂

(1),C
l (t)

]
= E

[∫ T

0
E
[
Ûl(t)

∣∣∣ G(1)
t

]
dξ̂ (1),C

l (t)

]
= 0. (60)

Since ξ̂
(1),C
l (·) is a singular control, we have dξ̂ (1),C

l (t) ≥ 0. Hence, it follows from
(57) and (60) that

E
[
Ûl(t)

∣∣∣G(1)
t

]
dξ̂ (1),C

l (t) = 0, t ∈ [0, T ], l = 1, 2, . . . , n.

In order to prove (20), we fix t ∈ [0, T ] and choose ς(1) :=
(
0, . . . , ς(1)

l , . . . , 0
)
,

l = 1, 2, . . . , n, such that

dς(1)
l (s) = a(1)

l (ω)δt (s), s ∈ [0, T ],

where a(1)
l (ω) ≥ 0 is bounded G(1)

t -measurable and δt (s) is the unit point mass at t .
In this case, it follows from (55) that

E
[
V̂l(t)a

(1)
l (ω)

]
≤ 0

holds for all bounded G(1)
t -measurable a(1)

l (ω) ≥ 0. This gives

E
[
V̂l(t)

∣∣∣ G(1)
t

]
≤ 0, l = 1, 2, . . . , n. (61)

Let ξ
(1),d
l (t) denote the pure discontinuous part of ξ

(1)
l , l = 1, 2, . . . , n. Choosing

ς
(1)
l (t) = ξ

(1),d
l (t) and ς

(1)
l (t) = −ξ

(1),d
l (t) respectively, it is clear from (55) that

E

⎡

⎣
∑

0≤t≤T

V̂l(t)�ξ
(1)
l (t)

⎤

⎦ = E

⎡

⎣
∑

0<t≤T

E
[
V̂l(t)

∣∣∣ G(1)
t

]
�ξ

(1)
l (t)

⎤

⎦ = 0. (62)
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It is obvious that �ξ
(1)
l (t) ≥ 0, for ξ

(1)
l (·) is a singular control. Thus, we conclude

from (61) and (62) that

E
[
V̂l(t)

∣∣∣ G(1)
t

]
�ξ

(1)
l (t) = 0 for all t ∈ [0, T ], l = 1, 2, . . . , n.

Next, suppose that

lim
y→0+

1

y

[
J
(
û(1), ξ̂ (1); û(2) + yβ(2), ξ̂ (2) + yς(2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)]
≥ 0

(63)
holds for all bounded

(
β(2), ς(2)

) ∈ A(2)
G . Then, by following a similar approach, we

have (19), (21) and

E
[
�u(2) H

(
t, X̂(t), û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣G(2)
t

]
= 0.

This completes the proof. 
�

Appendix B: Proof of Theorem 3.3

In the following, we use the notation

Ĥ(t)
(
dt, dξ̂ (1), dξ̂ (2)

)
= H

(
t, x̂, û(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ̂ (2)

)
,

H
(
t, u(1)

) (
dt, dξ (1), dξ̂ (2)

)

= H
(
t, x

(
u(1),ξ (1)

)
, u(1), û(2), p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ (1), dξ̂ (2)

)
,

H
(
t, u(2)

) (
dt, dξ̂ (1), dξ (2)

)

= H
(
t, x

(
u(2),ξ (2)

)
, û(1), u(2) p̂, q̂, ˆ̃q, r̂(·)

) (
dt, dξ̂ (1), dξ (2)

)

and similarlywith f̂ (t), f
(
t, X

(
u(i),ξ (i)

)
(t), u(i)

)
, b̂(t), b

(
t, X

(
u(i),ξ (i)

)
(t), u(i)

)
, σ̂ (t),

σ
(
t, X

(
u(i),ξ (i)

)
(t), u(i)

)
, γ̂ (t, z), γ

(
t, X

(
u(i),ξ (i)

)
(t), u(i), z

)
, i = 1, 2.

[I] By the definition of J (u(1), ξ (1); u(2), ξ (2)
)
, we have

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
= I1 + I2 + I3 + I4, (64)

where

I1 = E

[∫ T

0

(
f
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− f̂ (t)

)
dt

]
,

I2 = E
[
g(X

(
u(1),ξ (1)

)
(T )) − g(X̂(T ))

]
,
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I3 = E

[∫ T

0
h
(
t, X

(
u(1),ξ (1)

)
(t)
)
dξ (1)(t) −

∫ T

0
h
(
t, X̂(t)

)
dξ̂ (1)(t)

]
,

I4 = E

[∫ T

0

(
k(t, X

(
u(1),ξ (1)

)
(t)) − k(t, X̂(t))

)
dξ̂ (2)(t)

]
.

It follows from the definition of Hamiltonian (9) that

I1 = E

[∫ T

0
H
(
t, u(1)

) (
dt, dξ (1), dξ̂ (2)

)
− Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)

−
∫ T

0

{(
b
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− b̂(t)

)T
p̂(t)

− tr

[(
σ
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− σ̂ (t)

)T
q̂(t)

]

−
n∑

j,l=1

∫

R

(
γ j,l

(
t, X

(
u(1),ξ (1)

)
(t), u(1), z

)
− γ̂ j,l(t, z)

)
r j,l(t, z)νl(dz)

− tr

[(
�
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− �̂ (t)

)T ˆ̃q(t)

]}
dt

+
∫ T

0

{
p̂T (t)α(t, X̂(t)) + h(t, X̂(t))

}
dξ̂ (1)(t)

−
∫ T

0

{
p̂T (t)α

(
t, X

(
u(1),ξ (1)

)
(t)
)

+ h
(
t, X

(
u(1),ξ (1)

)
(t)
)}

dξ (1)(t)

−
∫ T

0

{
p̂T (t)

[
λ
(
t, X

(
u(1),ξ (1)

)
(t)
)

− λ(t, X̂(t))
]

+
[
k
(
t, X

(
u(1),ξ (1)

)
(t)
)

− k(t, X̂(t))
]}

dξ̂ (2)(t)

−
∑

0<t≤T

n∑

j,l,m=1

(
α jl

(
{t}, X

(
u(1),ξ (1)

)
(t)
)

�ξ
(1)
l (t)

−α jl({t}, X̂(t))�ξ̂
(1)
l (t)

) ∫

R0

r̂ jm({t}, z)Nm({t}, dz)

−
∑

0<t≤T

n∑

j,l,m=1

(
λ jl

(
{t}, X

(
u(1),ξ (1)

)
(t)
)

− λ jl({t}, X̂(t))
)

�ξ̂
(2)
l (t)

∫

R0

r̂ jm({t}, z)Nm({t}, dz)
]

. (65)

Let X̃
(
u(1),ξ (1)

)
(t) := X

(
u(1),ξ (1)

)
(t)− X̂(t), 0 ≤ t ≤ T . Since g(x) is concave in x , we

have

I2 �E

[(
X
(
u(1),ξ (1)

)
(T ) − X̂(T )

)T
�g(X̂(T ))

]
= E

[(
X̃
(
u(1),ξ (1)

)
(T )

)T
p̂(T )

]
.
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By applying Itô formula to
(
X̃
(
u(1),ξ (1)

)
(T )

)T
p̂(T ), we obtain

I2 ≤ E

[∫ T

0

{
p̂T (t)

(
b
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− b̂(t)

)

+ tr

[(
σ
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− σ̂ (t)

)T
q̂(t)

]

+
n∑

j,l=1

∫

R0

(
γ jl

(
t, X

(
u(1),ξ (1)

)
(t), z

)
− γ̂ jl(t, z)

)
r̂ jl(t, z)νl(dz)

+ tr

[(
�
(
t, X

(
u(1),ξ (1)

)
(t), u(1)

)
− �̂ (t)

)T ˆ̃q(t)

]}
dt

−
∫ T

0

(
X̃
(
u(1),ξ (1)

)
(t)
)T

�x Ĥ(t)
(
dt, dξ̂ (1), dξ̂ (2)

)

+
∫ T

0
p̂T (t)α

(
t, X

(
u(1),ξ (1)

)
(t)
)
dξ (1)(t) −

∫ T

0
p̂T (t)α(t, X̂(t))dξ̂ (1)(t)

+
∫ T

0
p̂T (t)

{
λ
(
t, X

(
u(1),ξ (1)

)
(t)
)

− λ(t, X̂(t))
}
dξ̂ (2)(t)

+
∑

0<t≤T

n∑

j,l,m=1

(
α jl

(
{t}, X

(
u(1),ξ (1)

)
(t)
)

�ξ
(1)
l (t)

− α jl({t}, X̂(t))�ξ̂
(1)
l (t)

) ∫

R0

r̂ jm({t}, z)Nm({t}, dz)

+
∑

0<t≤T

n∑

j,l,m=1

(
λ jl

(
{t}, X

(
u(1),ξ (1)

)
(t)
)

− λ jl({t}, X̂(t))
)

�ξ̂
(2)
l (t)

∫

R0

r̂ jm({t}, z)Nm({t}, dz)
]

. (66)

Substituting (65) and (66) into (64), we obtain

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)

� E

[∫ T

0
H
(
t, u(1)

) (
dt, dξ (1), dξ̂ (2)

)
−
∫ T

0
Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)

−
∫ T

0

(
X̃
(
u(1),ξ (1)

)
(t)
)T

�x Ĥ(t)
(
dt, dξ̂ (1), dξ̂ (2)

)]
. (67)

Since (x, u(1), ξ (1)) → H
(
t, x

(
u(1),ξ (1)

)
, u(1), û(2), p̂, q̂, r̂(·)

) (
dt, dξ (1), dξ̂ (2)

)
is

concave, we have

H
(
t, u(1)

) (
dt, dξ (1), dξ̂ (2)

)
− Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)
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≤
[
�x Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)]T
X̃
(
u(1),ξ (1)

)
(t)

+
[
�u(1) Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)]T (
u(1)(t) − û(1)(t)

)

+
[
�ξ (1) Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)]T (
dξ (1)(t) − dξ̂ (1)(t)

)
.

Then, (67) leads to

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)

= E

⎡

⎣
∫ T

0
E
[
�u(1) Ĥ(t)

(
dt, dξ̂ (1), dξ̂ (2)

)∣∣∣ G(1)
t

]T (
u(1)(t) − û(1)(t)

)

+
∫ T

0
E
[
Û T (t)

∣∣∣G(1)
t

] (
dξ (1)(t) − dξ̂ (1)(t)

)

+
∑

0<t≤T

n∑

l=1

E
[
V̂l(t)

∣∣∣ G(1)
t

] (
�ξ

(1)
l (t) − �ξ̂

(1)
l (t)

)
⎤

⎦ . (68)

Since the control
(
û(1), ξ̂ (1)

)
∈ A(1)

G satisfies (17), (18) and (20), we conclude that

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
− J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)

≤ E

⎡

⎣
∫ T

0
E
[
Û T (t)

∣∣∣G(1)
t

]
dξ (1)(t) +

∑

0<t≤T

n∑

l=1

E
[
V̂l(t)

∣∣∣ G(1)
t

]
�ξ

(1)
l (t)

⎤

⎦ = 0

holds for all
(
u(1), ξ (1)

) ∈ A(1)
G . Therefore, we obtain (24).

[II] Following a similar argument as in [I], we conclude that

J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
= inf

(u(2),ξ (2))∈A(2)
G
J
(
û(1), ξ̂ (1); u(2), ξ (2)

)

holds, if the regular–singular control
(
û(2), ξ̂ (2)

)
∈ A(2)

G satisfies (17), (18) and (20).

[III] If both (I) and (II) hold, we have

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)
≤ J

(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
≤ J

(
û(1), ξ̂ (1); u(2), ξ (2)

)

for all
(
u(1), ξ (1); u(2), ξ (2)

) ∈ A(1)
G × A(2)

G . Then,
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J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
≥ sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); û(2), ξ̂ (2)

)

≥ inf
(u(2),ξ (2))∈A(2)

G
sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); u(2), ξ (2)

)

and

J
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
≤ inf

(u(2),ξ (2))∈A(2)
G
J
(
û(1), ξ̂ (1); u(2), ξ (2)

)

≤ sup
(u(1),ξ (1))∈A(1)

G

inf
(u(2),ξ (2))∈A(2)

G
J
(
u(1), ξ (1); u(2), ξ (2)

)
.

Therefore, we conclude that

inf
(u(2),ξ (2))∈A(2)

G
sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); u(2), ξ (2)

)

≤ sup
(u(1),ξ (1))∈A(1)

G

inf
(u(2),ξ (2))∈A(2)

G
J
(
u(1), ξ (1); u(2), ξ (2)

)
.

This in conjunction with the following inequality:

sup
(u(1),ξ (1))∈A(1)

G

inf
(u(2),ξ (2))∈A(2)

G
J
(
u(1), ξ (1); u(2), ξ (2)

)

≤ inf
(u(2),ξ (2))∈A(2)

G
sup

(u(1),ξ (1))∈A(1)
G

J
(
u(1), ξ (1); u(2), ξ (2)

)
,

gives (8). Then,
(
û(1), ξ̂ (1); û(2), ξ̂ (2)

)
is the saddle point of the zero-sum game (8). 
�
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