
J Optim Theory Appl (2018) 176:527–540
https://doi.org/10.1007/s10957-018-1245-1

A General Nonconvex Multiduality Principle

Francesca Bonenti1 · Juan Enrique Martínez-Legaz2,3 ·
Rossana Riccardi4

Received: 13 October 2017 / Accepted: 9 February 2018 / Published online: 20 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We introduce a (possibly infinite) collection of mutually dual nonconvex
optimization problems, which share a common optimal value, and give a character-
ization of their global optimal solutions. As immediate consequences of our general
multiduality principle, we obtain Toland–Singer duality theorem as well as an analo-
gous result involving generalized perspective functions. Based on our duality theory,
we propose an extension of an existing algorithm for the minimization of d.c. func-
tions, which exploits Toland–Singer duality, to a more general class of nonconvex
optimization problems.
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1 Introduction

One of the main tools in optimization is duality theory, which associates to a given
(primal) problem (P) another (dual) problem (D), in such a way that the relation
between the two problems provides useful information about (P). In the case of convex
optimization problems, under suitable assumptions, the optimal values of (P) and (D)
coincide and the primal optimal solutions can be recovered from the dual optimal
solutions; this is particularly useful when (D) happens to be easier to solve than (P).
The essential tools of convex duality theory are convex conjugation and the notion of
subgradient; we refer to the classical book byRockafellar [1] for a detailed treatment of
classical convex duality. In the last decades, there has also been a very active research
in nonconvex programming, motivated by the fact that many real life optimization
problems are nonconvex. In this paper, we propose a generalization of one of the
most classical nonconvex duality theories, namely, Toland–Singer duality for d.c.
(difference of convex) functions [2–4], consisting in a multiduality principle involving
a (possibly infinite) collection of mutually dual problems. Our simple multiduality
result does not require any convexity assumption, and one of its consequences is a
new duality theorem involving just two mutually dual problems, expressed in terms of
classical Fenchel conjugates. This theorem generalizes the well-known Toland–Singer
duality theorem, and we use it to characterize (approximate) global optimal solutions,
thus generalizing a well-known necessary and sufficient global optimality condition
due to Hiriart-Urruty [5]. Another application of the new theorem yields a duality
result involving the generalized perspective functions introduced by Maréchal in [6].

There are some numerical algorithms based on Toland–Singer duality, such as the
DC algorithm [7] and branch-and-bound/cutting-plane type algorithms [8,9]. Follow-
ing the approach by Tao and El Bernoussi [7], we propose an algorithm for searching
local optimal solutions of nonconvex problems having the format considered in our
duality theorem.

The paper consists of three more sections. In Sect. 2, we state the new multiduality
principle, which is naturally formulated in the framework of generalized conjugation
theory. Section 3 considers the special case when the collection of mutually dual
problems consists of just two problems; for simplicity, this section is presented in the
setting of classical convex conjugation. In Sect. 4, we propose an extension of the DC
algorithm to the broader class of nonconvex problems considered in Sect. 3.

2 Multiduality

Let (Xi )i∈I be a family of nonempty sets, indexed by I �= ∅.We denote X := ∏
i∈I Xi

and X−i := ∏
j∈I\{i} X j for i ∈ I.For y ∈ X−i and z ∈ Xi ,wedefine x(−i,y),(i,z) ∈ X

by

(
x(−i,y),(i,z)

)
i := z,

(
x(−i,y),(i,z)

)
j := y j for j ∈ I\{i}. (1)

Given a function c : X → R, for each i ∈ I we consider the coupling function
ci : X−i × Xi → R defined by
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ci (y, z) := c
(
x(−i,y),(i,z)

)
.

Notice that, for x ∈ X, one has ci (x−i , xi ) = c(x); here and throughout we denote by
x−i the projection of x ∈ X onto X−i , that is,

(x−i ) j := x j for j ∈ I\{i}.

Following the generalized conjugation scheme of [10], we define a new coupling
function c′

i : Xi × X−i → R by

c′
i (z, y) := ci (y, z)

and consider the conjugation operators associated with ci and c′
i , namely the ci -

conjugate of g : X−i → R is the function gci : Xi → R defined by

gci (z) := sup
y∈X−i

{ci (y, z) − g(y)},

and, analogously, the c′
i -conjugate of h : Xi → R is hc

′
i : X−i → R, defined by

hc
′
i (y) := sup

z∈Xi

{c′
i (z, y) − h(z)};

here and in the sequel we adopt the conventions

+∞ + (−∞) = −∞ + (+∞) = +∞ − (+∞) = −∞ − (−∞) := −∞.

For h : Xi → R, z ∈ h−1 (R) and ε ≥ 0, we set

∂
c′
i

ε h (z) := {
y ∈ X−i : h (z) − h (z) ≥ c′

i (z, y) − c′
i (z, y) − ε for every z ∈ Xi

}
.

One can easily check that

∂
c′
i

ε h (z) =
{
y ∈ X−i : −(hc

′
i (y) − c′

i (z, y)) ≥ h (z) − ε
}

.

Given f : X → R, for i ∈ I and z ∈ Xi we define fi,z : X−i → R by

fi,z(y) := f (x(−i,y),(i,z)).

Notice that, for x ∈ X, one has fi,xi (x−i ) = f (x).

Theorem 2.1 Let f : X → R. For every i ∈ I one has

sup
z∈Xi

f cii,z(z) = sup
x∈X

{c(x) − f (x)}.
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Hence, the optimal value of problem

(Pi ) sup
z∈Xi

f cii,z(z)

does not depend on i .

Proof We have

sup
z∈Xi

f cii,z(z) = sup
z∈Xi

sup
y∈X−i

{ci (y, z) − fi,z(y)}
= sup

x∈X
{ci (x−i , xi ) − fi,xi (x−i )}

= sup
x∈X

{c(x) − f (x)}.

	

Corollary 2.1 Let G ⊆ X and, for i ∈ I , denote by Ci : Xi ⇒ X−i the set-valued
mapping defined by

Ci (z) := {y ∈ X−i : x(−i,y),(i,z) ∈ G}.

Then

sup
z∈Xi

δ
ci
Ci (z)

(z) = sup
x∈G

c(x).

Proof Apply Theorem 2.1 with f := δG . 	

Corollary 2.2 Let Gi ⊆ Xi for every i ∈ I. Then

sup
z∈Gi

δ
ci
G−i

(z) = sup
x∈G

c(x).

Proof Apply Corollary 2.1 with G := ∏
i∈I Xi . 	


Corollary 2.3 Let fi : Xi → R ∪ {+∞}(i = 1, . . . , n), and define

f :
n∏

i=1

Xi → R ∪ {+∞} by f (x1, . . . , xn) :=
n∑

i=1

fi (xi ) .

Then, for every i ∈ I, one has

sup
z∈Xi

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

n∑

j=1
j �=i

f j

⎞

⎟
⎟
⎠

ci

(z) − fi (z)

⎫
⎪⎪⎬

⎪⎪⎭

= sup
x∈X

{c(x) − f (x)}.
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Theorem 2.2 Assume that the optimal value of (Pi ) is finite, and let ε, η ≥ 0. If z̄ is

an ε-optimal solution to (Pi ) such that f
ci c′

i
i,z̄ = fi,z̄ , then, for every ȳ ∈ ∂η f

ci
i,z̄(z̄) and

j ∈ I\{i}, the point ȳ j is an (ε + η)-optimal solution to
(P j

)
.

Proof We have

f
c j
j,ȳ j

(ȳ j ) ≥ c j
(
x(i,z̄),(I\{i, j},ȳ− j ), ȳ j

) − f j,ȳ j (x(i,z̄),(I\{i, j},ȳ− j ))

= c(x(−i,ȳ),(i,z̄)) − f (x(i,z̄),(−i,ȳ))

= ci (y, z) − fi,z̄(ȳ) = c′
i (z, y) − fi,z̄(ȳ)

= c′
i (z, y) − f

ci c′
i

i,z̄ (ȳ) ≥ f cii,z̄(z̄) − η

≥ sup
z∈Xi

f cii,z(z) − ε − η = sup
v∈X j

f
c j
j,v(v) − (ε + η),

the last equality being an immediate consequence of Theorem 2.1. 	


3 Nonconvex Duality

3.1 A Generalization of Toland–Singer Duality

Let (X1, X2, 〈·, ·〉) be a dual pair of locally convex spaces and f : X1 × X2 → R.
In this section, we will apply the general results of Sect. 2 to the special case when
I := {1, 2} and c is the duality pairing 〈·, ·〉.

We recall that the Fenchel conjugates of g : X2 → R and h : X1 → R are the
functions g∗ : X1 → R and h∗ : X2 → R, respectively, defined by

g∗ (z) := sup
y∈X2

{〈z, y〉 − g (y)} , h∗ (y) := sup
z∈X1

{〈z, y〉 − h (z)} .

It is easy to see that, for the coupling function c considered in this section, one has
gc1 = g∗ and hc2 = h∗. Thus, Theorem 2.1 and Corollaries 2.1 and 2.2 yield:

Corollary 3.1 Let f : X1 × X2 → R. Then

sup
z∈X1

f (z, ·)∗(z) = sup
(z,y)∈X1×X2

{〈z, y〉 − f (z, y)} = sup
y∈X2

f (·, y)∗(y).

Corollary 3.2 Let T : X1 ⇒ X2. Then

sup
z∈X1

δ∗
T (z)(z) = sup

(z,y)∈Graph T
〈z, y〉 = sup

y∈X2

δ∗
T−1(y)(y).

Proof Apply Corollary 2.1 with G := Graph T .

Corollary 3.3 Let Z ⊆ X1 and Y ⊆ X2. Then

sup
z∈Z

δ∗
Y (z) = sup

x∈Z×Y
〈z, y〉 = sup

y∈Y
δ∗
Z (y).
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Similarly, from Corollary 2.3 or, alternatively, Corollary 3.1 (by setting
f (z, y) := h (z) + g (y)), one obtains the following version of the classical Toland–
Singer duality theorem [2,4]:

Corollary 3.4 Let g : X2 → R and h : X1 → R. Then one has

sup
z∈X1

{
g∗(z) − h (z)

} = sup
(z,y)∈X1×X2

{〈z, y〉 − h (z) − g (y)} = sup
y∈X2

{
h∗(y) − g (y)

}
.

From the preceding corollary, by taking g := k∗, with k : X1 → R such that k∗∗ = k,
one immediately obtains the standard Toland–Singer formula.

We recall that, for η ≥ 0, the η-subdifferential of h : X1 → R at z̄ ∈ h−1 (R) is
the set

∂ηh (z̄) := {y ∈ X2 : h (z) ≥ h (z̄) + 〈z − z̄, y〉 − η for every z ∈ X1} .

From Theorem 2.2, one gets the following result on approximate optimal solutions of
the pair of dual problems

(P) maximize f (z, ·)∗(z)
and

(D) maximize f (·, y)∗(y)
of Corollary 3.1. A related result, showing how to obtain optimal dual solutions from
optimal primal solutions of nonconvex problems, can be found in [3, Theorem 2.4].

Corollary 3.5 Assume that the optimal value of (P) is finite, and let ε, η ≥ 0. If z̄
is an ε-optimal solution to (P) such that f (z, ·) is convex and l.s.c. then, for every
ȳ ∈ ∂η f (z, ·)∗ (z̄), the point ȳ is an (ε + η)-optimal solution to (D).

The following characterization of approximate global optimal solutions generalizes
a well-known necessary and sufficient global optimality condition due to Hiriart-
Urruty [5].

Theorem 3.1 Assume that the optimal value of (P) is finite, and let z̄ ∈ X1 and
ε ≥ 0. Then z̄ is an ε-optimal solution to (P) if and only if for every η ≥ 0 and every
y ∈ f (z̄, ·)−1 (R) such that z̄ ∈ ∂η f (z̄, ·)(y) one has

y ∈ ∂ε+η f (·, y)(z̄). (2)

Proof Let z̄ be an ε-optimal solution to (P), and η ≥ 0 and y ∈ f (z̄, ·)−1 (R) be such
that z̄ ∈ ∂η f (z̄, ·)(y). Using Corollary 3.1, we obtain

f (·, y) (z̄) = f (z̄, ·) (y) ≤ 〈z̄, y〉 + η − f (z̄, ·)∗(z̄)
≤ 〈z̄, y〉 + η − sup

z∈X1

f (z, ·)∗ + ε ≤ 〈z̄, y〉 + η − f (·, y)∗(y) + ε,

which proves (2).
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Conversely, assume that the condition stated after “if and only if” holds, let
y ∈ f (z̄, ·)−1 (R) , and define η := f (z̄, y) + f (z̄, ·)∗(z̄) − 〈z̄, y〉. Then η ≥ 0
and z̄ ∈ ∂η f (z̄, ·)(y), and therefore (2) holds. Hence

f (z̄, ·)∗(z̄) = 〈z̄, y〉 + η − f (z̄, y) ≥ f (·, y)∗(y) − ε,

which shows that z̄ is an ε-optimal solution to (P). 	

To apply the duality theory presented in this section to a given optimization problem,

one has to be able to recognize whether the objective function of the problem under
consideration can bewritten in the form f (z, ·)∗ (z) for some function f : X1×X2 →
R. The following theorem provides a useful criterion tomake this recognition possible.

Theorem 3.2 For every f : X1 × X2 → R, the function ϕ : X2
1 → R defined by

ϕ(z, z′) := f (z, ·)∗ (
z′

)
is convex, proper (accepting as proper the constant func-

tions +∞ and −∞) and l.s.c. in its second argument. Conversely, for every function
ϕ : X2

1 → R with these properties there exists f : X1 × X2 → R such that
f (z, ·)∗ (z) = ϕ(z, z) for every z ∈ X1.

Proof The first part of the statement is an immediate consequence of well-known
properties of conjugate functions. To prove the converse, define f : X1 × X2 → R

by f (z, y) := ϕ (z, ·)∗ (y) ; then, since ϕ (z, ·) is convex, proper and l.s.c, from
the equality f (z, ·) := ϕ (z, ·)∗ it follows that ϕ (z, ·) := f (z, ·)∗ , and therefore
ϕ (z, z) := f (z, ·)∗ (z). 	


According to the preceding theorem, the class of problems

(P) maximize f (z, ·)∗ (z)

to which our duality theory applies coincides with that consisting of problems with
format

(P) maximize ϕ(z, z), (3)

the function ϕ : X2
1 → R being as in the statement. Since, in view of the proof, the

objective function of these twoproblems are linked by the relation f (z, ·) := ϕ (z, ·)∗ ,

a straightforward computation yields the dual objective function in terms of ϕ :

f (·, y)∗ (y) = sup
z∈X1

{〈z, y〉 − f (z, y)} = sup
z∈X1

{〈z, y〉 − ϕ (z, ·)∗ (y)
}
. (4)

Hence, if the primal problem is stated as (3), the formulation of the dual problem is

(D) sup
z∈X1

{〈z, y〉 − ϕ (z, ·)∗ (y)
}
.

To illustrate that solving the dual problem may be advantageous, we present the
following academic example, in which the primal problem consists in maximizing a
nonconcave function and, on the contrary, the dual objective function is concave.
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Example 3.1 Let us consider the primal problem

(P) maximize α(z),

where α is a nonconcave function defined on a normed space X1. Let us define
ϕ : X2

1 → R by

ϕ(z, z′) := α(z) − ||z||2 + 〈
z′, z

〉 + δN B(z′ − z);

here B is the closed unit ball in X1 and N > 0. Clearly, ϕ(z, z) = α(z), and therefore
(P) can be rewritten as (3). Since

ϕ (z, ·)∗ (y) = sup
z′∈X1

{〈
z′, y

〉 − ϕ
(
z, z′

)}

= sup
z′∈X1

{〈
z′, y − z

〉 + δN B(z′ − z)
} − α(z) + ||z||2

= sup
v∈X1

{〈z + v, y − z〉 − δN B(v)} − α(z) + ||z||2

= sup
v∈N B

〈v, y − z〉 + 〈z, y〉 − α(z)

= N ||y − z|| + 〈z, y〉 − α(z),

according to (4) we get the following expression for the dual objective function:

f (·, y)∗ (y) = sup
z∈X1

{〈z, y〉 − ϕ (z, ·)∗ (y)
} = sup

z∈X1

{α(z) − N ||y − z||} ,

which, in view of [11, p. 200], shows that it is the smallest N -Lipschitz majorant of
α. This N -Lipschitz envelope is concave in some cases; for instance, let us consider
the case when X1 := R,

α(z) := −2z6 + 15z4 − 36z2

and N := 10. Then one can easily prove that

f (·, y)∗ (y) =
⎧
⎨

⎩

10y + r + α(−r), if y ≤ −r,
α(y), if y ∈ [−r, r ],
−10y + r + α(r), if y ≥ −r.

with r being the smallest positive real number satisfying α′(−r) = 10.

Figure 1 depicts the graphs of both α and y → f (·, y)∗ (y) and shows that the latter
function is concave.
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Fig. 1 Graph of α(y) (black line) and y → f (·, y)∗ (y) (dash line)

3.2 Example: Generalized Perspective Functions

Let g : X2 → ]0,+∞[ and h : X1 → ]0,+∞[ , and define f : X1× X2 → ]0,+∞[
by f (z, y) := h(z)g(y). For this particular function f, the objective functions of
problems (P) and (D) can be expressed by means of the operation � introduced in
[6], which constitutes a generalization of the so called perspective function of Convex
Analysis. Indeed, for z ∈ X1 one has f (z, ·) = h(z)g, and hence

f (z, ·)∗(z) = (h(z)g)∗ (z) = h(z)g∗
(

z

h(z)

)

= (
g∗�h

)
(z, z) .

Similarly, for y ∈ X2 one has

f (·, y)∗ (y) = (g(y)h)∗ (y) = g(y)h∗
(

y

g(y)

)

= (
h∗�g

)
(y, y) .

Thus, Theorem 3.1 yields:

Corollary 3.6 Let g : X2 → ]0,+∞[ and h : X1 →]0,+∞[. Then

sup
z∈X1

(
g∗�h

)
(z, z) = sup

y∈X2

(
h∗�g

)
(y, y) .

4 An Algorithm

In the setting of the preceding section, in this onewewill assume that X1 and X2 are the
Euclidean spaceRn and 〈·, ·〉 is the standard Euclidean product. Let f : Rn×R

n → R,

and consider the sets
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Pl = {z̄ ∈ R
n : y ∈ R

n and z̄ ∈ ∂ f (z̄, ·)(y) imply y ∈ ∂ f (·, y)(z̄)}

and

Dl = {ȳ ∈ R
n : z ∈ R

n and ȳ ∈ ∂ f (·, ȳ)(z) imply z ∈ ∂ f (z, ·)(ȳ)}.

According to Theorem 3.1, the set Pl contains all the optimal solutions to (P) and
the set Dl contains all the optimal solutions to (D).

For z̄ ∈ R
n and ȳ ∈ R

n, we consider the auxiliary problems

S(z̄) maximize f (·, y)∗(y) subject to y ∈ ∂ f (z̄, ·)∗(z̄)

and

T (ȳ) maximize f (z, ·)∗(z) subject to z ∈ ∂ f (·, ȳ)∗(ȳ).

We will denote byOS(z̄) andOT (ȳ) the sets of optimal solutions to problems S(z̄) and
T (ȳ), respectively.

Proposition 4.1 (1) If z̄ ∈ Pl and f (z̄, ·) is convex, proper and l.s.c., then the function
y �→ f (·, y)∗(y) is constant on ∂ f (z̄, ·)∗(z̄).

(2) If ȳ ∈ Dl and f (·, ȳ) is convex, proper and l.s.c., then the function
z �→ f (z, ·)∗(z) is constant on ∂ f (·, ȳ)∗(ȳ).

Proof By symmetry, we only need to prove (1). Let z̄ ∈ Pl . If y ∈ ∂ f (z̄, ·)∗(z̄), then

f (z̄, ·)∗(z̄) = 〈z̄, y〉 − f (z̄, ·)∗∗ (y) = 〈z̄, y〉 − f (z̄, y) (5)

and, since y ∈ ∂ f (·, y)(z̄) (as z̄ ∈ Pl),

f (·, y)∗(y) = 〈z̄, y〉 − f (z̄, y). (6)

From (6) and (5) it immediately follows that

f (·, y)∗(y) = f (z̄, ·)∗(z̄). (7)

	

Starting with an initial point z0 ∈ R

n, we construct two sequences zk and yk as
follows:

z0 �→ y0 ∈ OS(z0)
z1 ∈ OT (y0) �→ y1 ∈ OS(z1)

...
...

zk+1 ∈ OT (yk ) �→ yk+1 ∈ OS(zk+1).

(8)
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This algorithm requires the auxiliary problems occurring at each iteration to be solv-
able, and from now on we will assume that this is the case. The following proposition
states sufficient conditions for solvability of these problems. We recall that a function
is called co-finite if its conjugate is finite valued everywhere.

Proposition 4.2 Let z̄ ∈ R
n and ȳ ∈ R

n, and assume that f is continuous. If f (z̄, ·) is
co-finite and the mapping y �−→dom f (·, y) is compact-valued and continuous, then
OS(z̄) �= ∅. Analogously, if f (·, ȳ) is co-finite and the mapping z �−→ dom f (z, ·) is
compact-valued and continuous, then OT (ȳ) �= ∅.
Proof The co-finiteness of f (z̄, ·) guarantees that the feasible set ∂ f (z̄, ·)∗(z̄) of S(z̄)
is nonempty and compact. On the other hand, continuity of f together with compact-
valuedness and continuity of the mapping y �−→ dom f (·, y) implies, by Berge’
maximum theorem, continuity of the objective function y �−→ f (·, y)∗(y). It thus
suffices to apply Weierstrass’ extreme value theorem to conclude thatOS(z̄) �= ∅. The
proof of the nonemptiness of OT (ȳ) is the same, mutatis mutandis. 	

Theorem 4.1 Let f : Rn × R

n → R ∪ {+∞} and let the sequences zk and yk be
constructed according to (8). Then

f
(
zk+1, ·

)∗ (
zk+1

)
≥ f

(
·, yk

)∗ (
yk

)
≥ f

(
zk, ·

)∗ (
zk

)
. (9)

The first inequality holds with the equal sign if and only if zk+1 ∈ ∂ f (zk+1, ·)(yk),
in which case, assuming that the function f (·, yk) is convex, proper and l.s.c., we
have yk ∈ Dl . The second inequality holds with the equal sign if and only if
yk ∈ ∂ f (·, yk)(zk), in which case, assuming that the function f (zk, ·) is convex,
proper and l.s.c., we have zk ∈ Pl .

Proof Because of Fenchel inequality and the relations zk+1 ∈ ∂ f (·, yk)∗(yk) and
yk ∈ ∂ f (zk, ·)∗(zk), we obtain

f
(
zk+1, ·

)∗ (
zk+1

)
≥

〈
zk+1, yk

〉
− f

(
zk+1, yk

)

= f
(
·, yk

)∗ (
yk

)

≥
〈
zk, yk

〉
− f

(
zk, yk

)

= f
(
zk, ·

)∗ (
zk

)
.

The ‘if and only if” assertions follow from the above chain of inequalities, combined
with the well-known characterization of subgradients as those elements that satisfy
the Fenchel inequality with the equal sign.

Let us assume that the first inequality holds with the equal sign, and let z ∈ R
n be

such that yk ∈ ∂ f (·, yk)(z). Sincewehave zk+1 ∈ OT (yk ) and z
k+1 ∈ ∂ f (zk+1, ·)(yk),

using that f (·, yk) is convex, proper and l.s.c., we obtain
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f (z, ·)∗(z) ≤ f
(
zk+1, ·

)∗ (
zk+1

)
=

〈
zk+1, yk

〉
− f

(
zk+1, yk

)

=
〈
zk+1, yk

〉
− f

(
·, yk

)∗∗ (
zk+1

)
≤

〈
z, yk

〉
− f

(
·, yk

)∗∗
(z)

=
〈
z, yk

〉
− f

(
z, yk

)
≤ f (z, ·)∗(z);

therefore f (z, ·)∗(z) = 〈
z, yk

〉 − f (z, yk), that is, z ∈ ∂ f (z, ·)(yk). This shows that
yk ∈ Dl .

Let us assume that the second inequality holds with the equal sign, and let y ∈ R
n

be such that zk ∈ ∂ f (zk, ·)(y). Since we have yk ∈ OS(zk ) and yk ∈ ∂ f (·, yk)(zk),
using that f (zk, ·) is convex, proper and l.s.c. and the fact that zk ∈ ∂ f (zk, ·)∗∗(y),
we obtain

f (·, y)∗(y) ≤ f
(
·, yk

)∗
(yk) =

〈
zk, yk

〉
− f

(
zk, yk

)
=

〈
zk, yk

〉
− f

(
zk, ·

)∗∗ (
yk

)

≤
〈
zk, y

〉
− f

(
zk, ·

)∗∗
(y) =

〈
zk, y

〉
− f

(
zk, y

)
≤ f (·, y)∗(y);

therefore f (·, y)∗(y) = 〈
zk, y

〉 − f (zk, y), that is, y ∈ ∂ f (·, y)(zk). This shows that
zk ∈ Pl . 	

Corollary 4.1 (1) Let f, zk and yk be as in Theorem 4.1. Then

lim
k→∞ f

(
zk, ·

)∗ (
zk

)
= lim

k→∞ f
(
·, yk

)∗ (
yk

)
. (10)

(2) If f is continuous, z is a cluster point of the sequence zk, and the sequence yk is
bounded, then

f (z, ·)∗(z) = lim
k→∞ f

(
zk, ·

)∗ (
zk

)
. (11)

(3) If f is continuous, y is a cluster point of the sequence yk, and the sequence zk is
bounded, then

f (·, y)∗(y) = lim
k→∞ f

(
·, yk

)∗ (
yk

)
.

Proof (1) The equality (10) is an immediate consequence of (9).
(2) If f is continuous, then the function z �→ f (z, ·)∗(z) is l.s.c.. If z is a cluster

point of zk , then

lim
j→∞ zk j = z

for some subsequence zk j . Since the sequence yk is bounded, we can suppose (extract-
ing again subsequences if necessary) that the sequence yk j converges to apoint y.Using
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the chain of inequalities at the beginning of the proof of Theorem 4.1, the continuity
of f, and the lower semicontinuity of the function z �→ f (z, ·)∗(z), we obtain

lim
k→∞ f

(
zk, ·

)∗ (
zk

)
= lim

j→∞ f
(
zk j , ·

)∗ (
zk j

)
= lim

j→∞

(〈
zk j , yk j

〉
− f

(
zk j , yk j

))

= 〈z, y〉 − f (z, y) ≤ f (z, ·)∗(z) ≤ lim
j→∞ f

(
zk j , ·

)∗ (
zk j

)

= lim
k→∞ f

(
zk, ·

)∗ (
zk

)
,

which proves (11).
The proof of (3) is similar to that of (2). 	


Theorem 4.2 Let f be continuous.

(1) If f is convex and proper in its first argument, z is a cluster point of zk , and the
sequence yk is bounded, then z ∈ Pl .

(2) If f is convex and proper in its second argument, y is a cluster point of yk , and
the sequence zk is bounded, then y ∈ Dl .

Proof (1) Let y ∈ R
n be such that z ∈ ∂ f (z, ·)(y). Since z is a cluster point of zk , we

have

lim
j→∞ zk j = z

for some subsequence zk j . We can suppose (extracting subsequences if necessary)
that the sequence yk j−1 converges to a point y ∈ R

n . Given that zk j ∈ O
T (yk j−1

)

and yk j ∈ O
S(zk j )

, we have zk j ∈ ∂ f (·, yk j−1)∗(yk j−1) and yk j ∈ ∂ f (zk j , ·)∗(zk j ).
Hence, using the properties of f and Corollary 4.1, we get

f (·, y)∗(y) ≤ lim
j→∞ f

(
·, yk j−1

)∗ (
yk j−1

)

= lim
j→∞

(〈
zk j , yk j−1

〉
− f

(
zk j , yk j−1

))

≤ lim
j→∞ f

(
zk j , ·

)∗ (
zk j

)

= f (z, ·)∗(z)
= 〈z, y〉 − f (z, y) (12)

From (12) and Fenchel inequality, we obtain y ∈ ∂ f (·, y)(z). This shows that z ∈ Pl .
The proof of (2) is similar. 	


Acknowledgements The research of the corresponding author was supported by the MINECO of Spain,
Grant MTM2014-59179-C2-2-P, and the Severo Ochoa Programme for Centres of Excellence in R&D
[SEV-2015-0563]. He is affiliated toMOVE (Markets, Organizations and Votes in Economics). We are very
grateful to Elisabetta Allevi for her valuable help on the elaboration of Example 3.1. We also thank the
Associate Editor and an anonymous reviewer for their careful reading of our manuscript, their corrections,
and their helpful suggestions to improve the presentation.

123



540 J Optim Theory Appl (2018) 176:527–540

References

1. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
2. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch.

Ration. Mech. Anal. 71, 41–61 (1979)
3. Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66, 399–415 (1978)
4. Singer, I.: A Fenchel–Rockafellar type duality theorem for maximization. Bull. Aust. Math. Soc. 20,

193–198 (1979)
5. Hiriart-Urruty, J.-B.: From convex to nonconvex optimization. Necessary and sufficient conditions

for global optimality. In: Clarke, F.H., et al. (eds.) Non-smooth Optimization and Related Topics, pp.
219–240. Plenum Press, New York (1989)

6. Maréchal, P.: On a functional operation generating convex functions. I. Duality. J. Optim. Theory Appl.
126(1), 175–189 (2005)

7. Tao, P.D., El Bernoussi, S.: Duality in D.C. (Difference of Convex Functions) Optimization. Sub-
gradient Methods. International Series of Numerical Mathematics, pp. 277–293. Birkhäuser, Basel
(1988)

8. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)
9. Sun, W., Sampaio, R.J.-B., Candido, M.A.B.: Proximal point algorithm for minimization of DC func-

tion. J. Comput. Math. 21(4), 451–462 (2003)
10. Martínez-Legaz, J.E.: Generalized Convex Duality and Its Economic Applications. Handbook of Gen-

eralized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol.
76, pp. 237–292. Springer, New York (2005)

11. Martínez-Legaz, J.E.: On Lower Subdifferentiable Functions. Trends in Mathematical Optimization,
pp. 197–232. Birkhäuser, Basel (1988)

123


	A General Nonconvex Multiduality Principle
	Abstract
	1 Introduction
	2 Multiduality
	3 Nonconvex Duality
	3.1 A Generalization of Toland–Singer Duality
	3.2 Example: Generalized Perspective Functions

	4 An Algorithm
	Acknowledgements
	References




