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1 Introduction

Mathematical problems with equilibrium constraints (MPEC) play important roles in
many fields such as engineering design, economic equilibria, multilevel game, trans-
portation science, and mathematical programming itself. However, since the standard
Mangasarian–Fromovitz constraint qualification (MFCQ) does not hold at any fea-
sible point [1], this kind of problems is very difficult to deal with. See, e.g., [2], for
more details about the basic theory, effective algorithms, and various applications of
MPEC.

In this paper, we consider a multiobjective problem with equilibrium constraints
(MOPEC), which has many practical applications in energy, environment, health and
transportation, etc., see, e.g., [3–5]. Our main purpose is to extend various constraint
qualifications and stationarity conditions from the single-objective case to themultiob-
jective case. Particularly, we mainly focus on the proper Pareto optimality conditions
for MOPEC in this paper.

Note that the proper Pareto-type optimality conditions for MOPEC have been dis-
cussed in [3,6]. However, Lin et al. [3] mainly aim at locally proper Pareto optimal
solutions, while Pandey and Mishra [6] only introduce a concept of proper Pareto
M-stationarity in terms of the Clark subdifferentials for the nonsmooth multiobjective
semi-infinite case. In this paper, we discuss the locally Pareto optimal solutions for the
smooth MOPEC, and we especially present a number of generalized constraint qual-
ifications and proper Pareto stationarity conditions. We show that the proper Pareto
optimality conditions hold for the locally Pareto optimal solutions under appropri-
ate constraint qualifications. Furthermore, we investigate the relationships among the
constraint qualifications and the stationarity conditions.

The paper is organized as follows: In Sect. 2, we recall some useful concepts and
properties. In Sect. 3, we first extend the existing MPEC-type constraint qualifications
to MOPEC and then investigate the relationships among them. In Sect. 4, we discuss
various stationarities in the proper Pareto sense for MOPEC. Finally, we make some
conclusions in Sect. 5.

2 Preliminaries

In what follows, given a vector d ∈ IRn and an index set I ⊆ {1, . . . , n}, we use dI

to denote the subvector composed from the components di (i ∈ I ). Moreover, we use
Bδ(x) to stand for the open ball centered at x with radius δ > 0, and we denote by
∇F(x) its transposed Jacobian at x for a differentiable function F . We denote by ei

the vector whose i-th element is one and others are zero, and by e the vector whose
elements are all one.

Consider the following MOPEC:

min f (x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 = 0, (1)
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where f : IRn → IRr , g : IRn → IRp, h : IRn → IRq , and G, H : IRn → IRm are all
continuously differentiable functions. We denote by F the feasible region of (1) and,
for x∗ ∈ F , we let

I f := {1, 2, . . . , r}, I−k
f := {i ∈ I f : i �= k}, Ih := {1, 2, . . . , q},

I∗
g := {i : gi (x∗) = 0}, I∗ := {i : Gi (x∗) = 0, Hi (x∗) > 0},

J ∗ := {i : Gi (x∗) = 0, Hi (x∗) = 0}, K∗ := {i : Gi (x∗) > 0, Hi (x∗) = 0}.

We next recall some basic concepts.

Definition 2.1 (a) The polar cone of a cone K is defined by

K o := {d ∈ IRn : 〈d, x〉 ≤ 0, ∀x ∈ K
}
.

(b) The tangent cone of a set Q at x∗ ∈ cl Q is defined by

T (Q; x∗) :=
{

d ∈ IRn : ∃{xn} ⊆ Q, tn ↓ 0 s.t. xn → x∗, xn − x∗

tn
→ d

}
.

(c) The regular normal cone of a set Q at x∗ ∈ cl Q is defined by

N̂ (Q; x∗) := { d ∈ IRn : 〈d, x − x∗〉 ≤ o(‖x − x∗‖),∀x ∈ Q
}
.

(d) The limiting normal cone of a set Q at x∗ ∈ cl Q is defined by

N (Q; x∗) :=
{

d ∈ IRn : ∃{xk} ∈ Q, dk ∈ N̂ (Q; xk) s.t. xk → x∗, dk → d
}

.

(e) For a set-valued mapping Γ : IRs ⇒ IRd , the sequential Painlevé–Kuratowski
outer limit of Γ (z) as z → z∗ is defined by

lim sup
z→z∗

Γ (z) :=
{
w∗ ∈ IRd : ∃(zk, wk) → (z∗, w∗) with wk ∈ Γ (zk)

}
.

In addition, Γ is outer semicontinuous at z∗ iff lim sup
z→z∗

Γ (z) ⊆ Γ (z∗).

The following definition for (1) coincides with the standard definition of Pareto
optimality in multiobjective optimization theory [7].

Definition 2.2 We call x∗ ∈ F a Pareto optimal solution of (1) iff there does not exist
another point x ∈ F such that f (x) ≤ f (x∗) and fi (x) < fi (x∗) for some i . We call
x∗ ∈ F a locally Pareto optimal solution of (1) iff there exists a neighborhood U (x∗)
such that it is Pareto optimal in U (x∗) ∩ F .

The following lemmas are useful in the subsequent sections.
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Lemma 2.1 [8] Let C and C̃ be two nonempty cones. Then, we have

C ⊆ C̃ ⇒ C̃o ⊆ Co, C ⊆ Coo, Coo = convC,

where convC denotes the closed and convex hull of C.

Lemma 2.2 [9] Let x∗ ∈ C := C1 ∩ · · · ∩ Cm with Ci ⊆ IRn. Then, we have

T (C; x∗) ⊆ T (C1; x∗) ∩ · · · ∩ T (Cm; x∗).

Lemma 2.3 [10] Let x := ∑m+p
i=1 αivi , where {v1, . . . , vm} is linearly independent

and αi �= 0 for every i ∈ I := {m + 1, · · · , m + p}. Then, there exist J ⊆ I and ᾱi ,
i ∈ {1, . . . , m} ∪J , such that x =∑i∈{1,...,m}∪J ᾱivi with αi ᾱi > 0 for every i ∈ J
and {vi }i∈{1,...,m}∪J to be linearly independent.

Lemma 2.4 [11] Let f : IRp → IR be a continuously differentiable function. Assume
that xl → x∗ with f (xl) ≤ f (x∗) for each l and d := liml→∞ tl(xl − x∗) with tl > 0
for each l. Then, we have 〈∇ f (x∗), d〉 ≤ 0.

3 Constraint Qualifications for MOPEC

As is known to us, various constraint qualifications are very important in optimality
theory and convergence analysis for numerical methods. However, as in the MPEC
theory, because of the existence of the complementarity constraints, theMangasarian–
Fromovitz constraint qualification for multiobjective optimization problems does not
hold for MOPEC (1) at any feasible point [12,13]. In this section, we first introduce
a list of MOPEC-type constraint qualifications, which are generalizations of the ones
for single-objective MPEC, and then, we discuss the relationships among them.

In order to extend the MPEC-type constraint qualifications to MOPEC (1), we
make use of the ε-constraint approach, which is often used to characterize Pareto opti-
mal solutions for multiobjective optimization [7]. Recall that, given a multiobjective
optimization problem

min
x∈X

f (x) (2)

and an upper bound vector ε, the k-th ε-constraint problem for (2) is

min fk(x) s.t. fi (x) ≤ εi , i ∈ I−k
f , x ∈ X. (3)

The following result reflects the relations between the Pareto optimal solutions of
problem (2) and the optimal solutions of its ε-constraint problems.

Theorem 3.1 [14] The vector x∗ ∈ X is a Pareto optimal solution of (2) if and only
if x∗ solves (3) for every k ∈ I f with εi := fi (x∗) (i ∈ I−k

f ).
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By means of Theorem 3.1, we can define some MOPEC-type constraint qualifica-
tions by means of the constraint qualifications for the MPEC

min fk(x)

s.t. fi (x) ≤ fi (x∗), ∀i ∈ I−k
f ,

g(x) ≤ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 = 0, (4)

where x∗ is a locally Pareto optimal solution of (1). Roughly speaking, we say that
some constraint qualification holds for MOPEC (1) at x∗ ∈ F iff the corresponding
MPEC-type constraint qualification holds for MPEC (4) at x∗ for each k. To avoid
disturbing the readability, here, we just list the MOPEC-type constraint qualifications
used in this paper, which include

MOPEC-LCQ (or LICQ, WSCQ, SCQ, NNAMCQ, CRCQ, RCRCQ)

and

MOPEC-MFCQ (or CPLD, RCPLD, quasinormality, pseudonormality),

and we omit their mathematical descriptions. We refer readers to [15–17] for detailed
definitions of the MPEC-type constraint qualifications involved above.

Remark 3.1 Note that the concepts defined forMOPEC (1) involve the objective func-
tions. In the studies on multiobjective optimization problems, conditions to guarantee
the positiveness of the multipliers associated with the objectives are usually called
regularity conditions when the conditions involve the objective functions. Here, for
consistency with the single-objective case discussed in [15–17], we still call them by
constraint qualifications.

From [15–17], we can obtain the following relationships among the aboveMOPEC-
type constraint qualifications:

– MOPEC-LICQ ⇒ MOPEC-CRCQ ⇒ MOPEC-CPLD ⇒ MOPEC quasinormal-
ity;

– MOPEC-LCQ ⇒ MOPEC-CRCQ ⇒ MOPEC-RCRCQ ⇒ MOPEC-RCPLD;
– MOPEC-LCQ ⇒ MOPEC pseudonormality;
– MOPEC-MFCQ⇒MOPEC-NNAMCQ⇒MOPECpseudonormality⇒MOPEC
quasinormality;

– MOPEC-LICQ ⇒ MOPEC-MFCQ ⇒ MOPEC-CPLD ⇒ MOPEC-RCPLD;
– MOPEC-SCQ ⇒ MOPEC-WSCQ.

We next extend the generalized Guignard constraint qualification (GGCQ) given
in [18] for multiobjective optimization problems to MOPEC (1).

Definition 3.1 We say that the generalized Guignard constraint qualification (GGCQ)
holds for (1) at x∗ ∈ F iff L(Q; x∗) ⊆⋂r

k=1 convT (Qk; x∗), where

Q :=
{

x ∈ IRn : f (x) ≤ f (x∗), g(x) ≤ 0, h(x) = 0
G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 = 0

}
,
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L(Q; x∗) :=

⎧
⎪⎪⎨

⎪⎪⎩
d ∈ IRn :

〈∇ f (x∗), d〉 ≤ 0
〈∇gI∗

g
(x∗), d〉 ≤ 0, 〈∇h(x∗), d〉 = 0

〈∇GI∗(x∗), d〉 = 0, 〈∇HK∗(x∗), d〉 = 0
〈∇GJ ∗(x∗), d〉 ≥ 0, 〈∇HJ ∗(x∗), d〉 ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
,

and Qk denotes the feasible region of (4).

We have the following result.

Theorem 3.2 If the MOPEC-WSCQ holds at x∗, the GGCQ holds at x∗.

Proof For each k ∈ I f , since the MOPEC-WSCQ holds at x∗, there exists xk such
that fI−k

f
(xk) < fI−k

f
(x∗), gI∗

g
(xk) < 0, h(xk) = 0, GI∗∪J ∗(xk) = 0, and

HK∗∪J ∗(xk) = 0. Denote by dk := xk − x∗. Since { f, g} are convex and {h, G, H}
are affine, we have 〈∇ fI−k

f
(x∗), dk〉 < 0, 〈∇gI∗

g
(x∗), dk〉 < 0, 〈∇hIh (x∗), dk〉 =

0, 〈∇GI∗∪J ∗(x∗), dk〉 = 0, 〈∇HK∗∪J ∗(x∗), dk〉 = 0. Let d ∈ L(Q; x∗), that is,

〈∇ f (x∗), d〉 ≤ 0, 〈∇gI∗
g
(x∗), d〉 ≤ 0, 〈∇h(x∗), d〉 = 0,

〈∇GI∗(x∗), d〉=0, 〈∇HK∗(x∗), d〉=0, 〈∇GJ ∗(x∗), d〉≥0, 〈∇HJ ∗(x∗), d〉≥0.

For any positive sequence {αl} converging to 0, by letting dl := d + αldk for each l,
we have 〈∇ fi (x∗), dl〉 = 〈∇ fi (x∗), d〉 + αl〈∇ fi (x∗), dk〉 < 0 for any i ∈ I−k

f . For

each l, taking a positive sequence {t j } converging to 0 and letting x j := x∗ + t j dl , we
have that, for each j sufficiently large,

fi (x j ) = fi (x∗ + t j d
l) = fi (x∗)+t j 〈∇ fi (x∗), dl〉+o(‖t j d

l‖) ≤ fi (x∗),∀i ∈ I−k
f

and, similarly, we have

gI∗
g
(x j ) ≤ 0, GJ ∗(x j ) ≥ 0, HJ ∗(x j ) ≥ 0, h(x j ) = 0, GI∗(x j ) = 0, HK∗(x j ) = 0.

For i /∈ I∗
g , since gi (x∗) < 0, it follows from the continuity of g that gi (x j ) < 0 for

every j sufficiently large. Similarly, we have GK∗(x j ) > 0 and HI∗(x j ) > 0 for every
j sufficiently large.As a result, without any loss of generality, wemay assume x j ∈ Qk

for all j . Note that x j ∈ Qk and t j → 0 imply x j → x∗ and lim
j→∞(x j − x∗)/t j = dl ,

which means dl ∈ T (Qk; x∗). Since T (Qk; x∗) is closed, we have d ∈ T (Qk; x∗).
By the arbitrariness of k, we have

d ∈
r⋂

k=1

T (Qk; x∗) ⊆ conv
r⋂

k=1

T (Qk; x∗),

which means that the GGCQ holds at x∗. This completes the proof. ��
We now extend the MPEC-ACQ, the MPEC-GCQ, the MPEC-KTCQ, and the

MPEC-ZCQ in [1,8,19] for the single-objective MPEC to MOPEC (1).
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Definition 3.2 Consider MOPEC (1), and let x∗ ∈ F .

(a) The MOPEC Abadie constraint qualification (MOPEC-ACQ) holds at x∗ iff
LMOPEC(Q; x∗) = T (Q; x∗), where

LMOPEC(Q; x∗) :=

⎧
⎪⎪⎨

⎪⎪⎩
d :

〈∇ f (x∗), d〉≤0, 〈∇gI∗
g
(x∗), d〉≤0, 〈∇h(x∗), d〉=0

〈∇GI∗(x∗), d〉 = 0, 〈∇HK∗(x∗), d〉 = 0
〈∇GJ ∗(x∗), d〉 ≥ 0, 〈∇HJ ∗(x∗), d〉 ≥ 0
〈∇GJ ∗(x∗), d〉 · 〈∇HJ ∗(x∗), d〉 = 0

⎫
⎪⎪⎬

⎪⎪⎭
.

(b) TheMOPEC generalizedAbadie constraint qualification (MOPEC-GACQ) holds

at x∗ iff LMOPEC(Q; x∗) =
r⋂

k=1
T (Qk; x∗).

(c) The MOPEC Guignard constraint qualification (MOPEC-GCQ) holds at x∗ iff
LMOPEC(Q; x∗)o = T (Q; x∗)o.

(d) The MOPEC generalized Guignard constraint qualification (MOPEC-GGCQ)

holds at x∗ iff LMOPEC(Q; x∗) ⊆
r⋂

k=1
convT (Qk; x∗).

(e) The MOPEC Zangwill constraint qualification (MOPEC-ZCQ) holds at x∗ iff
LMOPEC(Q; x∗) = cl D(Q; x∗), where D(Q; x∗) is the cone of the feasible
directions of the set Q at x∗ defined by

D(Q; x∗) := { d ∈ IRn : ∃δ > 0 s.t. x∗ + td ∈ Q (∀t ∈ ]0, δ[ )
}
.

(f) TheMOPECKuhn–Tucker constraint qualification (MOPEC-KTCQ) holds at x∗
iff LMOPEC(Q; x∗) = clA(Q; x∗), where A(Q; x∗) denotes the cone of attain-
able directions of the set Q at x∗ defined by

A(Q; x∗) :=
{

d ∈ IRn : ∃δ > 0, α : IR → IRn s.t. α(0) = x∗
α(τ) ∈ Q (∀τ ∈ ]0, δ[ ), limτ↓0 α(τ)−α(0)

τ
= d

}
.

Obviously, if the complementarity constraints in (1) vanish, the MOPEC-ACQ,
the MOPEC-GACQ, and the MOPEC-GGCQ defined above coincide with the corre-
sponding constraint qualifications defined for multiobjective optimization problems
in [18].

From Lemmas 2.1–2.2 and Definition 3.2, we can easily obtain the following rela-
tionships:

– MOPEC-ACQ ⇒ MOPEC-GACQ ⇒ MOPEC-GGCQ;
– MOPEC-ACQ ⇒ MOPEC-GCQ ⇒ MOPEC-GGCQ;
– GGCQ ⇒ MOPEC-GGCQ.

We next show that

– MOPEC-ZCQ ⇒ MOPEC-KTCQ ⇒ MOPEC-ACQ.

Theorem 3.3 If the MOPEC-ZCQ holds at x∗ ∈ F , the MOPEC-KTCQ holds at x∗.
If the MOPEC-KTCQ holds at x∗ ∈ F , the MOPEC-ACQ holds at x∗.
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Proof We first show T (Q; x∗) ⊆ LMOPEC(Q; x∗). In fact, since x∗ is a feasible point
of MPEC (4) for each k ∈ I f , it follows from [19] that

T (Qk; x∗) ⊆ LMPEC(Qk; x∗) = LMOPEC(Qk; x∗)

and so

T (Q; x∗) ⊆
r⋂

k=1

T (Qk; x∗) ⊆
r⋂

k=1

LMOPEC(Qk; x∗) = LMOPEC(Q; x∗). (5)

Since D(Q; x∗) ⊆ A(Q; x∗) ⊆ T (Q; x∗) and T (Qk; x∗) is closed, we have

cl D(Q; x∗) ⊆ cl A(Q; x∗) ⊆ T (Q; x∗). (6)

ThenLMOPEC(Q; x∗) = clD(Q; x∗) if theMOPEC-ZCQ holds at x∗. It follows from
(5)–(6) that LMOPEC(Q; x∗) = clA(Q; x∗), that is, the MOPEC-KTCQ holds at x∗.
We can show the second half in a similar way. ��

We further have the following result.

Theorem 3.4 Let x∗ ∈ F .

(i) Suppose that one of the MOPEC-WSCQ, the MOPEC pseudonormality, the
MOPEC-RCRCQ holds at x∗. Then, the MOPEC-GACQ holds at x∗.

(ii) Suppose that the MOPEC-LCQ holds at x∗. Then, the MOPEC-ZCQ holds at x∗.

Proof (i) We only prove that the MOPEC-WSCQ implies the MOPEC-GACQ
because the other two cases can be shown similarly. Let the MOPEC-WSCQ
hold at x∗. It follows that, for each k ∈ I f , the MPEC-WSCQ for (4) holds at x∗.
From Theorem 3.9 in [19], the MPEC-ACQ for (4) also holds at x∗, and hence,
LMPEC(Qk; x∗) ⊆ T (Qk; x∗) for each k ∈ I f . Then, we have

LMOPEC(Q; x∗) =
r⋂

k=1

LMPEC(Qk; x∗) ⊆
r⋂

k=1

T (Qk; x∗),

that is, the MOPEC-GACQ holds at x∗.
(ii) Suppose that the MOPEC-LCQ holds at x∗, and d ∈ LMOPEC(Q; x∗). Since all

functions involved are affine and x∗ ∈ F , for any τ ∈ ]0, 1] small enough, we
have fi (x∗ + τd) = τ 〈∇ fi (x∗), d〉 + fi (x∗) ≤ 0 for each i ∈ I f and

gI∗
g
(x∗ + τd) ≤ 0, hIh (x∗ + τd) = 0, GI∗(x∗ + τd) = 0,

HK∗(x∗ + τd) = 0, GJ ∗(x∗ + τd) ≥ 0, HJ ∗(x∗ + τd) ≥ 0.

If i ∈J ∗, we have Gi (x∗+τd)Hi (x∗+τd)= τ 2〈∇Gi (x∗), d〉〈∇Hi (x∗), d〉=0.
Since gi (x∗) < 0 when i /∈ I∗

g , it follows from the continuity of g that gi (x∗ +
τd) < 0 for any τ ∈ ]0, 1] small enough. Similarly, we have GK∗(x∗ + τd) > 0
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and HI∗(x∗ +τd) > 0 when τ ∈ ]0, 1] is small enough. Therefore, as long as τ ∈
]0, 1] is small enough, there must hold x∗ + τd ∈ Q, and hence, d ∈ D(Q; x∗).
This completes the proof. ��

4 Proper Pareto Stationarities for MOPEC

In this section, we discuss the stationarities for MOPEC (1) under the proper Pareto
sense. In what follows, the capitals “W, C, M, B, S” are, respectively, the abbrevia-
tions for “weak, Clarke, Mordukhovich, Boulligand, strong”, which coincide with the
terminologies for MPEC in the literature.

Definition 4.1 Let x∗ ∈ F .

(a) x∗ is called a proper Pareto W-stationary point of (1) iff there exist multipliers
{σ, λ, μ, u, v} such that

∇ f (x∗)σ + ∇g(x∗)λ + ∇h(x∗)μ − ∇G(x∗)u − ∇H(x∗)v = 0,

σ ≥ e, λ ≥ 0, 〈g(x∗), λ〉 = 0, uK∗ = 0, vI∗ = 0. (7)

(b) x∗ is called a proper Pareto C-stationary point of (1) iff there exist multipliers
{σ, λ, μ, u, v} satisfying (7) and uivi ≥ 0 for each i ∈ J ∗.

(c) x∗ is called a proper Pareto M-stationary point of (1) iff there exist multipliers
{σ, λ, μ, u, v} satisfying (7) and either ui > 0, vi > 0 or uivi = 0 for each
i ∈ J ∗.

(d) x∗ is called a proper Pareto B-stationary point of (1) iff, for any k ∈ I f ,

〈∇ fk(x∗), d〉 ≥ 0, ∀d ∈ LMOPEC(Qk; x∗).

(e) x∗ is called a proper Pareto S-stationary point of (1) iff there exist multipliers
{σ, λ, μ, u, v} satisfying (7) and

ui ≥ 0, vi ≥ 0, ∀i ∈ J ∗. (8)

Note that the above stationarity conditions are different from the ones given in
[3,20], where the multiplier vector associated with the objective functions is only
required to be nonzero and nonnegative. Obviously, the proper Pareto stationarities
can ensure all objective functions to have effective influence in practice. Moreover,
if all functions involved are differentiable and the number of inequality constraints
is finite, the definition given in [6] coincides with the proper Pareto M-stationarity
defined above.
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Theorem 4.1 Let x∗ ∈ F .

(i) If x∗ is a proper Pareto S-stationary point of (1), x∗ is a proper Pareto B-stationary
point of (1).

(ii) If x∗ is a proper Pareto B-stationary point of (1), x∗ is a proper Pareto M-
stationary point of (1).

Proof (i) Let x∗ be a proper Pareto S-stationary point of (1), that is, there exist
multipliers {σ, λ, μ, u, v} satisfying (7)–(8). For any d ∈ IRn , we have

∑

i∈I f

σi 〈∇ fi (x∗), d〉 +
∑

i∈I∗
g

λi 〈∇gi (x∗), d〉 +
∑

i∈Ih

μi 〈∇hi (x∗), d〉

−
∑

i∈I∗∪J ∗
ui 〈∇Gi (x∗), d〉 −

∑

i∈K∗∪J ∗
vi 〈∇Hi (x∗), d〉 = 0.

Suppose by contradiction that x∗ is not a proper Pareto B-stationary point of
(1), which means that there exist k ∈ I f and dk ∈ LMOPEC(Qk; x∗) such that
〈∇ fk(x∗), dk〉 < 0. Noting that σ ≥ e, I∗

g ≥ 0, uJ ∗ ≥ 0, and vJ ∗ ≥ 0, we have
from the definition of LMOPEC(Qk; x∗) that

∑

i∈I f

σi 〈∇ fi (x∗), dk〉 +
∑

i∈I∗
g

λi 〈∇gi (x∗), dk〉 +
∑

i∈Ih

μi 〈∇hi (x∗), dk〉

−
∑

i∈I∗∪J ∗
ui 〈∇Gi (x∗), dk〉 −

∑

i∈K∗∪J ∗
vi 〈∇Hi (x∗), dk〉 < 0,

which is a contraction. This completes the proof of (i).

(ii) Let x∗ be a proper Pareto B-stationary point. Then, for any k ∈ I f and d ∈
LMOPEC(Qk; x∗), we have 〈∇ fk(x∗), d〉 ≥ 0. Noting that

LMOPEC(Q; x∗) =
r⋂

k=1

LMOPEC(Qk; x∗),

we have
r∑

k=1
〈∇ fk(x∗), d〉 ≥ 0 for every d ∈ LMOPEC(Q; x∗). This means that

d = 0 is an optimal solution of

min
d∈LMOPEC(Q;x∗)

r∑

k=1

〈∇ fk(x∗), d〉,

which is actually an MPEC. Since all constraint functions are affine, by Theorem
2.2 in [1], d = 0 is an M-stationary point of the above MPEC, that is, there exist
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multipliers {σ, λ, μ, u, v} �= 0 such that

r∑

k=1

∇ fk(x∗) +
∑

i∈I f

σi∇ fi (x∗) +
∑

i∈I∗
g

λi∇gi (x∗) +
∑

i∈Ih

λi∇hi (x∗)

−
∑

i∈I∗∪J ∗
ui∇Gi (x∗) −

∑

i∈K∗∪J ∗
vi∇Hi (x∗) = 0,

σ ≥ 0, λI∗
g

≥ 0, uK∗ = 0, vI∗ = 0,

either ui > 0, vi > 0 or uivi = 0, ∀i ∈ J ∗,

from which we know that x∗ is a proper Pareto M-stationary point of (1). ��
From the above theorem and Definition 4.1, the relationships among the proper

Pareto stationarities can be summarized as follows:

– proper Pareto S-stationarity ⇒ proper Pareto B-stationarity ⇒ proper Pareto
M-stationarity ⇒ proper Pareto C-stationarity ⇒ proper Pareto W-stationarity.

In order to show the relationship between the MOPEC quasinormality and the
proper Pareto M-stationarity, we first give a lemma.

Lemma 4.1 Consider the problem

min f (x) s.t. F(x) ∈ Λ, (9)

where F : IRn → IRm is continuously differentiable, and Λ is a closed subset in IRm.
If the quasinormality for (9) holds at a locally Pareto optimal solution x∗, that is,
there is no nonzero vector η∗ ∈ N (Λ; F(x∗)) such that

– 0 ∈ ∇F(x∗)η∗;
– there exists a sequence {(xk, yk, ηk)} convergent to (x∗, F(x∗), η∗) such that, for

all k, ηk ∈ N (Λ; yk) and η∗
i (Fi (xk) − yk

i ) > 0 if η∗
i �= 0,

there exists σ ≥ 0 with σ �= 0 such that

0 ∈ ∇ f (x∗)σ + ∇F(x∗)N (Λ; F(x∗)).

Proof Note that (9) can be rewritten as

min f (x) s.t. F(x) − y = 0, (x, y) ∈ IRn × Λ. (10)

Obviously, problem (10) is a special case of the problem considered in [21] without
inequality constraints and variational inequality constraints. Since x∗ is a locally Pareto
optimal solution of (9), it is easy to see that x∗ is also a locally optimal solution of (9)
under the weakly Pareto preference. Then, from Theorem 1.3 and Remark 2 in [21],
there exist α ∈ {0, 1}, μ ∈ IRm , and σ ≥ 0 with σ �= 0 such that

0 ∈ α

n∑

i=1

σi

(∇ fi (x∗)
0

)
+

m∑

i=1

μi

(∇Fi (x∗)
−ei

)
+
(

0
N (Λ; y∗)

)
.
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Therefore, we have

0 ∈ α∇ f (x∗)σ + ∇F(x∗)N (Λ; F(x∗)). (11)

We next prove that α in (11) can be taken as 1. By Theorem 4.8 in [21], we only
need to prove that the error bound constraint qualification is satisfied at x∗, that is,
there exist positive constants {κ, δ, ε} such that

dist(x,Σ(0)) ≤ κ‖p‖, ∀p ∈ εB, ∀x ∈ Σ(p) ∩ Bδ(x∗),

where Σ(p) := {x : F(x) + p ∈ Λ}. In fact, since the quasinormality for problem
(9) holds at x∗, by Theorem 5.2 in [22], there exist δ > 0 and κ > 0 such that

dist(x,Σ(0)) ≤ κdist(F(x),Λ), ∀x ∈ Bδ(x∗). (12)

Note that F(x) + p ∈ Λ for any x ∈ Σ(p). Then, we have from (12) that, for any
x ∈ Bδ(x∗) ∩ Σ(p),

dist(x,Σ(0)) ≤ κdist(F(x),Λ) ≤ κ‖F(x) − (F(x) + p)‖ = κ‖p‖.

Hence, the error bound constraint qualification for (9) holds at x∗. By Theorem 4.8 in
[21], the parameter α in (11) can be taken as 1. This completes the proof. ��
Theorem 4.2 Let x∗ ∈ F be a locally Pareto optimal solution of MOPEC (1). If the
MOPEC quasinormality or the MOPEC-RCPLD holds at x∗, x∗ is a proper Pareto
M-stationary point of (1).

Proof (i) Note that problem (1) can be rewritten as the form of (9), in which

F(x) := (g(x), h(x), G1(x), H1(x), . . . , Gm(x), Hm(x)),

Λ := ] − ∞, 0]p × {0}q × Cm, C := {(a, b) ∈ IR2+ : ab = 0}.

Suppose that theMOPEC quasinormality holds at x∗. Then, theMPEC quasinormality
for the system

g(x) ≥ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 = 0

holds at x∗. Let η∗ := (λ, μ, ui , vi , . . . , um, vm), ηk := η∗, and yk := F(x∗) for all
k. Then, the quasinormality for problem (9) holds at x∗. Thus, by Lemma 4.1, there
exists σ ≥ 0 with σ �= 0 such that

0 ∈ ∇ f (x∗)σ + ∇F(x∗)N (Λ; F(x∗)),

which means

∇ f (x∗)σ + ∇g(x∗)λ + ∇h(x∗)μ − ∇G(x∗)u − ∇H(x∗)v = 0,
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σ ≥ 0, λ ≥ 0, 〈λ, g(x∗)〉 = 0, uK∗ = 0, vI∗ = 0,

either ui > 0, vi > 0 or uivi = 0, ∀i ∈ J ∗.

We next show σ > 0. Suppose by contradiction that there exists k ∈ I f such that
σk = 0. In this case, the above conditions become

∑

i �=k

σi∇ fi (x∗) + ∇g(x∗)λ + ∇h(x∗)μ − ∇G(x∗)u − ∇H(x∗)v = 0,

σ ≥ 0, λ ≥ 0, 〈λ, g(x∗)〉 = 0, uK∗ = 0, vI∗ = 0,

either ui > 0, vi > 0 or uivi = 0, ∀i ∈ J ∗.

Since x∗ is a locally Pareto optimal solution of (1), it is also a local minimizer of
MPEC (4). Then, in a similar way to the proof of Theorem 3.1 in [23], we can show
that there exists a sequence {x N } → x∗ such that, for each N ,

σi > 0 ⇒ σi

(
fi

(
x N
)

− fi
(
x∗)) > 0,

λ j > 0 ⇒ λ j g j

(
x N
)

> 0, μl �= 0 ⇒ μl hl

(
x N
)

> 0,

uı �= 0 ⇒ −uı Gı

(
x N
)

> 0, vj �= 0 ⇒ −vj Hj

(
x N
)

> 0.

This contradicts the MOPEC quasinormality assumption at x∗, and hence, we must
have σ > 0. That is, x∗ is a proper Pareto M-stationary point of (1).

(ii) Suppose that the MOPEC-RCPLD holds at x∗. Since x∗ is a locally Pareto
optimal solution of (1), for any k ∈ I f , x∗ is also a local minimizer of (4), and so
−∇ fk(x∗) ∈ N (Qk; x∗).Note that (4) can be rewritten as the following optimization
problem with a geometric constraint:

min fk(x) s.t. Fk(x) ∈ Λ,

where

Fk(x) :=

⎛

⎜⎜
⎝

fI−k
f

(x) − fI−k
f

(x∗)
g(x)

h(x)

Ψ (x)

⎞

⎟⎟
⎠ , Ψ (x) :=

⎛

⎜⎜⎜⎜⎜
⎝

G1(x)

H1(x)
...

Gm(x)

Hm(x)

⎞

⎟⎟⎟⎟⎟
⎠

,

Λ := ] − ∞, 0]r+p−1 × {0}q × Cm, C := {(a, b) ∈ IR2+ : ab = 0}.

By Theorem 3.7 in [24], we have

N (Qk; x∗) ⊆ lim sup
(x,z)→(x∗,Fk (x∗))

∇Fk(x)N (Λ; z),
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and so

−∇ fk(x∗) ∈ lim sup
(x,z)→(x∗,Fk (x∗))

∇Fk(x)N (Λ; z), ∀k ∈ I f .

From the definition of outer limit, there are sequences {xk,t }, {zk,t }, {wk,t }, and
{γ k,t } such that xk,t → x∗, zk,t → Fk(x∗), and wk,t → −∇ fk(x∗) with wk,t :=
∇Fk(xk,t )γ k,t and γ k,t ∈ N (Λ; zk,t ). By Lemma 3.4 in [24], we have

lim sup
(xk,t ,zk,t )→(x∗,Fk (x∗))

∇ Fk
(

xk,t
)
N
(
Λ; zk,t

)

= lim sup
(xk,t ,zk,t )→(x∗,Fk (x∗))

∇Fk
(

xk,t
)
N̂
(
Λ; zk,t

)
,

and hence, without any loss of generality, we may assume γ k,t ∈ N̂ (Λ; zk,t ).
Denote by γ k,t := (σ

k,t
−k , λk,t , μk,t , uk,t

1 , v
k,t
1 , . . . , uk,t

m , v
k,t
m ). Then, when t is suf-

ficiently large, we have

wk,t =
∑

i∈I−k
f

σ
k,t
i ∇ fi (xk,t ) +

∑

i∈Ik,t
g

λ
k,t
i ∇gi (xk,t ) +

∑

i∈Ih

μ
k,t
i ∇hi (xk,t )

−
∑

i∈Ik,t ∪J k,t

uk,t
i ∇Gi (xk,t ) −

∑

i∈Kk,t ∪J k,t

v
k,t
i ∇Hi (xk,t ), (13)

where Ik,t
g := {i : gi (xk,t ) = 0}, Ik,t := {i : Gi (xk,t ) = 0, Hi (xk,t ) > 0},

J k,t := {i : Gi (xk,t )=0, Hi (xk,t )=0},Kk,t := {i : Gi (xk,t )>0, Hi (xk,t )=0}.

Since γ k,t ∈ N̂ (Λ; zk,t ), we have σ
k,t
i ≥ 0 for each i ∈ I−k

f , λ
k,t
j ≥ 0 for each

j ∈ Ik,t
g , and uk,t

l ≥ 0, vk,t
l ≥ 0 for each l ∈ J k,t . Since

Fk(x∗) =

⎛

⎜⎜
⎝

fI−k
f

(x∗) − fI−k
f

(x∗)
g(x∗)
h(x∗)
Ψ (x∗)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0r−1

g(x∗)
h(x∗)
Ψ (x∗)

⎞

⎟⎟
⎠ ,

the values of Fk(x∗) for k = 1, . . . , r are the same. For convenience, we denote it by
F0(x∗). Then, when t is sufficiently large, there must exist zt → F0(x∗), xt → x∗,
and wk,t → −∇ fk(x∗) with wk,t ∈ ∇Fk(xt )γ k,t and γ k,t ∈ N̂ (Λ; zt ) for each
k ∈ I f . It then follows from (13) that

wk,t =
∑

i∈I−k
f

σ
k,t
i ∇ fi (xt ) +

∑

i∈I t
g

λ
k,t
i ∇gi (xt ) +

∑

i∈Ih

μ
k,t
i ∇hi (xt )
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−
∑

i∈I t ∪J t

uk,t
i ∇Gi (xt ) −

∑

i∈Kt ∪J t

v
k,t
i ∇Hi (xt ), (14)

where I t
g := {i : gi (xt ) = 0}, I t := {i : Gi (xt ) = 0, Hi (xt ) > 0}, J t :=

{i : Gi (xt ) = 0, Hi (xt ) = 0}, Kt := {i : Gi (xt ) > 0, Hi (xt ) = 0}, and γ k,t ∈
N̂ (Λ; zt ). We next show that, for each k ∈ I f , {γ k,t } has a bounded subsequence.

In fact, since I∗ ⊆ I t and K∗ ⊆ Kt when t is sufficiently large, from (14), we
obtain

wk,t =
∑

i∈I−k
f ∩supp(σ k,t )

σ
k,t
i ∇ fi (xt ) +

∑

i∈I t
g∩supp(λk,t )

λ
k,t
i ∇gi (xt )

−
∑

i∈((I t\I∗)∪J t)∩supp(uk,t)

uk,t
i ∇Gi (xt )−

∑

i∈((Kt \K∗)∪J t )∩supp(vk,t)

v
k,t
i ∇Hi (xt )

+
∑

i∈Ih

μ
k,t
i ∇hi (xt ) −

∑

i∈I∗
uk,t

i ∇Gi (xt ) −
∑

i∈K∗
v

k,t
i ∇Hi (xt ),

where supp(a) := {i : ai �= 0}. Let I1 ⊆ Ih , I2 ⊆ I∗, I3 ⊆ K∗ be index sets
such that {∇hl(x∗),∇Gı (x∗),∇Hj (x∗) : l ∈ I1, ı ∈ I2, j ∈ I3} is a basis for
span{∇hl(x∗),∇Gı (x∗), ∇Hj (x∗) : l ∈ Ih, ı ∈ I∗, j ∈ K∗}. Since the MOPEC-
RCPLD holds at x∗, {∇hl(xt ),∇Gı (xt ),∇Hj (xt ) : l ∈ I1, ı ∈ I2, j ∈ I3} is a basis
for span{∇hl(xt ),∇Gı (xt ),∇Hj (xt ) : l ∈ Ih, ı ∈ I∗, j ∈ K∗} when t is sufficiently
large. Thus, from Lemma 2.3, there exist index sets

I t
4 ⊆ I−k

f

⋂
supp

(
σ k,t

)
, I t

6 ⊆ ((I t \ I∗)
⋃

J t )
⋂

supp
(

uk,t
)

,

I t
5 ⊆ I t

g

⋂
supp

(
λk,t
)

, I t
7 ⊆ ((Kt \ K∗)

⋃
J t )

⋂
supp

(
vk,t
)

,

and multipliers {̃σ k,t , λ̃k,t , μ̃k,t , ũk,t
1 , ṽ

k,t
1 , . . . , ũk,t

m , ṽ
k,t
m } such that

wk,t =
∑

i∈I t
4

σ̃
k,t
i ∇ fi (xt ) +

∑

i∈I t
5

λ̃
k,t
i ∇gi (xt ) +

∑

i∈I1
μ̃

k,t
i ∇hi (xt )

−
∑

i∈I2∪I t
6

ũk,t
i ∇Gi (xt ) −

∑

i∈I3∪I t
7

ṽ
k,t
i ∇Hi (xt ) (15)

and the vectors {∇ fI t
4
(xt ), ∇gI t

5
(xt ), ∇hI1(xt ), ∇GI2∪I t

6
(xt ), ∇HI3∪I t

7
(xt )} are

linearly independent for each t sufficiently large. Set σ̃
k,t
i := 0 for i /∈ I t

4, λ̃
k,t
i := 0

for i /∈ I t
5, μ̃

k,t
i := 0 for i /∈ I1, ũk,t

i := 0 for i /∈ I2∪I t
6, and ṽ

k,t
i := 0 for i /∈ I3∪I t

7.
When t is sufficiently large, it is not difficult to see that

γ̃ k,t := (̃σ k,t , λ̃k,t , μ̃k,t , ũk,t
1 , ṽ

k,t
1 , . . . , ũk,t

m , ṽk,t
m ) ∈ N̂ (Λ; zt ) ⊆ N (Λ; zt ).
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Without any loss of generality, we may assume I t
4 ≡ I4, I t

5 ≡ I5, I t
6 ≡ I6, and

I t
7 ≡ I7 for each t sufficiently large. It is easy to see that I4 ⊆ I−k

f , I5 ⊆ I∗
g ,

I6 ⊆ J ∗, and I7 ⊆ J ∗ by I t ∪ J t ∪ Kt = I∗ ∪ J ∗ ∪ K∗. Hence, the vectors
{∇ fI4(xt ), ∇gI5(xt ), ∇hI1(xt ), ∇GI2∪I6(xt ), ∇HI3∪I7(xt )

}

are linearly independent for each t sufficiently large.
We can claim that {(̃σ k,t , λ̃k,t , μ̃k,t , ũk,t , ṽk,t )} has a bounded subsequence. Other-

wise, dividing (15) by Mk,t := ‖(̃σ k,t , λ̃k,t , μ̃k,t , ũk,t , ṽk,t )‖ and taking an adequate
subsequence {(̃σ k, λ̃k, μ̃k, ũk, ṽk)}, for each k ∈I f , we have

0 =
∑

i∈I4
σ̃ k

i ∇ fi (x∗) +
∑

i∈I5
λ̃k

i ∇gi (x∗) +
∑

i∈I1
μ̃k

i ∇hi (x∗)

−
∑

i∈I2∪I6
ũk

i ∇Gi (x∗) −
∑

i∈I3∪I7
ṽk

i ∇Hi (x∗), (16)

where {̃σ k, λ̃k, μ̃k, ũk, ṽk} �= 0. Clearly, we have σ̃ k
i ≥ 0 for each i ∈ I4, λ̃k

j ≥ 0 for

each j ∈ I5, and either ũk
l > 0, ṽk

l > 0 or ũk
l ṽ

k
l = 0 for each l ∈ J ∗ by

(̃σ k, λ̃k, μ̃k, ũk
1, ṽ

k
1, . . . , ũk

m, ṽk
m)

∈ lim sup
t→∞

N (Λ; zt ) ⊆ lim sup
z→F(x∗)

N (Λ; z) ⊆ N (Λ; F(x∗)),

which follows from the outer semicontinuity ofN (Λ; ·). From (16) and the MOPEC-
RCPLD assumption at x∗, the vectors

{∇ fI4(xt ), ∇gI5(xt ), ∇hI1(xt ), ∇GI2∪I6(xt ), ∇HI3∪I7(xt )
}

are linearly dependent for each t sufficiently large, which is a contradiction.
Without any loss of generality, we assume that, for each k ∈ I f , there exists a

bounded sequence {γ k,t } ∈ N̂ (Λ; zt ) such that (14) holds. Then, we have

r∑

k=1

wk,t =
r∑

k=1

∑

i∈I−k
f

σ
k,t
i ∇ fi (xt )+

r∑

k=1

∑

i∈I t
g

λ
k,t
i ∇gi (xt )+

r∑

k=1

∑

i∈Ih

μ
k,t
i ∇hi (xt )

−
r∑

k=1

∑

i∈I t ∪J t

uk,t
i ∇Gi (xt ) −

r∑

k=1

∑

i∈Kt ∪J t

v
k,t
i ∇Hi (xt ). (17)

Let

σ t
i :=

r∑

k=1,k �=i

σ
k,t
i , λ

t
i :=

r∑

k=1

λ
k,t
i , μt

i :=
r∑

k=1

μ
k,t
i ,
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ut
i :=

r∑

k=1

uk,t
i , vt

i :=
r∑

k=1

v
k,t
i .

Then, (17) can be rewritten as

r∑

k=1

wk,t =
∑

i∈I f

σ t
i∇ fi (xt ) +

∑

i∈I t
g

λ
t
i∇gi (xt ) +

∑

i∈Ih

μt
i∇hi (xt )

−
∑

i∈I t ∪J t

ut
i∇Gi (xt ) −

∑

i∈Kt ∪J t

vt
i∇Hi (xt ) (18)

with σ t ≥ 0, λ
t
j ≥ 0 for each j ∈ I t

g , and ut
l ≥ 0, vt

l ≥ 0 for each l ∈ J t .

Obviously, γ t := (σ t , λ
t
, μt , ut

1, v
t
1, . . . , ut

m, vt
m) ∈ N̂ (Λ; zt ) ⊆ N (Λ; zt ) and {γ t }

is a bounded sequence. Without any loss of generality, we assume

lim
t→∞ γ t = γ := (σ , λ, μ, u1, v1, · · · , um, vm).

Noting that wk,t → −∇ fk(x∗) as t → ∞ for each k ∈ I f and taking a limit in (18),
we get

−
r∑

k=1

∇ fk(x∗) =
∑

i∈I f

σ i∇ fi (x∗) +
∑

i∈I∗
g

λi∇gi (x∗) +
∑

i∈Ih

μi∇hi (x∗)

−
∑

i∈I∗∪J ∗
ui∇Gi (x∗) −

∑

i∈K∗∪J ∗
vi∇Hi (x∗). (19)

Clearly, we have σ i ≥ 0 for each i ∈ I f , λ j ≥ 0 for each j ∈ I∗
g , and either

ul > 0, vl > 0 or ulvl = 0 for each l ∈ J ∗ by

(σ , λ, μ, u1, v1,. . . , um, vm)∈ lim sup
t→∞

N (Λ; zt )⊆ lim sup
z→F(x∗)

N (Λ; z)⊆N (Λ; F(x∗)).

Let σ ∗
k := 1+ σ k for each k ∈ I f . It follows from (19) and the above discussion that

x∗ is a proper Pareto M-stationary point of (1). ��
Theorem 4.3 Let x∗ ∈ F be a locally Pareto optimal solution of (1). If the MOPEC-
GGCQ holds at x∗, x∗ is a proper Pareto B-stationary point of (1).

Proof We first prove that, for each k ∈ I f , 〈∇ fk(x∗), dk〉 ≥ 0 for any dk ∈
T (Qk; x∗). In fact, since dk ∈ T (Qk; x∗), there exist {xk,ν} ⊆ Qk and tν ↓ 0 such
that xk,ν → x∗ and xk,ν−x∗

tν
→ dk . Let dk,ν := xk,ν−x∗

tν
. Since xk,ν ∈ Qk , we have

fi (xk,ν) = fi (x∗ + tνdk,ν) ≤ fi (x∗), ∀i ∈ I−k
f .
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It follows from Lemma 2.4 that 〈∇ fI−k
f

(x∗), dk〉 ≤ 0. Similarly, we have

〈∇gI∗
g
(x∗), dk〉 ≤ 0, 〈∇h(x∗), dk〉 = 0, 〈∇GI∗(x∗), dk〉 = 0,

〈∇HK∗(x∗), dk〉 = 0, 〈∇GI∗∪J ∗(x∗), dk〉 ≥ 0, 〈∇HJ ∗∪K∗(x∗), dk〉〉 ≥ 0.

Since Gi (xk)Hi (xk)=0=Gi (x∗+tkdk)Hi (x∗+tkdk) for each i =1,. . ., m, we have
Gi (x∗)〈∇Hi (x∗), dk〉+Hi (x∗)〈∇Gi (x∗), dk〉=0, and hence, 〈∇Gi (x∗), dk〉=0 for
each i ∈ I∗ and 〈∇Hi (x∗), dk〉 = 0 for each i ∈ K∗. By the assumptions, x∗ is a
locally Pareto optimal solution of (1), and so we have x∗ = argminx∈Qk fk(x). Hence,
we have fk(xk,ν) = fk(x∗ + tνdk,ν) ≥ fk(x∗), and so 〈∇ fk(x∗), dk〉 ≥ 0. The above
discussion indicates that, for each k ∈ I f ,

〈∇ fk(x∗), dk〉 ≥ 0, ∀dk ∈ convT
(

Qk; x∗) .

If x∗ is not a proper Pareto B-stationary point of (1), there must exist k ∈ I f

such that 〈∇ fk(x∗), dk〉 < 0 for some dk ∈ LMOPEC(Qk; x∗). Since the MOPEC-
GGCQ holds at x∗, we have dk ∈ convT (Qk; x∗). Thus, we get a contradiction. This
completes the proof. ��

MOPEC-SCQ

MOPEC-WSCQ

GGCQ

MOPEC-LICQ

MOPEC-GGCQ

MOPEC-GACQ

MOPEC pseudonormality

MOPEC-NNAMCQ

MOPEC-MFCQ

proper Pareto B-Stationary

MOPEC-ACQ

MOPEC quasinormality

MOPEC-RCRCQ

MOPEC-CRCQ

MOPEC-LCQ

proper Pareto M-Stationarity

MOPEC-GCQ

MOPEC-KTCQ

MOPEC-ZCQ

MOPEC-RCPLD

MOPEC-CPLD

Fig. 1 Relations among various constraint qualifications
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5 Conclusions

Wehave generalized the existingMPEC-type constraint qualifications from the single-
objective case to the multiobjective case. Various relationships among these constraint
qualifications have been investigated. We have further studied theMPEC-type station-
arities in the proper Pareto sense for MOPEC (1). See Fig. 1 for a summary related to
the relationships among the properties discussed in this paper.

Recall thatMoldovan and Pellegrini [25,26] consider a particular theorem for linear
separation between two sets in the image space associated with a single-objective con-
strained optimization problem. The two sets include a convex cone, which depends on
the constraints, and the homogenization of its image set. They show that the regular lin-
ear separation between the above two sets is equivalent to the existence of Lagrangian
multipliers with a positive multiplier associated with the objective function. When the
constraint functions are all differentiable, they also show that the regularity condition
is weaker than the Guignard constraint qualification. Although these results cannot
be applied to our cases due to lack of convexity, it gives us some new ideas to estab-
lish similar weak regularity conditions to make sure the multiplier associate with the
multiobjective function to be positive. We would like to leave it as a future topic.

In addition, in the next step, we are planning to extend the concepts given in this
paper to the nonsmooth MOPEC, which has many applications in practice [6,27–
30]. Another future work is to develop numerical algorithms by using the obtained
theoretical results.
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