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Abstract In this paper, we consider a class of variational inequalities, where the
involved function is the sum of an arbitrary given vector and a homogeneous poly-
nomial defined by a tensor; we call it the tensor variational inequality. The tensor
variational inequality is a natural extension of the affine variational inequality and
the tensor complementarity problem. We show that a class of multi-person noncoop-
erative games can be formulated as a tensor variational inequality. In particular, we
investigate the global uniqueness and solvability of the tensor variational inequality. To
this end, we first introduce two classes of structured tensors and discuss some related
properties, and then, we show that the tensor variational inequality has the property
of global uniqueness and solvability under some assumptions, which is different from
the existing result for the general variational inequality.
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1 Introduction

The finite-dimensional variational inequality (VI) has been studied extensively due to
its wide applications in many fields [1,2]. It is called an affine variational inequality
if the involved function is linear. The existence and uniqueness of solution to the
VI is a basic and important issue in the studies of the VI. It is well known that
the VI has at most one solution when the involved function is strictly monotone
[1–3] and a unique solution when the involved function is strongly monotone [1,
2].

It is well known that complementarity problem (CP) is an important subclass of the
VIs, which has been studied extensively due to its wide applications [4,5]. Recently,
a specific subclass of CPs, called the tensor complementarity problem (TCP) [6],
has attracted much attention, and many theoretical results about the properties of
the solution set of TCP have been developed, including existence of solution [7–11],
global uniqueness of solution [11,12], boundedness of solution set [8,13–16], stability
of solution [17], sparsity of solution [18], and so on. In addition, an application of the
TCP was given in [19].

Inspired by the development of the TCP, we consider a subclass of the VIs, where
the involved function is the sum of an arbitrary given vector and a homogeneous
polynomial defined by a tensor, and we call it the tensor variational inequality (TVI).
The concerned problem is a natural generalization of the TCP and the affine vari-
ational inequality. It is well known that the polynomial optimization problem is
an important class of optimization problems, which has been studied extensively
[20–22]. It is easy to see that the TVI is equivalent to a class of polynomial opti-
mization problems. In addition, we show that a class of multi-person noncooperative
games can be reformulated as a TVI. These are our motivations to consider the
TVI.

In this paper, we mainly investigate the property of global uniqueness and solv-
ability (GUS-property) of the TVI in the case that 0 belongs to the set involved in
the TVI. In this case, we show that there is no strongly monotonously homogeneous
polynomial whose degree is larger than 2. In order to investigate the GUS-property
of the TVI, we first introduce two classes of structured tensors and discuss some
related properties, and then, we show that the TVI has the GUS-property when
the involved function is strictly monotone and the involved set contains 0, which
is different from the existing result obtained in the case of the general variational
inequality.

The rest of this paper is organized as follows: In Sect. 2, we recall some basic
definitions and results. In Sect. 3, we introduce the TVI and reformulate a class of
multi-person noncooperative games as a TVI. In Sect. 4, we define two classes of
structured tensors and discuss some related properties. In particular, we show that the
TVI has the GUS-property under some assumptions. In Sect. 5, we propose some open
problems. The conclusions are given in Sect. 6.
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2 Preliminaries

In this section, we recall some basic concepts and results, which are useful for our
subsequent analysis.

Given a nonempty set X ⊆ R
n and a function F : X ⊆ R

n → R
n , then the

variational inequality, denoted by the VI(X, F), is to find a point x∗ ∈ X such that

〈y − x∗, F(x∗)〉 ≥ 0 for all y ∈ X. (1)

It is called an affine variational inequality when the function F is linear. Moreover, if
the set X is the nonnegative orthant Rn+ := {x ∈ R

n : x ≥ 0}, then (1) reduces to

x ≥ 0, F(x) ≥ 0, x	F(x) = 0,

which is called the complementarity problem, denoted by the CP(F).
In the theoretical studies of the nonlinear variational inequality and complementar-

ity problem, some special types of functions play important roles. The following two
classes of functions will be used in this paper.

Definition 2.1 A mapping F : X ⊆ R
n → R

n is said to be

(i) strictly monotone on X , if and only if

〈F(x) − F(y), x − y〉 > 0 for all x, y ∈ X with x 
= y;

(ii) strongly monotone on X , if and only if there exists a constant c > 0 such that

〈F(x) − F(y), x − y〉 ≥ c‖x − y‖2 for all x, y ∈ X. (2)

Obviously, a strongly monotone function on X ⊆ R
n must be strictly monotone

on X . Moreover, for X = R
n and an affine mapping, i.e., F(x) = Ax + q, where

A ∈ R
n×n and q ∈ R

n , F is strongly monotone if and only if it is strictly monotone,
and if and only if A is positive definite [2]. However, such results do not hold for the
general nonlinear function.

The exceptionally family of elements is a powerful tool to investigate the solvability
of the VI(X, F) [23–27]. There are several different definitions for the exceptionally
family of elements. In this paper, we use the following definition.

Definition 2.2 [26, Definition 3.1] Let x̂ ∈ R
n be an arbitrary given point. A sequence

{xr }r>0 is said to be an exceptionally family of elements for the VI(X, F)with respect
to x̂ if the following conditions are satisfied:

(i) ‖xr‖ → ∞ as r → ∞;
(ii) xr − x̂ ∈ X ;
(iii) there exists αr ∈]0, 1[ such that, for any r ≥ ‖PX (0) − x̂‖,

−[F(xr − x̂) + (1 − αr )(x
r − x̂)] ∈ NX (xr − x̂),
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where NX (xr − x̂) denotes the normal cone of X at xr − x̂ and PX (·) is the
projection operator on X .

The normal cone of X at x is defined by

NX (x) =
{ {z ∈ R

n : z	(y − x) ≤ 0,∀y ∈ X}, if x ∈ X,

∅, otherwise.
(3)

About the relationship between the exceptionally family of elements and the solution
of the VI(X, F), we will use the following lemma whose proof can be found in [26].

Lemma 2.1 [26, Theorem 3.1] Let X be a nonempty, closed and convex set in R
n

and F : X ⊆ R
n → R

n be a continuous function. Then, either the VI(X, F) has a
solution or, for any point x̂ ∈ R

n, there exists an exceptionally family of elements for
the VI(X, F) with respect to x̂ .

Throughout this paper, for any given positive integer n, we use [n] to denote the
set {1, 2, . . . , n}. For any given positive integers m, r1, . . . , rm−1 and rm , an m-order
r1 × r2 × · · · × rm-dimensional real tensor can be denoted by A = (ai1i2...im ) with
ai1i2...im ∈ R for any i j ∈ [r j ] and j ∈ [m]. Furthermore, if r j = n for all j ∈ [m], then
A is called anm-order n-dimensional real tensor, and we denote the set of allm-order
n-dimensional real tensors by Tm,n . In particular, A ∈ Tm,n is called a symmetric
tensor if the entries ai1i2...im are invariant under any permutation of their indices. For
any A ∈ Tm,n and x ∈ R

n , A xm−1 ∈ R
n is a vector defined by

(A xm−1)i :=
n∑

i2,i3,...,im=1

aii2...im xi2xi3 . . . xim , ∀i ∈ [n].

3 The TVI and an Application

In this section, we first introduce the TVI and discuss the relationship between it and
a class of polynomial optimization problems and then give an application of the TVI.

For any A ∈ Tm,n , q ∈ R
n and a nonempty set X ⊆ R

n , the TVI we considered
is given specifically in the following way: Find a vector x∗ ∈ X such that

〈y − x∗,A (x∗)m−1 + q〉 ≥ 0 for all y ∈ X, (4)

which is denoted by the TVI(X,A , q). From the relationship between the variational
inequalities and the complementarity problems, which is also described at the begin-
ning of Sect. 2, it is easy to see that, when X = R

n+, the TVI(X,A , q) is equivalent
to the tensor complementarity problem: Find a vector x∗ ≥ 0 such that

A (x∗)m−1 + q ≥ 0, and (x∗)T [A (x∗)m−1 + q] = 0.

It should be noted that Song and Qi [6] proposed a TVI(X,A , q) with q = 0 in a
question related to applications of structured tensors; but to the best of our knowledge,
the TVI(X,A , q) has not been studied so far even in the case of q = 0.
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The TVI(X,A , q) arises in a natural way in the framework of polynomial opti-
mization problems, which is given as follows:

Proposition 3.1 For any given symmetric tensorA ∈ Tm,n and q ∈ R
n, suppose that

f (x) = 1
mA xm + q	x is a convex function and X ⊆ R

n is a nonempty, closed and
convex set. Then, x∗ solves the TVI(X,A , q) if and only if x∗ is an optimal solution
of the optimization problem min{ f (x) : x ∈ X}.
Proof Since A is symmetric, it follows that ∇ f (x) = A xm−1 + q. Then, the result
is straightforward from [28, Page 10]. ��

In the following, we consider an application of the TVI(X,A , q) related to the
problem of m-person noncooperative game. For any k ∈ [m], let xk ∈ R

rk and
Xk ⊆ R

rk be player k’s strategy and strategy set, respectively. We denote

[m]−k := [m]\{k}, n := ∑
j∈[m]

r j , n−k := ∑
j∈[m]−k

r j ,

x := (x j ) j∈[m] ∈ R
r1 × · · · × R

rm = R
n,

x−k := (x j ) j∈[m]−k ∈ R
r1 × · · · × R

rk−1 × R
rk+1 × · · · × R

rm = R
n−k ,

and

X :=
∏
j∈[m]

X j ⊆ R
r1 × · · · × R

rm = R
n . (5)

Then, for any k ∈ [m], the kth player decides his own strategy by solving the following
optimization problem with the opponents’ strategy x−k fixed:

min fk(y
k, x−k) s.t. yk ∈ Xk,

where fk : Rr1 × · · · × R
rm → R denotes player k’s cost function.

A tuple x∗ := ((x1)∗, (x2)∗, . . . , (xm)∗) satisfying

(xk)∗ ∈ arg min
yk∈Xk

fk(y
k, x−k), ∀k ∈ [m]

is called a Nash equilibrium of the m-person noncooperation game.

Proposition 3.2 [2, Proposition 1.4.2] Let every Xi ⊆ R
ri be closed and convex.

Suppose that for each fixed x := ((x1), (x2), . . . , (xm)) ∈ X, the function fk(yk, x−k)

is convex and continuously differentiable in yk . Then x∗ := ((x1)∗, (x2)∗, . . . , (xm)∗)
is a Nash equilibrium of the m-person noncooperation game if and only if x∗ is
a solution of the VI(X, F) with F(x) ≡ (∇xk fk(x)

)
k∈[m], where ∇xk fk(x) is the

gradient of the function fk(x) with respect to xk .

In this paper, for any k ∈ [m], we use A k = (aki1i2...im ) to denote player k’s payoff
tensor and assume that player k’s cost function fk is given by

fk(x
k, x−k) =

r1∑
i1=1

r2∑
i2=1

. . .

rm∑
im=1

aki1i2...im x
1
i1x

2
i2 . . . xk−1

ik−1
xkik x

k+1
ik+1

. . . xmim . (6)
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Then, the function F(x) ≡ (∇xk fk(x))k∈[m] defined in Proposition 3.2 is a homoge-
neous polynomial function with the degree m − 1, which can be defined by a tensor.
To this end, we first introduce the following symbols: for any tensor B ∈ Tm,n and
uk ∈ R

rk with k ∈ [m]−1, we denote

Bu2 . . . um =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2∑
i2=1

. . .
rm∑

im=1
b1i2...in u

2
i2

. . . umim

r2∑
i2=1

. . .
rm∑

im=1
b2i2...in u

2
i2

. . . umim

...
r2∑

i2=1
. . .

rm∑
im=1

br1i2...in u
2
i2

. . . umim

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

and, for any k ∈ [m], by using the payoff tensor A k = (aki1i2...im ), we define a new

tensor Ā k = (āki1i2...im ) with āki1i2...im = akik i1...ik−1ik+1...im
for any i j ∈ [r j ] and j ∈

[m]. Furthermore, we construct a new tensor

A = (ai1i2...im ) ∈ Tm,n, (7)

where for any i j ∈ [n] with j ∈ [m],

ai1i2...im =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
i1(i2−r1)...(im−∑m−1

j=1 r j )
,

if i1 ∈ [r1], i2 ∈ [r1 + r2]\[r1], . . . , im ∈ [∑m
j=1 r j ]\[

∑m−1
j=1 r j ],

a2
(i1−r1)i2(i3−r1−r2)...(im−∑m−1

j=1 r j )
,

if i1 ∈ [r1 + r2]\[r1], i2 ∈ [r1],
i3 ∈ [∑3

j=1 r j ]\[r1 + r2], . . . , im ∈ [∑m
j=1 r j ]\[

∑m−1
j=1 r j ],

ak
(i1−∑k−1

j=1 r j )i2(i3−r1)...(ik−1−∑k−3
j=1 r j )ik (ik+1−∑k

j+1 r j )...(im−∑m−1
j=1 r j )

,

if k ∈ [m]\{1, 2}, and for any given k, i1 ∈ [∑k
j=1 r j ]\[

∑k−1
j=1 r j ],

i2 ∈ [r1], i3 ∈ [r1 + r2]\[r1], . . . , ik ∈ [∑k−1
j=1 r j ]\[

∑k−2
j=1 r j ],

ik+1 ∈ [∑k+1
j=1 r j ]\[

∑k
j=1 r j ], . . . , im ∈ [∑m

j=1 r j ]\[
∑m−1

j=1 r j ],
0, otherwise.

Then, it is not difficult to get that

A xm−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

¯A 1x2 . . . xm

...
¯A k x1 . . . xk−1xk+1 . . . xm

...
¯A mx1x2 . . . xm−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∇x1 f1(x
1, x−1)

...

∇xk fk(x
k, x−k)

...

∇xm fm(xm, x−m)

⎞
⎟⎟⎟⎟⎟⎟⎠

= F(x).

(8)
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Therefore, from Propositions 3.2 and (8) we can obtain the following result.

Proposition 3.3 For any k ∈ [m], we assume the function fk is defined by (6) and
every set Xi ⊆ R

ri is closed and convex, then a tuple x∗ := ((x1)∗, (x2)∗, . . . , (xm)∗)
is a Nash equilibrium of the m-person noncooperation game if and only if x∗ is a
solution of the TVI(X,A , q) with q = 0 and A being defined by (7).

4 GUS-Property of the TVI

The tensor variational inequality (4) is said to have the GUS-property if it has a unique
solution for every q ∈ R

n . Such an important property has been investigated for
variational inequalities [1,2] and complementarity problems [29–32]. In this section,
we discuss the GUS-property of the TVI(X,A , q).

For the general VI, the following results come from [1,2].

Lemma 4.1 Let X ⊆ R
n be nonempty, closed and convex and F : X → R

n be
continuous.

(i) If F is strictly monotone on X, then the VI(X, F) has at most one solution;
(ii) If F is strongly monotone on X, then the VI(X, F) has a unique solution.

Let F : X ⊆ R
n → R

n be defined by

F(x) := A xm−1 + q, (9)

where A ∈ Tm,n with m > 2 and q ∈ R
n . Then, we have the following observation.

Proposition 4.1 For any tensor A ∈ Tm,n with m > 2 and q ∈ R
n, let the function

F be defined by (9). Suppose that 0 ∈ X ⊆ R
n, then the function F is not strongly

monotone on X.

Proof Suppose that there exist a vector q ∈ R
n and a tensor A ∈ Tm,n with m > 2

such that the function F defined by (9) is strongly monotone on X , then there exists a
positive constant c such that (2) holds for any x, y ∈ X . Let y = 0 ∈ X , then we get
from (2) that

A xm ≥ c‖x‖2 for any x ∈ X. (10)

For any x 
= 0, it follows from (10) that

A

(
x

‖x‖
)m

≥ c

∥∥∥∥
(

x

‖x‖
)∥∥∥∥

2

‖x‖2−m . (11)

Since
∥∥∥ x

‖x‖
∥∥∥ = 1, it follows that the left-hand side of inequality (11) is bounded; but

when ‖x‖ → 0, it is obvious that the right-hand side of inequality (11) tends to ∞,
which leads to a contradiction. Therefore, there exists no strongly monotone function
F in the form of A xm−1 + q for any q ∈ R

n and A ∈ Tm,n with m > 2. ��
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From Lemma 4.1(ii) and Proposition 4.1, a natural question is whether or not the
VI (X, F) has the GUS-property when 0 ∈ X and the function F is defined by (9)
where A ∈ Tm,n with m > 2 and q ∈ R

n . In this section, we answer this question.
To this end, we first introduce two new classes of tensors in the next subsection and
discuss the relationship between them.

4.1 Relationship of Two Classes of Tensors

In this subsection, we introduce two new classes of structured tensors and discuss the
relationship between them.

Definition 4.1 Given a nonempty set X ⊆ R
n . A tensor A ∈ Tm,n is said to be

(i) positive definite on X , if and only if A xm > 0 for any x ∈ X and x 
= 0;
(ii) strictly positive definite on X , if and only if

(x − y)	(A xm−1 − A ym−1) > 0 for any x, y ∈ X with x 
= y.

A ∈ Tm,n is said to be a strictly positive definite tensor if it is strictly positive definite
on Rn .

When X = R
n , the positive definite tensor on X defined by Definition 4.1(i) is just

the positive definite tensor defined in [33]; when X = R
n+, the positive definite tensor

on X defined by Definition 4.1(i) is just the strictly copositive tensor defined in [34].
From Definitions 2.1 and 4.1, it is easy to see that the function F defined by (9) is
strictly monotone on X if and only if the tensor A is strictly positive definite on X .

A basic question is whether or not there exists a strictly positive definite tensor on
some subset of Rn . The following example gives a positive answer to this question.

Example 4.1 LetA = (ai jkl) ∈ T4,2, where a1111 = a2222 = 1, and the others equal
to zero. Then,A is a strictly positive definite tensor on any nonsingle-point subset X
of R2.

It only needs to prove that A is strictly positive definite on R2.
Since

A x3 =
(
x31
x32

)
,

it follows that for any x, y ∈ R
2,

(x1 − y1)[(A x3)1 − (A y3)1] = (x1 − y1)(x
3
1 − y31)

= (x1 − y1)
2(x21 + x1y1 + y21 ); (12)

(x2 − y2)[(A x3)2 − (A y3)2] = (x2 − y2)(x
3
2 − y32)

= (x2 − y2)
2(x22 + x2y2 + y22 ). (13)
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For any s, t ∈ R, we discuss the following three cases.

(I) |s| 
= |t |. In this case, we have

s2 + st + t2 > 2|s||t | + st =
{

3st ≥ 0, if st ≥ 0,
−st > 0, if st < 0,

which implies that s2 + st + t2 > 0.
(II) s = t . In this case, we have

(s − t)2(s2 + st + t2) = 0.

(III) s = −t 
= 0. In this case, we have

(s − t)2(s2 + st + t2) = 4s4 > 0.

Now, for any x, y ∈ R
2 and x 
= y, it follows that either x1 
= y1 or x2 
= y2.

Therefore, by combining cases (I)–(III) with (12) and (13) we have

(x − y)	(A x3 − A y3) =
2∑

i=1

(xi − yi )
2(x2i + xi yi + y2i ) > 0,

which demonstrates that A is a strictly positive definite tensor on R2.
In what follows, we discuss the relationship between two classes of tensors defined

by Definition 4.1.

Proposition 4.2 Suppose that 0 ∈ X ⊆ R
n. Then, a strictly positive definite tensor

on X must be positive definite on X.

Proof Given a tensor A ∈ Tm,n . Take y = 0 ∈ X , it follows from Definition 4.1(ii)
that for any x ∈ X with x 
= 0,

A xm = (x − 0)	
(
A xm−1 − A 0m−1

)
> 0,

which, together with Definition 4.1(i), implies that A is positive definite on X . ��
However, ifm > 2, a positive definite tensor on X is not necessary a strictly positive

definite tensor on X , which can be seen in the following example.

Example 4.2 LetA = (ai jkl) ∈ T4,2,wherea1111 = a2222 = a2112 = 1,a1122 = −1,
and the others equal to zero. Denote X := R

2+. Then, A is positive definite on X but
not strictly positive definite on X .

First, we show that A is positive definite on X . Since

A x3 =
(
x31 − x1x22
x32 + x21 x2

)
,

it follows that for any x ∈ R
2\{0},
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x	A x3 = x41 − x21 x
2
2 + x42 + x21 x

2
2 = x41 + x42 > 0.

Hence, A is positive definite on R
2. Of course, A is positive definite on X .

Second, we show thatA is not a strictly positive definite tensor on X . To this end,
for any μ ∈ R+ with μ 
= 0, let x = (2μ, 3μ)	 and y = (μ, 3μ)	, then x, y ∈ X ,
x 
= y and

(x − y)	(A x3 − A y3) = (x1 − y1)[(A x3)1 − (A y3)1]
+ (x2 − y2)[(A x3)2 − (A y3)2]

= (2μ − μ)[(2μ)3 − 2μ(3μ)2 − (μ3 − μ(3μ)2)] + 0

= −2μ4

< 0.

Therefore, A is not strictly positive definite on X .

4.2 Uniqueness of Solution to the TVI

In this subsection, we investigate the GUS-property of the TVI(X,A , q).

Theorem 4.1 Let X ⊆ R
n be a nonempty, closed and convex set andA ∈ Tm,n be a

strictly positive definite tensor on X. Then, for any given q ∈ R
n, the TVI(X,A , q)

has at most one solution.

Proof Since A is a strictly positive definite tensor on X , it follows from Defini-
tion 4.1(ii) that the function A xm−1 + q is strictly monotone on X for any q ∈ R

n .
So, the desired result holds from Lemma 4.1 (i). ��
Theorem 4.2 Let X ⊆ R

n be a nonempty, closed and convex set with 0 ∈ X and
A ∈ Tm,n be a positive definite tensor on X. Then, for any given q ∈ R

n, the solution
set of the TVI(X,A , q) is nonempty and compact.

Proof If the set X is bounded, then the result is obvious from [1,35]. In what follows,
we assume that the set X is unbounded.

Suppose that the TVI(X,A , q) has no solution, then for x̂ = 0 ∈ R
n , it follows

from Lemma 2.1 that there exists an exceptionally family of elements {xr }r>0 for the
TVI(X,A , q) with respect to 0. That is, we have

(a) ‖xr‖ → ∞ as r → ∞;
(b) xr ∈ X for any positive integer r ;
(c) there exists αr ∈]0, 1[ such that, for any r ≥ ‖PX (0)‖,

−[A (xr )m−1 + (1 − αr )x
r ] ∈ NX (xr ).

From the above (c) and the definition of the normal cone, we have

[A (xr )m−1 + (1 − αr )x
r ]	(y − xr ) ≥ 0 for any y ∈ X,
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which can be rewritten as

[A (xr )m−1]	(y − xr ) ≥ (αr − 1)(xr )	(y − xr ) for any y ∈ X. (14)

From the above (a), it holds that ‖xr‖ > 0 for sufficiently large r . So, by dividing
‖xr‖m in both sides of inequality (14), we get

[
A

(xr )m−1

‖xr‖m−1

]	 (
y

‖xr‖ − xr

‖xr‖
)

≥ αr − 1

‖xr‖m−2

(
xr

‖xr‖
)	 (

y

‖xr‖ − xr

‖xr‖
)

.

Let zr = xr
‖xr‖ , then the above inequality becomes

[A (zr )m−1]	
(

y

‖xr‖ − zr
)

≥ αr − 1

‖xr‖m−2 (zr )	
(

y

‖xr‖ − zr
)

. (15)

Since the sequence {zr } is bounded, there exists a convergent subsequence. Without
lose of generality, we denote this subsequence by {zr } and its limit point by z∗. Noting
that αr ∈]0, 1[ and y ∈ X is an arbitrary given vector, by letting r → ∞, it follows
from (15) that [A (z∗)m−1]	(−z∗) ≥ 0, i.e.,

A (z∗)m ≤ 0. (16)

Next, we show that z∗ ∈ X . Since ‖xr‖ → ∞ as r → ∞, it follows that 1
‖xr‖ < 1

with sufficiently large r . Furthermore, since 0 ∈ X and X is convex, it follows from
the above (b) that for sufficiently large r ,

zr = xr

‖xr‖ =
(
1 − 1

‖xr‖
)
0 + 1

‖xr‖ x
r ∈ X.

Thus, by the fact that the set X is closed, we get

z∗ ∈ X.

This, togetherwith (16), contradicts thatA is a positive definite tensor on X . Therefore,
the TVI(X,A , q) has at least one solution whenA is a positive definite tensor on X .

Denote the solution set of the TVI(X,A , q) by SOL(X,A , q). Suppose that the
sequence {xk} ⊆SOL(X,A , q) and xk → x∗ as k → ∞, then it follows that

(y − xk)	
[
A (xk)m−1 + q

]
≥ 0 for all y ∈ X.

Thus, let k → ∞, then we get

(y − x∗)	
[
A (x∗)m−1 + q

]
≥ 0 for all y ∈ X.

That is, x∗ ∈SOL(X,A , q). So, the solution set of the TVI(X,A , q) is closed.
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Suppose that the solution set of the TVI(X,A , q) is unbounded, then there exists
a sequence {xk} ⊆SOL(X,A , q) such that ‖xk‖ → ∞ as k → ∞. Since

(y − xk)	
[
A (xk)m−1 + q

]
≥ 0 for all y ∈ X,

which leads to

(
y

‖xk‖ − xk

‖xk‖
)	 [

A

(
xk

‖xk‖
)m−1

+ q

‖xk‖m−1

]
≥ 0.

Let k → ∞ and denote x∗ = limk→∞ xk

‖xk‖ , then we have that

x∗ ∈ X and − A (x∗)m ≥ 0,

which contradicts the condition that A is a positive definite tensor on X . So, the
solution set of the TVI(X,A , q) is bounded.

The proof is complete. ��
Corollary 4.1 Let X ⊆ R

n be a nonempty, closed and convex set with 0 ∈ X and
A ∈ Tm,n be a strictly positive definite tensor on X. Then, for any given q ∈ R

n, the
solution set of the TVI(X,A , q) is nonempty and compact.

Proof Since 0 ∈ X , it follows from Proposition 4.2 that a strictly positive definite
tensor on X is necessary a positive definite tensor on X . Thus, the result is obvious
from Theorem 4.2. ��
Theorem 4.3 Let X ⊆ R

n be a nonempty, closed and convex set with 0 ∈ X and
A ∈ Tm,n be a strictly positive definite tensor on X. Then, for any given q ∈ R

n, the
TVI(X,A , q) has a unique solution.

Proof By virtue of Theorem 4.1 and Corollary 4.1, the result is straightforward. ��
Equivalently, we have the following result.

Corollary 4.2 Let X ⊆ R
n be a nonempty, closed and convex set with 0 ∈ X and

A ∈ Tm,n. Suppose that the function F(x) := A xm−1 + q is strictly monotone on
X, then the VI(X, F) has a unique solution for any q ∈ R

n.

Remark 4.1 Suppose that 0 belongs to the strategy set X defined by (5) and the set
X is closed and convex. Then, we can know from Theorem 4.3 that when the tensor
A defined by (7) is strictly positive definite, the m-person noncooperative game has
a unique Nash equilibrium.

Let X ⊆ R
n be a nonempty, closed and convex set and the function F be given by

F(x) = A xm−1 + q, where A ∈ Tm,n and q ∈ R
n . We have shown that, in the case

of 0 ∈ X , the VI(X, F) has the GUS-property if the function F is strictly monotone
on X . What would happen if 0 /∈ X? From Lemma 4.1, we know that the VI(X, F)
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has the GUS-property if the function F is strongly monotone on X . A natural question
is whether or not there exists a strongly monotone function F(x) = A xm−1 +q (with
m > 2) on X with 0 /∈ X . The following example gives a positive answer to this
question.

Example 4.3 Let
X := {(u, 1)	 : u ∈ R, u ≥ 1}, (17)

andA ∈ Tm,n be defined in Example 4.1, then F(x) := A xm−1+q with any q ∈ R
2

is strongly monotone on X .

For any x, y ∈ X , it follows that there exist u ≥ 1 and v ≥ 1 such that x = (u, 1)	
and y = (v, 1)	. Furthermore, for any q ∈ R

2, we have

(x − y)	 [F(x) − F(y)] = (x − y)	
(
A x3 − A y3

)
= (u − v)2(u2 + uv + v2);

but for μ = 1, we have

μ‖x − y‖2 = (u − v)2.

Obviously,

(u − v)2(u2 + uv + v2) ≥ 3uv(u − v)2 ≥ 3(u − v)2 ≥ (u − v)2.

Thus, for any x, y ∈ X and q ∈ R
2, there exists a constant μ = 1 such that

(x − y)	
(
A x3 − A y3

)
≥ μ‖x − y‖2.

So, the function F is strongly monotone on the set X defined by (17).
Therefore, when X ⊆ R

n is a nonempty, closed and convex set with 0 /∈ X ,
from Lemma 4.1(ii), we know that the TVI(X,A , q) has a unique solution on X if
the function A xm−1 + q is strongly monotone on X . We do not know whether the
condition of strong monotonicity can be weaken or not in this case.

Before the end of this section, we illustrate that a strictly monotone function
A xm−1 + q on X ⊆ R

n is not necessarily strongly monotone on X when 0 /∈ X .

Example 4.4 Let A ∈ Tm,n be defined in Example 4.1 and X := {(u, 1)	 : u ∈ R}.
Then, for any q ∈ R

2, the function A xm−1 + q is strictly monotone on X but not
strongly monotone on X .

First, from Example 4.1, it is obvious that the tensor A is strictly positive definite
on X . Therefore, the function A xm−1 + q is strictly monotone on X .

Second, we show that the function A xm−1 + q is not strongly monotone on X .
Suppose thatA xm−1+q is strongly monotone on X , then there exists a scalarμ0 > 0
such that

(x − y)	
(
A x3 − A y3

)
≥ μ0‖x − y‖2 for any x, y ∈ X. (18)
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Now, take x0 = (
√

μ0, 1)	 ∈ X and y0 = (−
√

μ0
2 , 1)	 ∈ X , then

(
x0 − y0

)	 [
A (x0)3 − A (y0)3

]

=
(
x01 − y01

)2 [
(x01 )

2 + x01 y
0
1 + (y01 )

2
]

=
[√

μ0 +
√

μ0

2

]2 [
(
√

μ0)
2 − √

μ0 ·
√

μ0

2
+

(√
μ0

2

)2
]

=
(
3
√

μ0

2

)2 (
μ0 − μ0

2
+ μ0

4

)
= 27

16
μ2
0

and

μ0‖x0 − y0‖2 = μ0

[
(x01 − y01 )

2 + (x02 − y02 )
2
]

= μ0

[√
μ0 +

√
μ0

2

]2
= 9

4
μ2
0.

These yield that

(x0 − y0)	
[
A (x0)3 − A (y0)3

]
< μ0‖x0 − y0‖2,

which contradicts inequality (18). So, the functionA xm−1 + q is not strongly mono-
tone on X .

5 Perspectives and Open Problems

We have just done some initial research for the tensor variational inequality. Many
questions need to be answered in the future. Here, we provide two questions as follows.

Question 5.1 How to design effective algorithms to solve the TVI(X,A , q) by using
the specific structure of the tensor A ?

Question 5.2 In [36], the author investigated the properties of the general polynomial
complementarity problem denoted by the PCP( f ) with

f (x) = Amx
m−1 + Am−1x

m−2 + · · · + A2x + A1, (19)

whereAk is a tensor of order k andAk xk−1 is a polynomial mapping for any k ∈ [m].
If we use the polynomial function f defined by (19) to replace the functionA xm−1+q
in the TVI(X,A , q), i.e., find a vector x∗ ∈ X such that

〈y − x∗, f (x∗)〉 ≥ 0 for all y ∈ X,

then we call it the polynomial variational inequality, denoted by the PVI(X, f ). What
are the properties of solution to the PVI(X, f )?
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6 Conclusions

In this paper, we studied the tensor variational inequality which is a subclass of the
general variational inequalities. For the general variational inequality, it is well known
that the VI(X, F) has a unique solution if X ⊆ R

n is nonempty, closed and convex and
the continuous function F : X → R

n is strongly monotone. However, we proved that
F is not strongly monotone when F(x) = A xm−1 +q withm > 2. Hence, the above
result for the general variational inequality cannot be applied to the tensor variational
inequality. In order to obtain the GUS-property of the tensor variational inequality,
we defined two classes of structured tensors and discussed the relationship between
them. Furthermore, we showed that the tensor variational inequality TVI(X,A , q)

has the GUS-property when the function F(x) := A xm−1 + q is strictly monotone
on X and 0 ∈ X . It is possible that the method proposed in this paper can be applied
to investigate the GUS-property of the polynomial variational inequality proposed
in Question 5.2 of Sect. 5. In addition, for the study for the polynomial variational
inequality given in Question 5.2 of Sect. 5, we believe that it is a good candidate to
use the tool of degree theory.
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