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Abstract
This paper studies a kind of time-inconsistent linear–quadratic control problem in a
more general framework with stochastic coefficients and random jumps. The time
inconsistency comes from the dependence of the terminal cost on the current state as
well as the presence of a quadratic term of the expected terminal state in the objective
functional. Instead of finding a global optimal control, we look for a time-consistent
locally optimal equilibrium solution within the class of open-loop controls. A general
sufficient and necessary condition for equilibrium controls via a flow of forward–
backward stochastic differential equations is derived. This paper further develops a
newmethodology to cope with the mathematical difficulties arising from the presence
of stochastic coefficients and random jumps. As an application, we study a mean-
variance portfolio selection problem in a jump-diffusion financial market; an explicit
equilibrium investment strategy in a deterministic coefficients case is obtained and
proved to be unique.
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1 Introduction

In [1], the time-inconsistent decision-making problemwas initially formulated and dis-
cussed by viewing the whole problem as a game between incarnations of the decision
maker at different time points. From then on, it has inspired hundreds of extensions
and applications. Generally speaking, there are three main sources of time incon-
sistency: the appearance of the conditional expected state in a nonlinear way, the
non-exponential discounting and the dependence of the objective functional on the
initial state. Motivated by a class of mean-variance portfolio selection problems, the
case with nonlinear appearance of conditional expected terminal cost has been studied
by many authors including [2,3] and so on. The non-exponential discounting situa-
tion was discussed by [4,5], in which the main motivation is to try to catch people’s
subjective preference on the discounting. The last case depending on the initial state
is motivated by a state-dependent utility function in economics (see, e.g., [6]).

One way to cope with the time-inconsistent optimal control problems is to consider
them within a game theoretic framework. The basic idea is that an action made by
the controller at each point in time is viewed as a game against all the actions made
by future incarnations of himself. An equilibrium control is thus characterized by
the property that any deviation from it will be worse off. From this point of view,
Ekeland and Pirvu [4] investigate the optimal investment and consumption problem
in the context of non-exponential discounting. A precise definition of equilibrium
strategies is given by virtue of the so-called local spike variation. Yong [7] considers
a time-inconsistent optimal control problem with the cost functional covering both
the non-exponential and hyperbolic discounting situations. Under suitable conditions,
he establishes sufficient conditions for equilibrium controls via a system of partial
differential equations. For a general controlled Markovian system, Björk andMurgoci
[8] solve the underlying time-inconsistent stochastic control problems by deriving an
extended Hamilton–Jacobi–Bellman (HJB) equation system. In addition, they prove
a verification theorem, showing that the equilibrium strategy is given by the optimizer
in the equation system.

Motivated by some practical applications in economics, time-inconsistent linear–
quadratic (LQ) control problems have become an important research topic and many
efforts have been made to seek equilibrium controls; see, for example, [7,9,10] and
references therein. Recently, Hu et al. [11,12] study a general time-inconsistent
LQ control problem in a non-Markovian system with random parameters. They
derive a necessary and sufficient condition for equilibrium controls and then present
two special cases including a mean-variance portfolio selection problem, in which
explicit solutions are constructed and proved to be unique. Alia et al. [13] extend the
time-inconsistent LQ problem from the pure diffusion setting in [11,12] to the jump-
diffusion one. A general stochastic maximum principle in a deterministic coefficients
case is derived. For the time-inconsistent jump-diffusion LQ model with stochastic
coefficients,Wu and Zhuang [14] derive a sufficient condition for equilibrium controls
when the jump part coefficients do not contain the control variable. Based on their own
assumptions on model coefficients, Alia et al. [13] and Wu and Zhuang [14] establish
the existence of equilibrium controls by using the same method as that of [11,12]. It
should be noted that the above-mentioned literature shares one common characteristic,
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that is, the first coefficient A(·) of the state in the controlled system is all assumed
to be deterministic. However, many stochastic interest rate models in finance do not
satisfy this assumption. Consequently, one motivation of this paper is to relax this
deterministic assumption by proving a sharper estimate for the first-order variational
equation (we refer to Lemma A.1). We deem the sharper estimate derived here as one
of our major contributions and make our paper different from not only [11–14] but
also other preceding works (for example, [15–17]) relying on the maximum principle
approach to solve stochastic optimization problems.

In this paper, we further consider a class of time-inconsistent stochastic LQ control
problems, where the state process is driven by a Brownian motion and an independent
Poisson random measure. The control is allowed to enter into all the coefficients, and
the objective functional contains both a state-dependent term and a quadratic term
of the expected terminal cost. Also, we study these problems within the framework
of stochastic coefficients. To cope with the mathematical difficulties caused by the
presence of stochastic coefficients and random jumps, we introduce a new method-
ology to derive a sufficient condition for equilibrium controls (see Proposition 3.1),
which distinguishes significantly from that in [11–14]. Then, by further developing
the methodology proposed in [18], we prove that the existence of equilibrium controls
is equivalent to the existence of solutions to a flow of forward–backward stochas-
tic differential equations (FBSDEs) with constraints. Finally, we apply the established
results to study a mean-variance portfolio selection problem in a jump-diffusion finan-
cial market; an explicit solution to equilibrium investment strategy in a deterministic
coefficients case is obtained and proved to be unique.

Compared with [11–14], the main difficulties of this paper are to give an appropri-
ate estimate for the first-order variational equation, which is crucial for deriving the
necessary condition of equilibrium controls. Actually, our results generalize those in
[11,12] by including Poisson random jumps and those in [13] by taking into consid-
eration the stochastic coefficients. Also, it is a logical continuation of [14] to the case
when the jump part coefficients contain control variables.

The rest of the paper is organized as follows: In Sect. 2, we give the formulation of
the time-inconsistent LQ control problem and the definition of equilibrium control. A
general sufficient and necessary condition for equilibrium controls through a system
of FBSDEs with constraints is derived in Sect. 3. Section 4 is devoted to showing how
to apply our theoretical results through an illustrating example. Section 5 concludes
the paper and suggests some potential extensions of our work. Finally, an essential
estimate for the first-order variational equation is placed in “Appendix”.

2 Problem Formulation

Let T > 0 be a fixed finite time horizon and (Ω,F ,F,P) be a complete filtered
probability space, where F := {Ft }t∈[0,T ] is the natural filtration generated by the
Brownian motion and the Poisson random measure defined below satisfying the usual
conditions. Let R+ := [0,+∞[ be the time index set and R0 := R\{0}. Suppose
that Ni (dt, de), i = 1, . . . ,m, are independent Poisson random measures on (R+ ×
R0,B(R+)⊗B(R0)), hereB(R+) andB(R0) are the Borel σ -fields generated by open
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subsets of R+ and R0, respectively. Assume further that the Poisson random measure
Ni (dt, de) has the following compensator

ni (dt, de) := νi (de)dt,

where, for each i = 1, . . . ,m, νi is assumed to be a σ -finite measure on R0 sat-
isfying νi (O) < ∞ for all O ∈ B(R0), and

∫
R0

(1 ∧ e2)νi (de) < ∞. Moreover,

denote ν(de) = (ν1(de), . . . , νm(de))T and the compensated Poisson random mea-
sure Ñ (dt, de) by

Ñ (dt, de) := (N1(dt, de) − n1(dt, de), . . . , Nm(dt, de) − nm(dt, de))T .

On the filtered probability space (Ω,F ,F,P), denote byL2(R0,B(R0), ν;Rm) the
set of integrable functions a(·) : R0 → R

m such that ||a(·)||2L2

:= ∑m
j=1

∫
R0

|a j (e)|2ν j (de) < ∞ and F2
p(t, T ;Rm) the set of {Fs}s∈[t,T ]-predictable

processes f (·, ·) : Ω × [t, T ] ×R0 → R
m such that E

[ ∫ T
t || f (s, ·)||2L2ds

]
< ∞. In

addition, we also consider the following spaces of processes, with H being a finite-
dimensional vector or matrix space and k ≥ 2.

Lk
Ft

(Ω;H) :=
{
ξ : H-valuedFt -measurable random variables, s.t.E[|ξ |k ] <∞

}
;

Lk
F (t, T ;H) :=

{

f : H-valued {Fs}s∈[t,T ]-adapted càdlàg processes, s.t .E
[

sup
t≤s≤T

| f (s)|k
]

<∞
}

;

Lk
F,p(t, T ;H) :=

{

f : H-valued {Fs}s∈[t,T ]-predictable processes, s.t. E
[ ∫ T

t
| f (s)|kds

]

< ∞
}

.

Now we introduce the model under consideration in this paper.
Let {W (t)}t∈[0,T ] = {(W1(t), . . . ,Wd(t))T }t∈[0,T ] be a d-dimensional standard

Brownian motion, which is assumed to be stochastically independent of the Poisson
random measure under P. The controlled system starting from time t ∈ [0, T ] and
state x(t) is governed by the following linear stochastic differential equation (SDE)
with jumps:

dX(s) = {
A(s)X(s) + B(s)u(s) + b(s)

}
ds

+
d∑

i=1

{
Ci (s)X(s) + Di (s)u(s) + σi (s)

}
dWi (s)

+
m∑

j=1

∫
R0

{
E j (s, e)X(s−) + Fj (s, e)u(s−) + η j (s, e)

}
Ñ j (ds, de),

X(t) = x(t), s ∈ [t, T ].

(1)

Here A(·), B(·), b(·), Ci (·), Di (·), σi (·), E j (·, ·), Fj (·, ·) and η j (·, ·) are uniformly
bounded and F-predictable processes on [0, T ] with values in Rn×n , Rn×l , Rn , Rn×n ,
R
n×l , Rn , Rn×n , Rn×l and R

n , respectively. Moreover, to guarantee the auxiliary
process {Λ(s)}s∈[t,T ] defined in Lemma A.1 make sense, we further assume that each
component of E j (·, ·) is almost surely bigger than −1. It is worth mentioning that we
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do not need to require A(·) to be a deterministic function here, which makes our paper
different from some proceeding works (for example, [11–14]) on time-inconsistent
stochastic LQ control problems. In the above, u(·), valued inRl , is the control process,
and X(·), valued in Rn , is the state process.

For the state equation (1), we introduce the following set:

U[t, T ] =
{
u : Ω × [t, T ] → R

l
∣
∣
∣ u(·) ∈

⋃

q>4

Lq
F ,p(t, T ;Rl)

}
.

Any u(·) ∈ U[t, T ] is called an admissible control. It follows from [19] that for
any initial state x(t) ∈ Lq

Ft
(Ω;Rn) and a control u(·) ∈ Lq

F ,p(t, T ;Rl), the state

equation (1) admits a unique solution Xt,x(t),u(·) ∈ Lq
F (t, T ;Rn). Unlike some other

literature, which only assumes the square integrability of the control, we require that
u(·) ∈ ⋃

q>4 L
q
F ,p(t, T ;Rl) to guarantee one inequality in the proof of Theorem 3.1

is satisfied (see Remark 3.3).
Denote by S

n the set of all symmetric n × n real matrices. At any time t with the
system state X(t) = x(t), our objective is to minimize the following cost functional

J (t, x(t); u(·)) := Et

[ ∫ T

t

[〈Q(s)X(s), X(s)〉 + 〈R(s)u(s), u(s)〉]ds + 〈GX(T ), X(T )〉

+ 〈HEt [X(T )],Et [X(T )]〉 + 〈μ1x(t) + μ2, X(T )〉
]

, (2)

over u(·) ∈ U[t, T ], where X(·) = Xt,x(t),u(·) andEt [·] = E[·|Ft ]. In the above, Q(·)
and R(·) are both positive semi-definite and uniformly bounded adapted processes on
[0, T ] with values in S

n and S
l , respectively; G, H , μ1 and μ2 are constants taking

values in S
n , Sn , Rn×n and R

n , respectively. Throughout the paper, we assume that
both G and G + H are positive semi-definite.

The optimal control problem can be formulated as follows.

Problem 2.1 For any given initial pair (t, x(t)) ∈ [0, T ]× Lq
Ft

(Ω;Rn), find a control
u∗(·) ∈ U[t, T ] such that

J (t, x(t); u∗(·)) = inf
u(·)∈U [t,T ]

J (t, x(t); u(·)). (3)

As is discussed in [8], the dependence of the terminal cost on the current state x(t)
and the appearance of a quadratic term of the conditional expected terminal state in
the cost functional (2) make Problem 2.1 time-inconsistent. So it is more appropriate
to consider the notion of “equilibrium” instead of “optimality”. In this paper, we use
the game theoretic approach to handle the time inconsistency in the same perspective
as [8]. The controller at each point t in time, referred to as “player t”, is playing a
game against all his/her future incarnations. Player t can only influence the dynamics
of the state process X(·) by choosing the control u(t) exactly at time t . At another
time, say s, the control u(s) will be chosen by player s. An equilibrium control u∗(·)
is characterized by the property that if every player s, such that s > t , uses u∗(·), then
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it is optimal for player t to use u∗(·). Similar to [11–14], we define an equilibrium
control in the following manner.

Definition 2.1 Let u∗(·) ∈ ⋃
q>4 L

q
F ,p(0, T ;Rl) be a given control and X∗(·) be the

corresponding state process. The control u∗(·) is called an equilibrium for Problem
2.1 if

lim inf
ε↓0

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))
ε

≥ 0, (4)

where for any t ∈ [0, T [, ε > 0 and v ∈ ⋃
q>4 L

q
Ft

(Ω;Rl),

ut,ε,v(·) = u∗(·) + v1[t,t+ε[(·). (5)

As was remarked by [11], the definition for an equilibrium control here differs
from that in some existing works such as [4,6,8], where only feedback controls are
considered. The equilibrium defined here is in the class of open-loop controls, which
means that the perturbation of the control in [t, t + ε[ will not change the control
process in [t + ε, T [. This is not the case with feedback controls. On the other hand,
our definition is also different from that given in [7,9,10], where closed-loop type
equilibrium strategy is derived using the multiperson differential games approach in a
Markovian setting. Moreover, the notion of equilibrium controls adopted in this paper
also performs well when the controlled system is non-Markovian.

3 Optimality Conditions for Equilibrium Controls

In this section, we present a general sufficient and necessary condition for equilibrium
controls. The necessary condition is derived based on a sharper estimate for the first-
order variational equation as well as a stochastic Lebesgue differentiation theorem [18,
Lemma 3.5], while the sufficient condition is totally different due to the introduction
of random jumps. In the following proposition, we first derive a sufficient condition
for an equilibrium control, which can be seen as a generalization of [11] to the jump-
diffusion setting and of [14] to the case when the jump part coefficients contain control
variables. However, the approach we have used distinguishes significantly from that
in the above-mentioned works (see Remark 3.1).

Proposition 3.1 Let u∗(·) ∈ Lq
F ,p(0, T ;Rl) be a fixed control and X∗(·) be the cor-

responding state process. For each t ∈ [0, T [, let

(Y (·; t), (Zi (·; t))di=1, (K j (·, ·; t))mj=1) ∈ L2
F (t, T ;Rn)

×(L2
F ,p(t, T ;Rn))d × (F2

p(t, T ;Rn))m

be the unique solution to the following BSDE:

123



Journal of Optimization Theory and Applications (2019) 181:383–410 389

dY (s; t) = −
{

A(s)T Y (s; t) +
d∑

i=1
Ci (s)T Zi (s; t) +

m∑

j=1

∫
R0

E j (s, e)T K j (s, e; t)ν j (de)

+ Q(s)X∗(s)
}

ds +
d∑

i=1
Zi (s; t)dWi (s) +

m∑

j=1

∫
R0

K j (s, e; t)Ñ j (ds, de),

Y (T ; t) = GX∗(T ) + HEt [X∗(T )] + 1
2μ1X∗(t) + 1

2μ2, s ∈ [t, T ].

(6)

Suppose Λ(s; t) := R(s)u∗(s) + B(s)T Y (s; t) + ∑d
i=1 Di (s)T Zi (s; t) + ∑m

j=1∫
R0

Fj (s, e)T K j (s, e; t)ν j (de) satisfies the following condition:

lim
ε↓0

1

ε

∫ t+ε

t
Et [Λ(s; t)]ds = 0, a.s.,∀t ∈ [0, T [. (7)

Then, u∗(·) is an equilibrium control for Problem 2.1.

Proof For each fixed t ∈ [0, T [ and v(·) ∈ ⋃
q>4 L

q
Ft

(Ω;Rl), let ut,ε,v(·) be defined
by (5) and Xε(·) be the corresponding state process stating from X∗(t). Then (sup-
pressing (s; t))

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))

= Et

[ ∫ T

t

[〈Q(Xε + X∗), Xε − X∗〉 + 〈R(ut,ε,v + u∗), ut,ε,v − u∗〉]ds

+ 〈G(Xε(T ) + X∗(T )) + HEt [Xε(T ) + X∗(T )] + μ1X
∗(t) + μ2, X

ε(T ) − X∗(T )〉
]

.

(8)

Recalling that (Y (·; t), (Zi (·; t))di=1, (K j (·, ·; t))mj=1) is the solution to BSDE (6), by
applying Itô’s formula to s �→ 〈Y (s; t), Xε(s) − X∗(s)〉, we have

Et
[〈GX∗(T ) + HEt [X∗(T )] + 1

2
μ1X

∗(t) + 1

2
μ2, X

ε(T ) − X∗(T )〉]

= Et

[ ∫ T

t

〈

BT Y +
d∑

i=1

DT
i Zi +

m∑

j=1

∫

R0

Fj (e)
T K j (e)ν j (de), u

t,ε,v − u∗
〉

ds

]

− Et

[ ∫ T

t
〈QX∗, Xε − X∗〉ds

]

. (9)

Consequently,

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))

= Et

[ ∫ T

t

[

〈Q(X ε + X∗) − 2QX∗, X ε − X∗〉

+
〈

R(ut,ε,v + u∗) + 2BT Y +
d∑

i=1

2DT
i Zi +

m∑

j=1

∫

R0

2Fj (e)
T K j (e)ν j (de), u

t,ε,v − u∗
〉]

ds
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+ 〈G(X ε(T ) + X∗(T )) + HEt [X ε(T ) + X∗(T )] + μ1X
∗(t) + μ2, X

ε(T ) − X∗(T )〉
− 〈2GX∗(T ) + 2HEt [X∗(T )] + μ1X

∗(t) + μ2, X
ε(T ) − X∗(T )〉

]

= Et

[ ∫ t+ε

t

〈

R(v + 2u∗) + 2BT Y +
d∑

i=1

2DT
i Zi +

m∑

j=1

∫

R0

2Fj (e)
T K j (e)ν j (de), v

〉

ds

+
∫ T

t
|Q 1

2 (X ε − X∗)|2ds + |(G + H)
1
2 Et [X ε(T ) − X∗(T )]|2

+ |G 1
2 {X ε(T ) − X∗(T ) − Et [X ε(T ) − X∗(T )]}|2

]

≥ Et

[ ∫ t+ε

t

〈

R(v + 2u∗) + 2BT Y +
d∑

i=1

2DT
i Zi +

m∑

j=1

∫

R0

2Fj (e)
T K j (e)ν j (de), v

〉

ds

]

= Et

[ ∫ t+ε

t
〈Rv + 2Λ(s; t), v〉ds

]

≥ Et

[ ∫ t+ε

t
〈2Λ(s; t), v〉ds

]

. (10)

Therefore, it follows from condition (7) that

lim inf
ε↓0

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))
ε

≥ lim inf
ε↓0

∫ t+ε

t 〈2Et [Λ(s; t)], v〉ds
ε

= 0.

(11)

This completes the proof. ��
We now look at the necessary condition for an equilibrium control. To this end,

let u∗(·) be a fixed control and X∗(·) be the corresponding state process. For each
t ∈ [0, T [, define in the time interval [t, T ] the processes

(
Ŷ (·; t), (Ẑi (·; t))di=1, (K̂ j (·, ·; t))mj=1

)
∈ L2

F (t, T ;Sn)
×(L2

F ,p(t, T ;Sn))d × (F2
p(t, T ;Sn))m

as the unique solution to the following BSDE:

dŶ (s; t) = −
{

A(s)T Ŷ (s; t) + Ŷ (s; t)A(s)

+
d∑

i=1

(
Ci (s)

T Ŷ (s; t)Ci (s) + Ci (s)
T Ẑi (s; t) + Ẑi (s; t)Ci (s)

)

+
m∑

j=1

∫

R0

(
E j (s, e)

T (Ŷ (s; t) + K̂ j (s, e; t))E j (s, e)

+ E j (s, e)
T K̂ j (s, e; t) + K̂ j (s, e; t)E j (s, e)

)
ν j (de) + Q(s)

}

ds

+
d∑

i=1

Ẑi (s; t)dWi (s)
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+
m∑

j=1

∫

R0

K̂ j (s, e; t)Ñ j (ds, de),

Ŷ (T ; t) = G, s ∈ [t, T ]. (12)

We notice that neither the coefficients nor the terminal condition of (12) depend
on the initial time t , so it can be seen as a BSDE in the entire time period [0, T ]. For
s ∈ [0, T ], we denote its solution as (Ŷ (s), (Ẑi (s))di=1, (K̂ j (s, ·))mj=1). Thus, from the
uniqueness of the solution to (12), it follows that

(Ŷ (s; t), (Ẑi (s; t))di=1, (K̂ j (s, ·; t))mj=1) = (Ŷ (s), (Ẑi (s))
d
i=1, (K̂ j (s, ·))mj=1),

for 0 ≤ t ≤ s ≤ T .
In the following proposition, we shall present an estimate for the difference of the

cost functional J (t, X∗(t); ut,ε,v(·))− J (t, X∗(t); u∗(·)) under local spike variation.
Proposition 3.2 For each t ∈ [0, T [, ε > 0 and v ∈ ⋃

q>4 L
q
Ft

(Ω;Rl), let ut,ε,v(·)
be defined by (5). Then, we have

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))
= Et

[ ∫ t+ε

t

[
〈2Λ(s; t), v〉 + 〈Γ (s)v, v〉

]
ds

]

+ o(ε), (13)

where o(ε) represents the higher-order terms of ε and

Γ (s) := R(s) +
d∑

i=1

Di (s)
T Ŷ (s)Di (s)

+
m∑

j=1

∫

R0

Fj (s, e)
T
(
Ŷ (s) + K̂ j (s, e)

)
Fj (s, e)ν j (de).

Proof Denote by Xε(·) the state process corresponding to ut,ε,v(·) stating from X∗(t).
It follows from the standard perturbation approach (see, for example, [20,21]) that

Xε(s) = X∗(s) + Y ε(s) + Z ε(s), s ∈ [t, T ], (14)

where Y ε(·) and Z ε(·) solve the following SDEs, respectively

dY ε(s) = A(s)Y ε(s)ds +
d∑

i=1

{
Ci (s)Y ε(s) + Di (s)v1[t,t+ε[(s)

}
dWi (s)

+
m∑

j=1

∫
R0

{
E j (s, e)Y ε(s−) + Fj (s, e)v1[t,t+ε[(s)

}
Ñ j (ds, de),

Y ε(t) = 0, s ∈ [t, T ],

(15)
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and

dZ ε(s) = {
A(s)Z ε(s) + B(s)v1[t,t+ε[(s)

}
ds +

d∑

i=1
Ci (s)Z ε(s)dWi (s)

+
m∑

j=1

∫
R0

E j (s, e)Z ε(s−)Ñ j (ds, de),

Z ε(t) = 0, s ∈ [t, T ].

(16)

Following from standard arguments by using Gronwall’s inequality and the moment
inequalities for jump-diffusion processes (for example, [20, Lemma 2.1]), we have

Et

[

sup
s∈[t,T ]

∣
∣Y ε(s)

∣
∣2

]

= O(ε) and Et

[

sup
s∈[t,T ]

∣
∣Z ε(s)

∣
∣2

]

= O(ε2).

Moreover, it follows from the dynamics of Y ε(·) in (15) that Et [Y ε(s)]
= ∫ s

t Et [A(r)Y ε(r)]dr for all s ∈ [t, T ]. Setting Ψ (s) = A(s) in Lemma A.1, we
obtain for some positive constants C that

∣
∣
∣
∣

∫ s

t
Et [A(r)Y ε(r)]dr

∣
∣
∣
∣

2

≤ C
∫ s

t

∣
∣Et [A(r)Y ε(r)]∣∣2dr ≤ Cερ(ε),

where ρ : Ω×]0,∞[→]0,∞[ satisfies ρ(ε) ↓ 0 as ε ↓ 0, a.s. Therefore,

sup
s∈[t,T ]

∣
∣Et [Y ε(s)]∣∣2 ≤ Cερ(ε).

By using the above estimates, we derive (suppressing (s; t))

J (t, X∗(t); ut,ε,v(·)) − J (t, X∗(t); u∗(·))

= Et

[ ∫ T

t

[〈Q(2X∗ + Y ε + Z ε), Y ε + Z ε〉 + 〈R(v + 2u∗), v〉1[t,t+ε[
]
ds

+ 〈G(Y ε(T ) + Z ε(T )), Y ε(T ) + Z ε(T )〉 + 〈HEt [Y ε(T ) + Z ε(T )],Et [Y ε(T )

+ Z ε(T )]〉 + 2〈GX∗(T ) + HEt [X∗(T )] + 1

2
μ1X

∗(t) + 1

2
μ2, Y

ε(T ) + Z ε(T )〉
]

= Et

[ ∫ T

t

[〈Q(2X∗ + Y ε + Z ε), Y ε + Z ε〉 + 〈R(v + 2u∗), v〉1[t,t+ε[
]
ds

+ 2〈Y (T ; t), Y ε(T ) + Z ε(T )〉 + 〈Ŷ (T ; t)(Y ε(T ) + Z ε(T )),Y ε(T ) + Z ε(T )〉
]

+ o(ε).

(17)

Following from (9) and (14), we have
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Et [〈Y (T ; t),Y ε(T ) + Z ε(T )〉]

= Et

[ ∫ t+ε

t

〈

BT Y +
d∑

i=1

DT
i Zi +

m∑

j=1

∫

R0

Fj (e)
T K j (e)ν j (de), v

〉

ds

]

− Et

[ ∫ T

t
〈QX∗,Y ε + Z ε〉ds

]

. (18)

Now, by applying Itô’s formula to s �→ 〈Ŷ (s; t)(Y ε(s) + Z ε(s)),Y ε(s) + Z ε(s)〉, we
get

Et [〈Ŷ (T ; t)(Y ε(T ) + Z ε(T )), Y ε(T ) + Z ε(T )〉]

= Et

[ ∫ t+ε

t

〈( d∑

i=1

DT
i Ŷ Di +

m∑

j=1

∫

R0

Fj (e)
T
(
Ŷ + K̂ j (e)

)
Fj (e)ν j (de)

)

v, v

〉

ds

]

− Et

[ ∫ T

t
〈Q(Y ε + Z ε), Y ε + Z ε〉ds

]

+ o(ε). (19)

Then, substituting (18) and (19) into (17) yields (13). The proof is complete. ��
Remark 3.1 Note that from the positive semi-definite assumptions on Q, R and G, the
correspondingΓ (·) in [11,12] is also positive semi-definite due to the comparison prin-
ciples of BSDEs. Thus, it follows from Proposition 3.2 that a sufficient and necessary
condition for a control u∗ being an equilibrium is limε↓0 1

ε

∫ t+ε

t Et [Λ(s; t)]ds = 0, a.s.
(see [12, Corollary 3.2]). However, there is a critical difference between the estimate
for the cost functional here and that in the above-mentioned literature. An additional
term K̂ (·, ·) appears in the expression of Γ (·) because stochastic coefficients and
random jumps of the controlled system are considered. So in this paper, Γ (·) is not
necessarily positive semi-definite. This is whywemodify themethodology of deriving
the sufficient condition for equilibrium controls (see Proposition 3.1).

Remark 3.2 It is worth mentioning that [13,14,22] also treat the time-inconsistent
optimal control problems for jump diffusions. In [13], the authors assume all the
model coefficients are deterministic functions, which leads to the second-order adjoint
equation reducing to a backward ordinary differential equation. Although Wu and
Zhuang [14] consider the case with random parameters, the jump part coefficients
of their controlled system do not contain the control variable. Therefore, the form
of Γ (·) in [13,14] turns out to be the same as the one corresponding to the pure
diffusion case in [11,12], which differs from ours. Shen and Siu [22] study the time-
inconsistent pre-committed control strategy for a jump-diffusion mean-field model by
using a maximum principle approach, while in the current paper, a time-consistent
equilibrium solution within the class of open-loop controls is derived.

We are now in the position to present the necessary condition for an equilibrium
control.
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Proposition 3.3 If a control u∗(·) ∈ Lq
F ,p(0, T ;Rl) is an equilibrium, then, for any

θ > 0,

lim inf
ε↓0

1

ε
Et

[ ∫ t+ε

t

[〈2Λ(s; t), v〉 + θ〈Γ (s)v, v〉]ds
]

≥ 0, a.s. (20)

Proof For any v ∈ ⋃
q>4 L

q
Ft

(Ω;Rl) and θ > 0, set v̄ = θv ∈ ⋃
q>4 L

q
Ft

(Ω;Rl).

Then, it follows from Proposition 3.2 that

J (t, X∗(t); ut,ε,v̄(·)) − J (t, X∗(t); u∗(·))
= Et

[ ∫ t+ε

t

[
2θ〈Λ(s; t), v〉 + θ2〈Γ (s)v, v〉

]
ds

]

+ o(ε),

which implies (20) holds. ��
Although (7) and (20) already provide a sufficient and necessary condition for an

equilibrium control, they are not easily applicable as they both involve a limit. In order
to get rid of it, we need the following result, which not only provides a fundamental
property of the solution to BSDE (6), but also represents the process Λ(s; t) in a
special form.

Proposition 3.4 For any given state-control pair (X∗(·), u∗(·)) ∈ Lq
F (0, T ;Rn) ×

Lq
F ,p(0, T ;Rl), the unique solution to BSDE (6) satisfies Zi (s; t1) = Zi (s; t2) and

K j (s, ·; t1) = K j (s, ·; t2) for a.e. s ≥ max(t1, t2), i = 1, . . . , d and j = 1, . . . ,m.
Furthermore, there exist some stochastic processes λ1, λ2 and ξ such that

Λ(s; t) = λ1(s) + λ2(s)ξ(t),

where λ1 satisfies E[∫ T
0 |λ1(s)|2ds] < ∞, λ2 is uniformly bounded on [0, T ] and ξ is

right continuous satisfying E[supt∈[0,T ] |ξt |q ] < +∞.

Proof Denote by Φ(·) the unique continuous solution to the following matrix-valued
ordinary differential equation:

dΦ(t) = Φ(t)A(t)T dt, Φ(T ) = In,

where In denotes the n × n identity matrix. Obviously, Φ(·) is invertible, and both
Φ(·) and Φ(·)−1 are uniformly bounded.

For i = 1, . . . , d and j = 1, . . . ,m, let Ỹ (s; t) = Φ(s)Y (s; t) − HEt [X∗(T )] −
1
2μ1X∗(t) − 1

2μ2, Z̃i (s; t) = Φ(s)Zi (s; t) and K̃ j (s, ·; t) = Φ(s)K j (s, ·; t). It fol-
lows that on the time interval [t, T ], (Ỹ (·; t), (Z̃i (·; t))di=1, (K̃ j (·, ·; t))mj=1) satisfies

dỸ (s; t) = −
{

d∑

i=1
Φ(s)Ci (s)TΦ(s)−1 Z̃i (s; t) +

m∑

j=1

∫
R0

Φ(s)E j (s, e)TΦ(s)−1 K̃ j (s, e; t)ν j (de)

+ Φ(s)Q(s)X∗(s)
}

ds +
d∑

i=1
Z̃i (s; t)dWi (s) +

m∑

j=1

∫
R0

K̃ j (s, e; t)Ñ j (ds, de),

Ỹ (T ; t) = GX∗(T ), s ∈ [t, T ].

(21)
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It should be noted that neither the coefficients nor the terminal condition of (21)
depend on t , so it can be seen as aBSDEon the entire time period [0, T ]. For s ∈ [0, T ],
denote the solution of (21) as (Ỹ (s), (Z̃i (s))di=1, (K̃ j (s, ·))mj=1) ∈ L2

F (t, T ;Rn) ×
(L2

F ,p(t, T ;Rn))d × (F2
p(t, T ;Rn))m . Thus, from the uniqueness of the solution to

BSDE (21), it follows that for 0 ≤ t ≤ s ≤ T

(Ỹ (s; t), (Z̃i (s; t))di=1, (K̃ j (s, ·; t))mj=1) = (Ỹ (s), (Z̃i (s))
d
i=1, (K̃ j (s, ·))mj=1).

As a result, Zi (s; t) = Φ(s)−1 Z̃i (s) := Zi (s) and K j (s, ·; t) = Φ(s)−1 K̃ j (s, ·) :=
K j (s, ·). This proves the first claim of the proposition.

Next, from the definition of Ỹ (s; t), we derive

Y (s; t) = Φ(s)−1Ỹ (s) + Φ(s)−1
(
HEt [X∗(T )] + 1

2
μ1X

∗(t) + 1

2
μ2

)

:= Y (s) + Φ(s)−1ξ(t),

where Y (s) := Φ(s)−1Ỹ (s) defines a process Y (·) ∈ L2
F (0, T ;Rn) and

ξ(t) := HEt [X∗(T )] + 1

2
μ1X

∗(t) + 1

2
μ2

defines a right continuous process satisfying E[supt∈[0,T ] |ξ(t)|q ] < +∞.
Therefore,

Λ(s; t) = R(s)u∗(s) + B(s)T Y (s; t) +
d∑

i=1

Di (s)
T Zi (s; t)

+
m∑

j=1

∫

R0

Fj (s, e)
T K j (s, e; t)ν j (de)

= R(s)u∗(s) + B(s)T
(
Y (s) + Φ(s)−1ξt

)

+
d∑

i=1

Di (s)
T Zi (s) +

m∑

j=1

∫

R0

Fj (s, e)
T K j (s, e)ν j (de)

:= λ1(s) + λ2(s)ξ(t),

where λ1(s) := R(s)u∗(s) + B(s)T Y (s) +
d∑

i=1
Di (s)T Zi (s) +

m∑

j=1

∫
R0

Fj (s, e)T

K j (s, e)ν j (de) satisfying E[∫ T
0 |λ1(s)|2ds] < ∞ and λ2(s) := B(s)TΦ(s)−1 being

uniformly bounded. ��
We now summarize the main result of this section in the following theorem.

Theorem 3.1 Let (X∗(·), u∗(·)) ∈ Lq
F (0, T ;Rn) × Lq

F ,p(0, T ;Rl) be a given

state-control pair, and let (Y (·; t), (Zi (·; t))di=1, (K j (·, ·; t))mj=1) ∈ L2
F (t, T ;Rn) ×
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(L2
F ,p(t, T ;Rn))d ×(F2

p(t, T ;Rn))m be the unique solution to BSDE (6). Then, u∗(·)
is an equilibrium for Problem 2.1 if and only if

Λ(t; t) = 0, a.s., a.e. t ∈ [0, T ]. (22)

Proof We first prove the sufficiency of the above result. It follows from the represen-
tation of Λ(s; t) in Proposition 3.4 that

1

ε

∫ t+ε

t
Et [Λ(s; t)]ds − 1

ε

∫ t+ε

t
Et [Λ(s; s)]ds = 1

ε

∫ t+ε

t
Et [λ2(s)(ξ(t) − ξ(s))]ds.

Since λ2 is uniformly bounded and ξ is right continuous, we have for some constant
C that

lim
ε↓0

∣
∣
∣
∣
1

ε

∫ t+ε

t
Et [Λ(s; t)]ds − 1

ε

∫ t+ε

t
Et [Λ(s; s)]ds

∣
∣
∣
∣

= lim
ε↓0

∣
∣
∣
∣
1

ε

∫ t+ε

t
Et [λ2(s)(ξ(t) − ξ(s))]ds

∣
∣
∣
∣

≤ C lim
ε↓0

1

ε

∫ t+ε

t
Et [|ξ(t) − ξ(s)|]ds = 0.

Therefore, if (22) holds, then

lim
ε↓0

1

ε

∫ t+ε

t
Et [Λ(s; t)]ds = lim

ε↓0
1

ε

∫ t+ε

t
Et [Λ(s; s)]ds = 0.

From Proposition 3.1, u∗(·) is an equilibrium control.
Conversely, if u∗(·) is an equilibrium control, along the same lines as the above

analysis, we easily get

1

ε

∫ t+ε

t
Et [〈2Λ(s; t), v〉]ds − 1

ε

∫ t+ε

t
Et [〈2Λ(s; s), v〉]ds

= 1

ε

∫ t+ε

t
Et [2〈λ2(s)(ξ(t) − ξ(s)), v〉]ds,

and

lim
ε↓0

∣
∣
∣
∣
1

ε

∫ t+ε

t
Et [〈2Λ(s; t), v〉]ds − 1

ε

∫ t+ε

t
Et [〈2Λ(s; s), v〉]ds

∣
∣
∣
∣

≤ C lim
ε↓0

1

ε

∫ t+ε

t
〈Et [|ξ(t) − ξ(s)|], |v|〉ds = 0.

Then, from Proposition 3.3, for any θ > 0,

lim inf
ε↓0

1

ε
Et

[ ∫ t+ε

t

[〈2Λ(s; s), v〉 + θ〈Γ (s)v, v〉]ds
]

≥ 0, a.s. (23)
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We next verify, for any δ > 0 sufficiently small, that

E

[ ∫ T

0

∣
∣〈2Λ(s; s), v〉 + θ〈Γ (s)v, v〉∣∣1+δds

]

< +∞. (24)

Indeed, in view of the definitions for Λ(s; s) and Γ (s) in Propositions 3.1 and 3.2, we
have

E

[ ∫ T

0

∣
∣Λ(s; s)∣∣2ds

]

< +∞ and E

[ ∫ T

0

∣
∣Γ (s)

∣
∣2ds

]

< +∞,

where |Γ (s)|2 denotes the Frobenius norm of the matrix (Γ (s))1≤i, j≤l , i.e., |Γ (s)|2
= ∑l

i, j=1 Γi j (s)2. Then, it follows from v ∈ ⋃
q>4 L

q
Ft

(Ω;Rl) that

E

[ ∫ T

0

∣
∣〈2Λ(s; s), v〉∣∣1+δds

]

≤ C

(

E

[ ∫ T

0

∣
∣Λ(s; s)∣∣2ds

]) 1+δ
2

(

E

[
|v| 2(1+δ)

1−δ

]) 1−δ
2

< +∞.

Furthermore, denote by v = (v1, . . . , vl)
T , we get

∣
∣〈Γ (s)v, v〉∣∣ =

∣
∣
∣
∣

l∑

i=1

( l∑

j=1

Γi j (s)v j

)
vi

∣
∣
∣
∣ ≤

∣
∣
∣
∣

( l∑

i=1

( l∑

j=1

Γi j (s)v j

)2)
1
2 ·

( l∑

i=1

v2i

) 1
2
∣
∣
∣
∣

≤
∣
∣
∣
∣

( l∑

i=1

l∑

j=1

Γi j (s)
2
) 1

2 ·
l∑

i=1

v2i

∣
∣
∣
∣ = |Γ (s)| · |v|2.

Therefore, if q ≥ 4(1 + δ)/(1 − δ), we have

E

[ ∫ T

0

∣
∣θ〈Γ (s)v, v〉∣∣1+δds

]

≤ C

(

E

[ ∫ T

0

∣
∣Γ (s)

∣
∣2ds

]) 1+δ
2

(

E

[
|v| 4(1+δ)

1−δ

]) 1−δ
2

< +∞.

Hence (24) holds, which ensures that the condition in [18, Lemma 3.5] is satisfied for
the integrand of (23). Therefore

2〈Λ(t; t), v〉 + θ〈Γ (t)v, v〉 ≥ 0, a.s., a.e. t ∈ [0, T ].

Sending θ → 0+, we obtain for all v ∈ ⋃
q>4 L

q
Ft

(Ω;Rl) that 〈Λ(t; t), v〉
≥ 0, a.s., a.e. t ∈ [0, T ], from which we obtain (22). This completes the proof.

��
Remark 3.3 In the above proof of Theorem 3.1, we require that q ≥ 4(1+ δ)/(1− δ),
for a sufficiently small constant δ > 0, to ensure the correctness of (24), which is
crucial in deriving the necessary condition of an equilibrium control. This is why we
consider

⋃
q>4 L

q
F ,p(0, T ;Rl) as the set of all admissible controls in this paper.
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From the above theorem, we end up this section with the following optimality
system:

dX∗(s) = {
A(s)X∗(s) + B(s)u∗(s) + b(s)

}
ds

+
d∑

i=1

{
Ci (s)X

∗(s) + Di (s)u
∗(s) + σi (s)

}
dWi (s)

+
m∑

j=1

∫

R0

{
E j (s, e)X

∗(s−) + Fj (s, e)u
∗(s−) + η j (s, e)

}
Ñ j (ds, de),

dY (s; t) = −
{

A(s)T Y (s; t) +
d∑

i=1

Ci (s)
T Zi (s; t) +

m∑

j=1

∫

R0

E j (s, e)
T K j (s, e; t)ν j (de)

+ Q(s)X∗(s)
}

ds +
d∑

i=1

Zi (s; t)dWi (s) +
m∑

j=1

∫

R0

K j (s, e; t)Ñ j (ds, de),

X∗(0) = x, Y (T ; t) = GX∗(T ) + HEt [X∗(T )] + 1

2
μ1X

∗(t) + 1

2
μ2, 0 ≤ t ≤ s ≤ T ,

R(t)u∗(t) + B(t)T Y (t; t) +
d∑

i=1

Di (t)
T Zi (t; t) +

m∑

j=1

∫

R0

Fj (t, e)
T K j (t, e; t)ν j (de) = 0.

(25)

Note that (25) is a flow of FBSDEs with constraints. The general existence of
solutions for such type of FBSDEs remains an open problem. However, in the case
without Poisson random measure and all the coefficients are deterministic functions,
explicit solutions of the above system are carried out in [11].

4 Application to theMean-Variance Problem

In this section, we apply Theorem 3.1 to a mean-variance portfolio selection problem
with the objective functional containing both a state-dependent term and a variance
term.Hence, the problem is inherently time-inconsistent. To establish the existence and
uniqueness of the equilibrium investment strategy, we assume throughout this section
all the parameters are deterministic functions of t . Actually, in the absence of the state-
dependent term, this problemhas been discussed by [23]with an additional reinsurance
strategy. However, the authors in [23] only give the existence of equilibrium strategies
by using a stochastic maximum principle approach.

We consider a financial market consisting of one risk-free asset and n risky assets.
The risk-free asset’s price process {S0(t)}t∈[0,T ] is given by:

dS0(t) = ρ(t)S0(t)dt, S0(0) > 0.

The price processes of the other n risky assets {Sk(t)}t∈[0,T ], k = 1, . . . , n, are
modeled by the following SDEs:
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dSk(t) = Sk(t−)

{

μk(t)dt +
d∑

i=1

σki (t)dWi (t) +
m∑

j=1

∫

R0

ηk j (t, e)Ñ j (dt, de)

}

,

Sk(0) > 0.

In the above, ρ(·), μk(·), σki (·) and ηk j (·, ·) are assumed to be deterministic and
bounded functions on [0, T ] satisfying μk(·) > ρ(·) ≥ 0. Denote by μ(·)
:= (μ1(·), . . . , μn(·))T , σ(·) := (σki (·))n×d and η(·, ·) := (ηk j (·, ·))n×m . Moreover,
we assume the following non-degeneracy condition is satisfied, that is,

Θ(t) := σ(t)σ (t)T +
∫

R0

η(t, e)Diag(ν(de))η(t, e)T ≥ δ In, (26)

for all t ∈ [0, T ] and some δ > 0.
In the following, we denote by uk(t), k = 0, 1, . . . , n, the amount of money

invested in the kth asset at time t and we call u(t) := (u1(t), . . . , un(t))T a portfolio
of the investment. Given any initial time t ∈ [0, T [ and a portfolio u(·), we easily get
the wealth process X(·) satisfying the following equation:

dX(s) = [
ρ(s)X(s) + u(s)T B(s)

]
ds + u(s)T σ(s)dW (s) + u(s)T∫

R0
η(s, e)Ñ (ds, de), X(t) = x(t), s ∈ [t, T ], (27)

where

B(s) := (μ1(s) − ρ(s), . . . , μn(s) − ρ(s))T .

At any time t with state X(t) = x(t), the objective is to achieve a balance between
the conditional expectation and the conditional variance of terminal wealth, i.e., to
chose a portfolio u(·) so as to minimize

J (t, x(t); u(·)) := γ

2
Vart [X(T )] − (μ1x(t) + μ2)Et [X(T )]

= γ

2
Et [X(T )2] − γ

2
(Et [X(T )])2 − (μ1x(t) + μ2)Et [X(T )],

(28)

with γ, μ1 and μ2 are given positive constants.
Problem (27)–(28) is obviously a special cases of our LQ problem (1)–(2). There-

fore, the FBSDE system (25) becomes:

dX∗(s) = [
ρ(s)X∗(s) + u∗(s)T B(s)

]
ds + u∗(s)T σ(s)dW (s) + u∗(s)T

∫
R0

η(s, e)Ñ (ds, de),
dY (s; t) = −ρ(s)Y (s; t)ds + Z(s; t)T dW (s) + ∫

R0
K (s, e; t)T Ñ (ds, de),

X∗(0) = x, Y (T ; t) = γ
2 X

∗(T ) − γ
2 Et [X∗(T )] − 1

2μ1X∗(t) − 1
2μ2, 0 ≤ t ≤ s ≤ T ,

B(t)Y (t; t) + σ(t)Z(t; t) + ∫
R0

η(t, e)Diag(ν(de))K (t, e; t) = 0,

(29)

where Z(s; t) = (Z1(s; t), . . . , Zd(s; t))T and K (s, ·; t) = (K1(s, ·; t), . . . ,
Km(s, ·; t))T .
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4.1 Existence of a Solution to (29)

In this subsection, we construct a solution to (29). To this end, let us try a process
{Y (s; t)}0≤t≤s≤T of the following form:

Y (s; t) = Ψ (s)(X∗(s) − Et [X∗(s)]) + φ(s)X∗(t) + ϕ(s), (30)

where Ψ (·), φ(·) and ϕ(·) are deterministic, differentiable functions with terminal
values

Ψ (T ) = γ /2, φ(T ) = −μ1/2, ϕ(T ) = −μ2/2.

For each fixed t , by applying Itô’s formula to (30) in the time variable s, we derive

dY (s; t) = {
Ψ ′(s)X∗(s) + Ψ (s)(ρ(s)X∗(s) + u∗(s)T B(s)) − Ψ ′(s)Et [X∗(s)]

− Ψ (s)Et [ρ(s)X∗(s) + u∗(s)T B(s)] + φ′(s)X∗(t) + ϕ′(s)
}
ds

+ Ψ (s)u∗(s)T σ(s)dW (s) + Ψ (s)u∗(s)T
∫

R0

η(s, e)Ñ (ds, de). (31)

Comparing the coefficients with dY (s; t) in (29), we get

Z(s; t) = σ(s)T u∗(s)Ψ (s) and K (s, ·; t) = η(s, ·)T u∗(s)Ψ (s). (32)

Notice that both Z(s; t) and K (s, ·; t) in (32) turn out to be independent of t .
Now substituting (32) into the last equation of (29), we obtain for s ∈ [0, T ] that

B(s)(φ(s)X∗(s) + ϕ(s)) + σ(s)σ (s)T u∗(s)Ψ (s)

+
∫

R0

η(s, e)Diag(ν(de))η(s, e)T u∗(s)Ψ (s) = 0,

from which we formally deduce that

u∗(s) = α(s)X∗(s) + β(s), (33)

where α(s) := −Θ(s)−1Ψ (s)−1B(s)φ(s) and β(s) := −Θ(s)−1Ψ (s)−1B(s)ϕ(s).
Next, comparing the ds term in (31) with that in (29) and substituting for u∗(s)

from (33), we get the following equations governing Ψ , φ and ϕ:

Ψ ′(s) + [2ρ(s) + α(s)T B(s)]Ψ (s) = 0, Ψ (T ) = γ
2 ,

φ′(s) + ρ(s)φ(s) = 0, φ(T ) = − 1
2μ1,

ϕ′(s) + ρ(s)ϕ(s) = 0, ϕ(T ) = − 1
2μ2.

(34)

These ordinary differential equations are explicitly solved by
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Ψ (s) = γ
2 exp

{ ∫ T
s [2ρ(τ) + α(τ)T B(τ )]dτ

}
,

φ(s) = − 1
2μ1 exp

{ ∫ T
s ρ(τ)dτ

}
,

ϕ(s) = − 1
2μ2 exp

{ ∫ T
s ρ(τ)dτ

}
.

(35)

We now summarize the existence result in the following theorem.

Theorem 4.1 Let Ψ , φ and ϕ be defined by (35). Then, u∗(·) given by (33) is an
equilibrium investment strategy for problem (27)–(28).

Proof Define (Y (·; ·), Z(·; ·), K (·, ·; ·)) by (30) and (32), respectively. It is straight-
forward to verify that (u∗(·), X∗(·),Y (·; ·), Z(·; ·), K (·, ·; ·)) satisfies the system of
FBSDEs (29) with constraint.

On the other hand, we can check that both α(·) and β(·) in (33) are uniformly
bounded and thus leading to X∗(·) ∈ Lq

F (0, T ;R) and u∗(·) ∈ Lq
F ,p(0, T ;Rn).

Then, by Theorem 3.1, u∗(·) is an equilibrium investment strategy. ��

4.2 Uniqueness of the Equilibrium Investment Strategy

In this subsection, we prove the equilibrium investment strategy constructed above is
the only equilibrium. We define

M1 :=
{

Y (·; ·) : Y (·; t) ∈ L2
F (t, T ;R), sup

t∈[0,T ]
E

[

sup
s∈[t,T ]

|Y (s; t)|2
]

< +∞
}

,

M2 :=
{

Z(·; ·) : Z(·; t) ∈ L2
F,p(t, T ;Rd), sup

t∈[0,T ]
E

[ ∫ T

t
|Z(s; t)|2ds

]

< +∞
}

,

M3 :=
{

K (·, ·; ·) : K (·, ·; t) ∈ F2
p(t, T ;Rm), sup

t∈[0,T ]
E

[ ∫ T

t
||K (s, ·; t)||2L2ds

]

< +∞
}

.

Before introducing the main uniqueness theorem, we first prove the uniqueness of the
solution to the following general BSDE, which plays a key role in the sequel.

−dȲ (s; t) = F
(
s, Ȳ (s; t), Ȳ (s; s),Et [l1(s)Ȳ (s; s)], Z̄(s; t),Et [l2(s)Z̄(s; t)],

∫
R0

l3(s, e)Diag(ν(de))K̄ (s, e; t),Et
[ ∫

R0
l4(s, e)Diag(ν(de))K̄ (s, e; t)]

)
ds

− Z̄(s; t)T dW (s) − ∫
R0

K̄ (s, e; t)T Ñ (ds, de),
Ȳ (T ; t) = 0, s ∈ [t, T ], (36)

where l1, l2, l3, l4 are uniformly bounded stochastic processes with suitable dimen-
sions, F(s, · · · ) is deterministic and Lipschitz continuous with respect to all variables
except s. It should be noted that the standard existence and uniqueness results for
BSDEs driven by Brownian motions and Poisson randommeasures (see, for example,
[20]) cannot be applied to (36) as the generator involves the conditional expectations.
However, we are able to prove the uniqueness of the solution to (36) in the following
lemma.
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Lemma 4.1 BSDE (36) admits at most one solution (Ȳ (·; ·), Z̄(·; ·), K̄ (·, ·; ·)) ∈
M1 × M2 × M3.

Proof Suppose that there exist two solutions (Ȳ (1), Z̄ (1), K̄ (1)) and (Ȳ (2), Z̄ (2), K̄ (2))

belonging toM1 × M2 × M3. Define Ŷ (s; t) := Ȳ (1)(s; t) − Ȳ (2)(s; t), Ẑ(s; t) :=
Z̄ (1)(s; t) − Z̄ (2)(s; t), K̂ (s, ·; t) := K̄ (1)(s, ·; t) − K̄ (2)(s, ·; t) and

ΔF(s; t) := F

(

s, Ȳ (1)(s; t), Ȳ (1)(s; s),
Et [l1(s)Ȳ (1)(s; s)], Z̄ (1)(s; t),Et [l2(s)Z̄ (1)(s; t)],
∫

R0

l3(s, e)Diag(ν(de))K̄ (1)(s, e; t),

Et

[ ∫

R0

l4(s, e)Diag(ν(de))K̄ (1)(s, e; t)
])

− F

(

s, Ȳ (2)(s; t), Ȳ (2)(s; s),
Et [l1(s)Ȳ (2)(s; s)], Z̄ (2)(s; t),Et [l2(s)Z̄ (2)(s; t)],
∫

R0

l3(s, e)Diag(ν(de))K̄ (2)(s, e; t),

Et

[ ∫

R0

l4(s, e)Diag(ν(de))K̄ (2)(s, e; t)
])

.

Then, we have for some constant C that

|ΔF(s; t)| ≤ C

(

|Ŷ (s; t)| + |Ŷ (s; s)| + |Ẑ(s; t)| +
m∑

j=1

∫

R0

|K̂ j (s, e; t)|ν j (de)

+ Et [|Ŷ (s; s)|] + Et [|Ẑ(s; t)|] +
m∑

j=1

Et

[ ∫

R0

|K̂ j (s, e; t)|ν j (de)

])

,

and

−dŶ (s; t) = ΔF(s; t)ds − Ẑ(s; t)T dW (s) −
∫

R0

K̂ (s, e; t)T Ñ (ds, de), Ŷ (T ; t) = 0.

(37)

For any t ∈ [0, T ] and s ∈ [t, T ], applying Itô’s formula to s �→ |Ŷ (s; t)|2, we get

E[|Ŷ (s; t)|2] + E

[ ∫ T

s
|Ẑ(r; t)|2dr

]

+ E

[ ∫ T

s
||K̂ (r , ·; t)||2L2dr

]

≤ 2E

[ ∫ T

s
|Ŷ (r; t)ΔF(r; t)|dr

]
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≤ CE

[ ∫ T

s

(
|Ŷ (r; t)|2 + |Ŷ (r; r)|2

)
dr

]

+ 1

2
E

[ ∫ T

s
|Ẑ(r; t)|2dr

]

+ 1

2
E

[ ∫ T

s
||K̂ (r , ·; t)||2L2dr

]

,

where we have used the fundamental inequality 2ab ≤ a2 + b2 for any nonnegative,
suitable constants a, b. Consequently, for any s ∈ [t, T ], we have

E[|Ŷ (s; t)|2] + 1

2
E

[ ∫ T

s
|Ẑ(r; t)|2dr

]

+ 1

2
E

[ ∫ T

s
||K̂ (r , ·; t)||2L2dr

]

≤ CE

[ ∫ T

s

(
|Ŷ (r; t)|2 + |Ŷ (r; r)|2

)
dr

]

≤ C(T − t)

[

sup
r∈[t,T ]

E[|Ŷ (r; t)|2] + sup
r∈[t,T ]

E[|Ŷ (r; r)|2]
]

≤ 2C(T − t) sup
t≤r≤s≤T

E[|Ŷ (s; r)|2]. (38)

Therefore,

sup
t≤r≤s≤T

E[|Ŷ (s; r)|2] ≤ 2C(T − t) sup
t≤r≤s≤T

E[|Ŷ (s; r)|2]. (39)

We now take δ ∈ (0, 1/(4C)). Then, for any t ∈ [T − δ, T ], we have

sup
t≤r≤s≤T

E[|Ŷ (s; r)|2] ≤ 1

2
sup

t≤r≤s≤T
E[|Ŷ (s; r)|2], (40)

which implies that supt≤r≤s≤T E[|Ŷ (s; r)|2] = 0 and thus leading to Ŷ (s; r) = 0, a.s.
almost everywhere in {(s, r) : t ≤ r ≤ s ≤ T }.

On the other hand, for t ∈ [T − 2δ, T − δ] and s ∈ [T − δ, T ], because for any
r ∈ [s, T ], Ŷ (r; r) = 0, we have from the first inequality in (38) that

E[|Ŷ (s; t)|2] + 1

2
E

[ ∫ T

s
|Ẑ(r; t)|2dr

]

+ 1

2
E

[ ∫ T

s
||K̂ (r , ·; t)||2L2dr

]

≤ CE

[ ∫ T

s
|Ŷ (r; t)|2

]

.

It follows from Gronwall’s inequality that Ŷ (s; t) = Ẑ(s; t) = K̂ (s, ·; t) = 0.
For t ∈ [T − 2δ, T − δ] and s ∈ [t, T − δ], we notice that Ŷ (T − δ; t) = 0,

using the same argument as in the region t ∈ [T − δ, T ] and s ∈ [t, T ] leads to
Ŷ (s; t) = Ẑ(s; t) = K̂ (s, ·; t) = 0.
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Finally, repeating the same analysis in a backward manner to t ∈ [T − 3δ, T − 2δ]
and so on until we reach time t = 0 yields Ŷ (·; ·) = Ẑ(·; ·) = K̂ (·, ·; ·) = 0. This
completes the proof. ��

We are now in the position to state the main uniqueness theorem.

Theorem 4.2 LetΨ , φ and ϕ be defined by (35). Then, u∗(·) given by (33) is the unique
equilibrium investment strategy for problem (27)–(28).

Proof Suppose that there exists another equilibrium investment strategy u(·) with
the corresponding state process X(·). Then, BSDE in (29), with X∗ replaced by X ,
admits a unique solution (Y (·; t), Z(·), K (·, ·)) ∈ L2

F (t, T ;R) × L2
F ,p(t, T ;Rd) ×

F2
p(t, T ;Rm) satisfying

B(s)Y (s; s) + σ(s)Z(s) +
∫

R0

η(s, e)Diag(ν(de))K (s, e) = 0, for a.e. s ∈ [0, T ].

Here, we have used the fact that both Z(·; t) and K (·, ·; t) are independent of t (Propo-
sition 3.4).

We now define

Y (s; t) := Y (s; t) − [Ψ (s)(X(s) − Et [X(s)]) + φ(s)X(t) + ϕ(s)],
Z(s) := Z(s) − σ(s)T u(s)Ψ (s), K (s, ·) = K (s, ·) − η(s, ·)T u(s)Ψ (s).

Therefore, the equilibrium condition for the state-control pair (X(·), u(·)) becomes

B(s)
(
Y (s; s) + φ(s)X(s) + ϕ(s)

) + σ(s)
(
Z(s) + σ(s)T u(s)Ψ (s)

)

+
∫

R0

η(s, e)Diag(ν(de))
(
K (s, e) + η(s, e)T u(s)Ψ (s)

) = 0,

which solve for u(s) in the above equation yields

u(s) = α(s)X(s) + β(s) + ζ(s), (41)

where

ζ(s) := −Θ(s)−1Ψ (s)−1
(
B(s)Y (s; s) + σ(s)Z(s) +

∫

R0

η(s, e)Diag(ν(de))K (s, e)
)
.

Combining the dynamics for Ψ , φ, ϕ in (34) with that of Y (·, ·) in (29), we derive
the following BSDE for (Y (·; t), Z(·), K (·, ·)) (with s suppressed for ρ, B,Θ, σ, η):

dY (s; t) = −
{

ρY (s; t) − BTΘ−1
(
BY (s; s) + σ Z(s) + ∫

R0
η(e)Diag(ν(de))K (s, e)

)

+ BTΘ−1
Et

[
BY (s; s) + σ Z(s) + ∫

R0
η(e)Diag(ν(de))K (s, e)

]}

ds

+ Z(s)T dW (s) + ∫
R0

K (s, e)T Ñ (ds, de),
Y (T ; t) = 0, s ∈ [t, T ].

(42)
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In addition, we can easily check from the definition of (Y (·; t), Z(·), K (·, ·)) that

sup
t∈[0,T ]

E

[

sup
s∈[t,T ]

|Y (s; t)|2
]

< +∞, E

[ ∫ T

0
|Z(s)|2ds

]

< +∞ and

E

[ ∫ T

0
||K (s, ·)||2L2ds

]

< +∞,

which implies (Y (·; t), Z(·), K (·, ·)) ∈ M1 × M2 × M3. Then, it follows from
Lemma 4.1 that Y (s; t) = Z(s) = K (s, ·) ≡ 0.

Finally, substituting Y = Z = K ≡ 0 into (41), we can see that u(·) has exactly the
same form as u∗(·) in (33). This proves that u(·) and u∗(·) lead to an identical control.
The proof is complete. ��

5 Conclusions

In this paper, we consider some time-inconsistent LQ control problem with random
coefficients and jumps. A general sufficient and necessary condition for equilibrium
controls via a flow of constrained FBSDEs is derived. Due to the presence of random
coefficients (including A(·)) and jumps, essential difficulties arise and we overcome
these heavy difficulties by proving a sharper estimate for the first-order variational
equation.We also shed light on important application inmean-variance portfolio selec-
tion problemwith deterministic coefficients and present its unique explicit equilibrium
investment strategy. However, due to some technical difficulties, we only consider the
case where the parameters of the underlying assets are deterministic functions. One of
the potential research topics is to extend the results to the market model with random
parameters. We hope to address this problem in the future research.
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Appendix

In this appendix, we provide an essential estimate assisting the proof of Proposition
3.2. To ease the explosion of the results, we only consider the case for n = 1, and
the extension to the multidimensional case is straightforward. If not specified, we will
denote by C some positive constants that may differ from line to line in the following
estimates.

Lemma A.1 For each t ∈ [0, T ], let (Ψ (s))s∈[t,T ] be a progressively measurable
process, such that, for any k ≥ 1

Et

[

sup
s∈[t,T ]

∣
∣Ψ (s)

∣
∣k

]

≤ C . (43)
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Then, there exists a function ρ : Ω×]0,∞[→]0,∞[ with ρ(ε) ↓ 0 as ε ↓ 0, a.s.,
such that

∫ T

t

∣
∣Et [Ψ (s)Y ε(s)]∣∣2ds ≤ ερ(ε). (44)

Proof Define an auxiliary process (Λ(s))s∈[t,T ] with Λ(t) = 1 by:

Λ(s) = exp

{∫ s

t

[

− A(r) + 1

2

d∑

i=1

C2
i (r)

+
m∑

j=1

∫

R0

(
E j (r , e) + ln

1

1 + E j (r , e)

)
ν j (de)

]

dr

−
d∑

i=1

∫ s

t
Ci (r)dWi (r) +

m∑

j=1

∫ s

t

∫

R0

ln
1

1 + E j (r , e)
Ñ j (dr , de)

}

.

Since A,Ci , E j are uniformly bounded, for any k ≥ 1, there exists a positive constant
C , such that

Et

[

sup
s∈[t,T ]

(∣∣Λ(s)
∣
∣k + ∣

∣Γ (s)
∣
∣k)

]

≤ C, (45)

where Γ (s) = Λ(s)−1. Furthermore, in view of (43), we can easily obtain

Et

[

sup
s∈[t,T ]

∣
∣Ψ (s)Γ (s)

∣
∣k

]

≤ C . (46)

Following the martingale representation theorem (see, e.g., [20, Lemma 2.3]), for
every s ∈ [t, T ], there exists a unique pair (ξ(·; s), β(·, ·; s)) ∈ L2

F ,p(t, s;Rd) ×
F2
p(t, s;Rm) such that

Ψ (s)Γ (s) = Et [Ψ (s)Γ (s)] +
d∑

i=1

∫ s

t
ξi (r; s)dWi (r)

+
m∑

j=1

∫ s

t

∫

R0

β j (r , e; s)Ñ j (dr , de), (47)

where ξ(·; s) = (ξ1(·; s), . . . , ξd(·; s)) and β(·, ·; s) = (β1(·, ·; s), . . . , βm(·, ·; s)).
Following from (46), the Burkholder–Davis–Gundy inequality, and Doob’s maxi-

mal inequality, we get for k > 1

123



Journal of Optimization Theory and Applications (2019) 181:383–410 407

E

[( d∑

i=1

∫ s

t
|ξi (r; s)|2dr +

m∑

j=1

∫ s

t

∫

R0

|β j (r , e; s)|2ν j (de)dr

) k
2
]

≤ CE

[

sup
u∈[t,s]

∣
∣
∣
∣

d∑

i=1

∫ u

t
ξi (r; s)dWi (r) +

m∑

j=1

∫ u

t

∫

R0

β j (r , e; s)Ñ j (dr , de)

∣
∣
∣
∣

k]

≤ C

(
k

k − 1

)k

E

[∣
∣
∣
∣

d∑

i=1

∫ s

t
ξi (r; s)dWi (r) +

m∑

j=1

∫ s

t

∫

R0

β j (r , e; s)Ñ j (dr , de)

∣
∣
∣
∣

k]

≤ CE

[∣
∣Ψ (s)Γ (s) − Et

[
Ψ (s)Γ (s)

]∣∣k
]

≤ C
(
E

[∣
∣Ψ (s)Γ (s)

∣
∣k

]
+ E

[∣
∣Et

[
Ψ (s)Γ (s)

]∣∣k
])

≤ CE

[∣
∣Ψ (s)Γ (s)

∣
∣k

]

≤ CE

[

sup
s∈[t,T ]

∣
∣Ψ (s)Γ (s)

∣
∣k

]

≤ C . (48)

For k = 1, by using Hölder’s inequality, we can easily get

E

[( d∑

i=1

∫ s

t
|ξi (r; s)|2dr +

m∑

j=1

∫ s

t

∫

R0

|β j (r , e; s)|2ν j (de)dr
) 1

2
]

≤ C . (49)

Combining (48) and (49), we have for any k ≥ 1

sup
s∈[t,T ]

E

[( d∑

i=1

∫ s

t
|ξi (r; s)|2dr +

m∑

j=1

∫ s

t

∫

R0

|β j (r , e; s)|2ν j (de)dr

) k
2
]

≤ C . (50)

Now, using Itô’s formula to s �→ Λ(s)Y ε(s) yields

Y ε(s) = Γ (s)
∫ s

t
Λ(r)

{[
B(r) −

d∑

i=1

Ci (r)Di (r)

−
m∑

j=1

∫

R0

E j (r , e)Fj (r , e)

1 + E j (r , e)
ν j (de)

]
v1[t,t+ε[(r)

}

dr

+
d∑

i=1

Γ (s)
∫ s

t
Λ(r)Di (r)v1[t,t+ε[(r)dWi (r)

+
m∑

j=1

Γ (s)
∫ s

t

∫

R0

Λ(r−)
Fj (r , e)

1 + E j (r , e)
v1[t,t+ε[(r)Ñ j (dr , de).

Consider

Ψ (s)Y ε(s) := L1(s) + L2(s) + L3(s), s ∈ [t, T ],
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with

L1(s) = Ψ (s)Γ (s)
∫ s

t
Λ(r)

{[
B(r) −

d∑

i=1

Ci (r)Di (r)

−
m∑

j=1

∫

R0

E j (r , e)Fj (r , e)

1 + E j (r , e)
ν j (de)

]
v1[t,t+ε[(r)

}

dr ,

L2(s) =
d∑

i=1

Ψ (s)Γ (s)
∫ s

t
Λ(r)Di (r)v1[t,t+ε[(r)dWi (r),

L3(s) =
m∑

j=1

Ψ (s)Γ (s)
∫ s

t

∫

R0

Λ(r−)
Fj (r , e)

1 + E j (r , e)
v1[t,t+ε[(r)Ñ j (dr , de).

Actually, by virtue of (45) and (46), the following estimate for Et [L1(s)] holds:
∫ T

t

∣
∣Et [L1(s)]

∣
∣2ds ≤ C |v|2ε2, s ∈ [t, T ]. (51)

Following the expression of Ψ (s)Γ (s) in (47), we have

Et [L2(s)] =
d∑

i=1

Et

[(
Ψ (s)Γ (s)

)
·
∫ s

t
Λ(r)Di (r)v1[t,t+ε[(r)dWi (r)

]

=
d∑

i=1

Et

[ ∫ s

t
ξi (r; s)Λ(r)Di (r)v1[t,t+ε[(r)dr

]

≤ Cε
1
2 |v|

d∑

i=1

Et

[

sup
r∈[t,T ]

Λ(r) ·
( ∫ s

t

∣
∣ξi (r; s)

∣
∣21[t,t+ε[(r)dr

) 1
2
]

≤ Cε
1
2 |v|

d∑

i=1

(

Et

[ ∫ s

t

∣
∣ξi (r; s)

∣
∣21[t,t+ε[(r)dr

]) 1
2

.

Therefore,

∫ T

t

∣
∣Et [L2(s)]

∣
∣2ds ≤ Cε|v|2

d∑

i=1

Et

[ ∫ T

t

∫ s

t

∣
∣ξi (r; s)

∣
∣21[t,t+ε[(r)drds

]

.

Setting ρ1(ε) := C |v|2
d∑

i=1
Et

[
∫ T
t

∫ s
t

∣
∣ξi (r; s)

∣
∣21[t,t+ε[(r)drds

]

and then from (50),

we have

E

[ ∫ T

t

∫ s

t

∣
∣ξi (r; s)

∣
∣21[t,t+ε[(r)drds

]

≤ C sup
s∈[t,T ]

E

[ ∫ s

t

∣
∣ξi (r; s)

∣
∣2dr

]

< ∞.
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Thus, following the dominated convergence theorem for conditional expectations and
observing the fact that 1[t,t+ε[ → 0, we can easily obtain that ρ1(ε) → 0 as ε ↓ 0, a.s.
Hence,

∫ T

t

∣
∣Et [L2(s)]

∣
∣2ds ≤ ερ1(ε). (52)

Similarly, we get

Et [L3(s)] =
m∑

j=1

Et

[ ∫ s

t

∫

R0

β j (r , e; s)Λ(r)
Fj (r , e)

1 + E j (r , e)
v1[t,t+ε[(r)ν j (de)dr

]

≤ Cε
1
2 |v|

m∑

j=1

Et

[

sup
r∈[t,T ]

Λ(r) ·
( ∫ s

t

∫

R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)1[t,t+ε[(r)dr

) 1
2
]

≤ Cε
1
2 |v|

m∑

j=1

(

Et

[ ∫ s

t

∫

R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)1[t,t+ε[(r)dr

]) 1
2

.

Hence,

∫ T

t

∣
∣Et [L3(s)]

∣
∣2ds ≤ Cε|v|2

m∑

j=1

Et

[ ∫ T

t

∫ s

t

∫

R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)1[t,t+ε[(r)drds

]

.

Setting ρ2(ε) := Cε|v|2
m∑

j=1
Et

[
∫ T
t

∫ s
t

∫
R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)1[t,t+ε[(r)drds

]

and

then from (50) again, we have

E

[ ∫ T

t

∫ s

t

∫

R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)1[t,t+ε[(r)drds

]

≤ C sup
s∈[t,T ]

E

[ ∫ s

t

∫

R0

∣
∣β j (r , e; s)

∣
∣2ν j (de)dr

]

< ∞.

Thus, using the dominated convergence theorem once again and observing the fact
that 1[t,t+ε[ → 0, it holds that ρ2(ε) → 0 as ε ↓ 0, a.s. Hence,

∫ T

t

∣
∣Et [L3(s)]

∣
∣2ds ≤ ερ2(ε). (53)

In view of (51)–(53), we have

∫ T

t

∣
∣Et [Ψ (s)Y ε(s)]∣∣2ds ≤ C

(
ε2|v|2 + ερ1(ε) + ερ2(ε)

)
. (54)

Now setting ρ(ε) := C(ε|v|2 + ρ1(ε) + ρ2(ε)) in (54), we obtain estimate (44). ��
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