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Abstract
This paper dealswith a bilevel approachof the location-allocation problemwith dimen-
sional facilities. We present a general model that allows us to consider very general
shapes of domains for the dimensional facilities, and we prove the existence of opti-
mal solutions under mild assumptions. To achieve these results, we borrow tools from
optimal transport mass theory that allow us to give explicit solution structure of the
considered lower level problem. We also provide a discretization approach that can
approximate, up to any degree of accuracy, the optimal solution of the original prob-
lem. This discrete approximation can be optimally solved via a mixed-integer linear
program. To address very large instance sizes, we also provide a GRASP heuristic
that performs rather well according to our experimental results. The paper also reports
some experiments run on test data.

Keywords Bilevel optimization · Dimensional facilities · Optimal transport mass ·
Mixed-integer programming · Heuristics

Mathematics Subject Classification 90B85 · 49M25 · 90B80 · 90C30

Communicated by Michel Théra.

B Justo Puerto
puerto@us.es

Lina Mallozzi
lina.mallozzi@unina.it

Moisés Rodríguez-Madrena
madrena@us.es

1 University of Naples Federico II, Naples, Italy

2 IMUS, Universidad de Sevilla, Seville, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-018-01470-y&domain=pdf
http://orcid.org/0000-0003-4079-8419


Journal of Optimization Theory and Applications (2019) 182:730–767 731

1 Introduction

Location-allocation problems are very important problems nowadays in the area of
OperationResearch and Logistics: they consist of finding the placement of a number of
servers and deciding the assignments of the existing demand in order tominimize some
general objective function. See, for example, [1–3]. Depending on the framework, the
problem can be cast within the family of continuous non-convex or mixed-integer
programming problems and in some cases it is closely related with the design of
Voronoi partitions [4] in computational geometry. These problems are important by
themselves for their mathematical implications but also by their many applications to
several important areas such as territorial design, market share, hub-and-spoke design,
voting district and shape optimization [5–10].

Sometimes these servers can be identified with extended domains: in this case we
will speak about dimensional facilities.Mathematically, a dimensional facility location
problem corresponds to finding the best position of a fixed shape geometrical figure
[11,12]. The resolution of the problem in this case must take care of the optimizing
aspect of a certain utility function and also of the geometry of the facility.

In spite of their importance, to the best of our knowledge, the consideration of
location-allocation problems with respect to dimensional facilities has not been exten-
sively considered in the literature. Some exception is the paper [13].

There is a number of papers in the literature dealing with the so-called location-
allocation problem, i.e., a combination of the two tasks, where one asks for the best
positions of the servers together with the best partition of the demand. The location-
allocation approach gives rise to a natural bilevel optimization problem where in the
first level the location decisions are made under the constraint that the allocation will
be given as a best reply function. This bilevel problem is in general hard to solve.
In the particular case where the facilities are dimensional it becomes harder. See for
references Ch. 14 in [1], Ch. 5 in [2].

Situations like these appear very often in Game Theory when two players com-
pete in a hierarchical scheme and the model is usually called Stackelberg game (or
Leader/follower game). In these bilevel problems, we have almost never an explicit
expression of the solution for the lower level problem to be considered and then
included to help in solving the upper level one.

Sometimes and under some suitable assumptions, the solution of the lower level
problem (the so-called best reply) is obtained explicitly and this helps in the resolution
of the upper level problem. This happens, for example, when we use optimal transport
tools as done in [14,15].

This theory started with the problem ofmoving a pile of sand into a hole of the same
volume minimizing the transportation cost, formulated by Monge. Then, Kantorovich
relaxed the problem providing a dual formulation. Recently these classical results
have been used in a large number of application contexts as Transportation, Logistics,
Physics, et cetera [16–19].

By using optimal transport theory, it is possible to obtain a structure of the solution
of the lower level problem and then to prove the existence of the solution of the bilevel
model. Moreover, the obtained structure of the partition that optimizes the demand
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problem is fundamental in order to develop some approximation results and some
computational algorithms.

This paper generalizes previous result in [13] since that paper only considered
the lower level problem and with particular shapes for the dimensional facilities.
Moreover, the contribution of this paper is threefold. First, we formulate the bilevel
location-allocation problem for very general dimensional facilities and prove, under
suitable conditions, the existence of optimal solutions (the reader is referred to [20,21]
for further details on bilevel optimization and many of its applications). Secondly, we
give an approximation scheme to solve the problem, discretizing some of its elements,
providing convergence results to the optimal solution of the original problem [22–24].
Finally, we also develop an exact solution algorithm applicable to the discrete approx-
imation scheme that reduces the problem to solve a mixed-integer linear problem. In
addition, we also propose aGreedyRandomizedAdaptive Search Procedure (GRASP)
heuristic, see [25], that performs very well experimentally in large size instances. The
reader is referred to [26] for a complete list of successful applications of GRASP to
NP-hard problems. The paper also reports our computational experiments with differ-
ent test cases. For the sake of readability, we restrict ourselves to the two-dimensional
setting although most of the results in this paper extend further to finite dimension
spaces.

The rest of the paper is organized as follows: in the second section the bilevel
problem is presented and existence results of optimal solutions are obtained; in the
third section a discretization scheme is defined and some convergence theorems are
proved. In section four different solution approaches are presented: an exact mixed-
integer linear programming model and a GRASP heuristic. We report computational
results on these algorithms based on a testbed of examples. The paper finishes with
some conclusions and an outline for future research.

2 A Bilevel Model and Existence of Optimal Solutions

2.1 Bilevel Approach

We are given Ω , a Borel, compact subset of R2 which is the closure of a nonempty
open connected set that represents a demand region. We assume that customers in
Ω are distributed according to a demand density D that is an absolutely continuous
probability measure with respect to the Lebesgue measure, where D : Ω → R is
a nonnegative function with unit integral

∫
Ω
D(q)dq = 1, being q = (x, y) ∈ Ω

and dq = dxdy. The goal is to locate ρ given compact sets P1, . . . , Pρ (ρ ∈ N)
in Ω , assuming that all of them are the closure of nonempty open connected sets,
representing some service centers with dimensional extension. From now on, any set
with these properties will be called a dimensional facility. The reader can observe that,
according to this definition, Ω is also a dimensional facility.

For each i ∈ {1, . . . , ρ}, let P0
i be Pi located on the planewith its centroid pi placed

at 0 = (0, 0) ∈ R
2. Given qi ∈ R

2, we use the notation Pqi
i = qi + P0

i to refer to the

dimensional facility P0
i displaced by the translation vector −→qi (see Fig. 1). Observe
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Fig. 1 Two possible locations in
the plane for the dimensional
facility Pi

that qi is the centroid of Pqi
i . For Pqi

i , we call to qi ∈ R
2 a location for Pi . Then, we

use the notation Pi to refer the dimensional facility without specifying its location and
the same applies for pi . Note that, for the sake of simplicity, we are characterizing the
location of Pi by its centroid. However, we could characterize the location of Pi by
any other point.

The problemconsidered in this paper is to locateρ dimensional facilities P1, . . . , Pρ

in Ω and also to find the partition (market share) A1, . . . , Aρ satisfying that the
dimensional facility Pi serves the consumer demand in the region Ai ⊆ Ω optimizing
a suitable criterion: we will find a partition of the setΩ\{int(P1)∪· · ·∪ int(Pρ)}, i.e., a
finite family (Ai )

ρ
i=1 of pairwise disjoint Borel sets such that

⋃ρ
i=1 Ai = Ω\{int(P1)∪

· · · ∪ int(Pρ)} up to D-negligible sets.
We require that the location of the dimensional facilities P1, . . . , Pρ inΩ must sat-

isfy that the interior do not intersect and obviously that Pi ⊆ Ω for all i ∈ {1, . . . , ρ}.
A family of ρ dimensional facilities that satisfy the above conditions will be called a
suitable solution. We also assume that there is a location of the dimensional facilities
verifying the above conditions, i.e., the problem considered has at least one suitable
solution.

In order to formally describe the set of suitable solutions for the dimensional facil-
ities P1, . . . , Pρ , we introduce the following notation: let Ωi denote the region of R2

in which locating Pi makes it to be contained in Ω , i.e.,

Ωi =
{
qi ∈ R

2 : Pqi
i ⊆ Ω

}
,

for each i ∈ {1, . . . , ρ}. Obviously, Ωi ⊆ Ω , for all i ∈ {1, . . . , ρ}. Then, the set of
suitable solutions is

Γ =
{
(q1, . . . , qρ) ∈ Ω1 × · · · × Ωρ : int (Pqi

i

) ∩ int
(
P
q j
j

)
= ∅, ∀i, j ∈ {1, . . . , ρ}, i 	= j

}
.

Clearly, Γ ⊆ Ωρ ⊆ R
2ρ . Recall that we are assuming that Γ 	= ∅.

We consider that the service costs u paid from a point q ∈ R
2 with respect to the

dimensional facility Pi is given by a continuous function ui : R2 × R
2 → R that

depends on the considered point q and the location qi ∈ R
2 of the dimensional facility

Pi :

123



734 Journal of Optimization Theory and Applications (2019) 182:730–767

u
(
q, Pqi

i

) = ui (q, qi ),

for each i ∈ {1, . . . , ρ}. To clarify the meaning of choosing the cost u in this way, we
indicate some interesting particular cases (among others) of u and their interpretations:

– Service point case: this is the most intuitive situation. Here, the customer point
q ∈ Ω has to reach the service point in Pi (or vice versa) to satisfy its demand
[11]. Assume that the role of the service point is played by the centroid pi of Pi .
Then, u can be chosen as

u
(
q, Pqi

i

) = fi (γi (q − qi )),

being fi : R → R a continuous function and γi : R2 → R a norm, and where we
are considering a measure of the distance between q and qi according to the norm
γi . Note that, although in this case the service cost does not depend on the shape of
the dimensional facility Pi but only on its location, the shape of the dimensional
facilities still plays a role in the problem since it determines the set of suitable
solutions Γ and also some others aspects of the problem as we will see later.

– Service cost dependent on the shape of the facility: in this case the measure of the
distance from the customer point q ∈ Ω to the dimensional facility Pi is related
to its shape. In particular, we can consider the following cases:

• Cost induced by the Minkowski functional (see [27]): assume that the dimen-
sional facility Pi is closed, convex, with non-empty interior, then Pi induces a
gauge γPi : R2 → R defined by the Minkowski functional

γPi (q) = inf
{
λ > 0 : q ∈ λP0

i

}
,

where λP0
i denotes the resulting set after applying the homothecy of center

0 and ratio λ to the set P0
i . Observe that γPi (q) = 1 if q ∈ ∂P0

i and that

γPi (q) < 1 if q ∈ int(P0
i ). Hence, a way to measure how far the customer

point q ∈ Ω is from the dimensional facility P0
i is using the continuous

functional

γ̃Pi (q) =
{

γPi (q) − 1, if q /∈ P0
i ,

0, if q ∈ P0
i ,

where only the points in the set P0
i have assigned the value 0. Taking into

account the above discussion, a natural way to define the cost in this context
is

u(q, Pqi
i ) =

{
fi (γPi (q − qi ) − 1), if q /∈ Pqi

i ,

fi (0), if q ∈ Pqi
i ,

where fi : R → R is a continuous function. Note that the cost u(q, Pqi
i )

depends on the location of the dimensional facility Pi as well as of its shape.
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• Worst case cost: this is the case in which the cost u paid from a customer point
q ∈ Ω with respect to the dimensional facility Pqi

i is chosen as the maximum
distance between q and Pqi

i (see [28]), i.e., u(q, Pqi
i ) = maxq̃∈P

qi
i

γi (q − q̃),

being γi a norm. Or more generally, u(q, Pqi
i ) = fi

(
maxq̃∈P

qi
i

γi (q − q̃)
)

,

where fi : R → R is a continuous function. In the particular case in which
Pi is a polygon, we observe that the cost can be obtained as u(q, Pqi

i ) =
fi
(
max j=1,...,ni γi (q − [qi + vij ])

)
, where {vi1, . . . , vini } are the vertices of

P0
i . This last observation is interesting from a computational point of view.

Given a suitable solution Q = (q1, . . . , qρ) ∈ Γ , we introduce the notation
Ω(Q) = Ω\{int(Pq1

1 ) ∪ · · · ∪ int(P
qρ
ρ )} to indicate the region of Ω to be partitioned

as a function of the location of the dimensional facilities. In addition, we denote by
Aρ(Q) the set of all partitions, up to D-negligible sets, in ρ sub-regions of the region
Ω(Q) and by A(Q) = (A1(Q), . . . , Aρ(Q)) an element of Aρ(Q).

We are interested in finding a partition A(Q) = (A1(Q), . . . , Aρ(Q)) of the cus-
tomers in Ω(Q) that solves the following problem:

min
A(Q)∈Aρ(Q)

ρ∑

i=1

{∫

Ai (Q)

[ai + u(q, Pqi
i )]D(q)dq

}

, LL(Q)

where ai > 0 is the cost incurred by each customer to access dimensional facility Pi
per unit demand and the second term in each integral

Ui (Ai (Q)) =
∫

Ai (Q)

u
(
q, Pqi

i

)
D(q)dq

is the distribution cost in the service region Ai (Q), for each i ∈ {1, . . . , ρ}.
Once, that partition is obtained we would like to get the best location of the ρ

facilities in such a way that some additional costs are minimized, knowing that, given
a suitable solution Q, the best partition of the customers is given by solving the above
problem LL(Q), usually called lower level problem. These additional costs are: (1)
the installation cost of each facility; (2) a cost due to the waiting time to be served
by each facility; (3) a cost induced by the demand that is lost. In the following, we
describe in detail these costs. (The reader is referred to [1], for a detailed discussion
of different objective functions and costs appearing in Location Analysis.) We note in
passing that even to evaluate the objective function of the above location problem, it
is previously required to find the optimal partition solving problem LL(Q).

(1) Installation cost: suppose that in Ω , besides a demand density D, there exists
another absolutely continuous measure with respect to the Lebesgue measure,
called B, to model the base installation costs. We assume that B : Ω → R

is a nonnegative function with finite integral
∫
Ω
B(q)dq < ∞. For a suitable

solution Q = (q1, . . . , qρ) ∈ Γ , the installation cost of the dimensional facility
Pi is modeled by the non-decreasing continuous function Ii : ωI

i ∈ [0,+∞) →
Ii (ωI

i ) ∈ [0,+∞) ⊆ R, beingωI
i = ∫Pqi

i
B(q)dq, for each i ∈ {1, . . . , ρ}. There
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are many realistic installation costs that fit within this framework: standard set up
cost fits by taking Ii (ωI

i ) = Fi ∈ R for all ωI
i ∈ R; square meter cost is obtained

assuming that B is the density of the square meter cost in Ω and that Fi ∈ R

is the fixed cost of building the dimensional facility Pi , then the installation cost
of Pi is Ii (ωI

i ) = Fi + ∫Pqi
i

B(q)dq for all ωI
i ∈ R, i ∈ {1, . . . , ρ}; square

meter cost with economy of scale also fits taking Ii (ωI
i ) = Fi + Ĩi (

∫
P
qi
i

B(q)dq),

being Ĩi : ωI
i ∈ R → Ĩi (ωI

i ) ∈ [0,+∞) ⊆ R a non-decreasing, continuous and
concave function, for all ωI

i ∈ R and i ∈ {1, . . . , ρ}.
(2) Congestion cost: if A(Q) = (A1(Q), . . . , Aρ(Q)) is a partition of the customers

inΩ(Q) for a suitable solution Q ∈ Γ , we consider the congestion costCi : ωC
i ∈

[0, 1] → Ci (ω
C
i ) ∈ [0,+∞) ⊆ R for facility Pi , where ωC

i = ∫Ai (Q)
D(q)dq

andCi is non-decreasing and continuous, for any i ∈ {1, . . . , ρ}. Congestion cost
is the most relevant of the above-mentioned additional costs, since as we will see,
it induces in our problem a hierarchical structure of bilevel optimization.

(3) Lost demand cost: a lost demand cost is computed over the lost demand in
Ω\Ω(Q) = {int(Pq1

1 ) ∪ · · · ∪ int(P
qρ
ρ )}. Lost demand cost is given by L : ωL ∈

[0, 1] → L(ωL) ∈ [0,+∞) ⊆ R, being L a non-decreasing and continuous
function, and where ωL = ∫Pq1

1 ∪···∪P
qρ
ρ

D(q)dq = ∑ρ
i=1

∫
P
qi
i

D(q)dq. We are

assuming that the demand in the region Pqi
i ⊆ Ω is incompatible with installation

of Pi within that region, for any i ∈ {1, . . . , ρ}, and therefore, lost demand has
to be accounted for. This assumption can be dropped taking L(ωL) = 0 for all
ωL ∈ [0, 1].

The above costs induce the following constrained optimization problem. The opti-
mal suitable solution of the dimensional facilities Q∗ = (q∗

1 , . . . , q∗
ρ) ∈ Γ can be

obtained solving the following bilevel problem:

min F(Q)

s.t. Â(Q) ∈ arg min
A(Q)∈Aρ(Q)

ρ∑

i=1

{∫

Ai (Q)

[ai + u(q, Pqi
i )]D(q)dq

}

,

Q ∈ Γ ,

BL

being

F(Q) :=
ρ∑

i=1

[

Ii

(∫

P
qi
i

B(q)dq

)

+ Ci

(∫

Âi (Q)
D(q)dq

)]

+ L

(∫

P
q1
1 ∪···∪P

qρ
ρ

D(q)dq

)

.

Observe that for a given suitable solution Q ∈ Γ , the partition Â(Q) ofΩ(Q) is given
by a solution of problem LL(Q). The solution of the location-allocation problem
will be the pair (Q∗, Â(Q∗)) where Q∗ solves problem BL. Let us remark that if
Q∗ = (q∗

1 , . . . , q∗
ρ) is an optimal suitable solution of the bilevel problem BL, then for

any i ∈ {1, . . . , ρ}, the dimensional facility P
q∗
i

i is uniquely determined by its location
(centroid) q∗

i , since we are assuming that its shape is fixed.
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Bilevel optimization requires to have a nested optimization problem as an explicit
constraint in themodel.Most classical locationmodels include an allocation phase that
requires to decide how the costumerswill patronize the new facilities, which is actually
a nested optimization problem. However, in the standard literature of location there
exists an explicit form to impose that condition that reduces to closest assignment.
Hence, bilevel optimization is not needed. This is not our case, since we do not have
an explicit form of the optimal response function and therefore we need to resort to
the bilevel approach (see [29]).

2.2 Resolution via Optimal Transport Mass

Consider problem LL(Q) for a given suitable solution Q ∈ Γ . We point out that
for dimensional facilities, we cannot directly apply the optimal transport theory as
done in [13–15], because the characterization of the optimal partition holds when the
measure ν has a discrete support. However, we can prove the existence of solution for
problem LL(Q) by identifying each dimensional facility with its centroid, giving to
the measure a discrete support, as the proof of the following theorem shows. Thus,
building upon the results that appear in the mentioned works, we can obtain a result
similar to the one given in those papers but applicable in this more general framework.

Theorem 2.1 Let Q = (q1, . . . , qρ) ∈ Γ . Suppose that the set

{
q ∈ Ω(Q) : ai + u

(
q, Pqi

i

) = a j + u
(
q, P

q j
j

)}
(1)

is D-negligible, for all i, j ∈ {1, . . . , ρ} with i 	= j . Then problem LL(Q) admits a
unique solution A(Q) = (A1(Q), . . . , Aρ(Q)) that verifies

Ai (Q)=
{
q ∈ Ω(Q) : ai +u

(
q, Pqi

i

)
< a j + u

(
q, P

q j
j

)
, ∀ j ∈ {1, . . . , ρ}, j 	= i

}

(2)
for each i ∈ {1, . . . , ρ}, where the equalities are intended up to D-negligible sets.

Proof To prove the existence of solution for problem LL(Q), we rewrite it as a Monge
optimal transport problem (see Section 2.1 in [13]). In the proof, we use the absolutely

continuous probability measure μ̃(q) = D̃(q)dq being D̃(q) = 1
∫
Ω(Q)

D(q)dq
D(q).

Indeed, we prove the existence of solution for the auxiliary problem

inf
A(Q)∈Aρ(Q)

ρ∑

i=1

{∫

Ai (Q)

[
ai + u(q, Pqi

i )
]
D̃(q)dq

}

, (3)

which implies the existence of solution for problem LL(Q).
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Let S be the unit simplex inRρ defined by S = {ω = (ω1, . . . , ωρ) ∈ R
ρ : ωi ≥ 0,∑ρ

i=1 ωi = 1
}
. Then, we can rewrite problem (3) in the following form:

inf
ω∈S

(

inf
A(Q)∈Aρ(Q)

{
ρ∑

i=1

[∫

Ai (Q)

ui (q, qi )D̃(q)dq

]

:
∫

Ai (Q)

D̃(q)dq = ωi

}

+
ρ∑

i=1

aiωi

)

.

(4)
Let q̃1, . . . , q̃ρ be any ρ points in Ω(Q) such that q̃i 	= q̃ j , for all i, j ∈ {1, . . . , ρ}

with i 	= j . By Tietze’s extension theorem, there exists a continuous function c :
Ω(Q) × Ω(Q) → [0,+∞] such that c(q, q̃i ) = ui (q, qi ), for any q ∈ Ω(Q) and
i ∈ {1, . . . , ρ}. Given ω = (ω1, . . . , ωρ) ∈ S, consider the Monge optimal transport
problem

inf
T
μ̃=ν(ω)

∫

Ω(Q)

c(q, T (q))dμ̃(q) (5)

being ν(ω) =∑ρ
i=1 ωiδq̃i .

By Theorem 2.1 in [13] there exists a solution for problem (5) and it is equivalent
to its corresponding Kantorovich relaxed Monge’s formulation:

inf
T
μ̃=ν(ω)

∫

Ω(Q)

c(q, T (q))dμ̃(q) = Wc(μ̃, ν(ω)). (6)

By Remark 1 in [15], in the problem (5) any transport map T is associated to a
partition (Ai )

ρ
i=1 of Ω(Q) in such a way that

T (q) =
ρ∑

i=1

q̃i1Ai (q) and μ̃(Ai ) = ωi .

Conversely, any partition (Ai )
ρ
i=1 of Ω(Q) satisfying μ̃(Ai ) = ωi corresponds to a

transport map of the form above. Then, we have that

inf
T
μ̃=ν(ω)

∫

Ω(Q)

c(q, T (q))dμ̃(q)

= inf
A(Q)∈Aρ(Q)

{∫

Ω(Q)

c

(

q,

ρ∑

i=1

q̃i1Ai (q)

)

dμ̃(q) : μ̃(Ai ) = ωi

}

= inf
A(Q)∈Aρ(Q)

{
ρ∑

i=1

[∫

Ai (Q)

ui (q, qi )D̃(q)dq

]

:
∫

Ai (Q)

D̃(q)dq = ωi

}

. (7)

Using equalities (3) = (4), (6) and (7), we rewrite problem (3) as:

inf
A(Q)∈Aρ(Q)

ρ∑

i=1

{∫

Ai (Q)

[
ai +u(q, Pqi

i )
]
D̃(q)dq

}

= inf
ω∈S

{

Wc(μ̃, ν(ω))+
ρ∑

i=1

aiωi

}

.
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The functionWc(μ̃, ν(·)) : S → R is continuous sinceWc is theWasserstein distance
on the set of Borel probability measures on Ω(Q). As in addition S is compact, there
exists a minimizer for problem (3).

The form and the uniqueness of the solution for problem LL(Q) are obtained
adapting the proofs of Lemma 2 and Theorem 2 in [15], respectively. �

Theorem 2.1 ensures problem LL(Q) is feasible and, moreover, explicitly gives the
unique solution, up to D-negligible sets, of the problem. Note that the unique solution
of problemLL(Q) given in Theorem2.1 represents the natural choice of each customer
point in Ω(Q) given a prescribed service cost, i.e., each customer point decides to be
served by the dimensional facility that charges him/her the lowest cost. So, the form
of the solution (2) provides a realistic modeling of the customers’ behavior.

For each particular case of service cost and shape of the facilities, the condition
that (1) is D-negligible for all i, j ∈ {1, . . . , ρ} with i 	= j , has to be guaranteed to
ensure that Theorem 2.1 is applicable. For example, for the worst case cost situation
and polygonal facilities, the condition is guaranteed for all Q ∈ Γ whenever ai 	= a j

for all i, j ∈ {1, . . . , ρ} with i 	= j . This is not a strong assumption since the case
ai = a j can be tackle by slightly perturbing the values: ai + ε = a j or ai = a j + ε

with ε > 0 small enough. Onwards, we assume that the hypothesis of Theorem 2.1 is
satisfied for all Q ∈ Γ .

As the solution of problem LL(Q) is unique for all Q ∈ Γ , we can define the best
reply function Â : Q ∈ Γ → Â(Q) ∈ Aρ(Q), that maps to a given suitable solution,
the optimal partition of the customers given in (2). In the same way, the function Âi

is the i-th projection of the function Â, for each i ∈ {1, . . . , ρ}.
It is easy to verify that the set Γ ∈ R

2ρ is compact. Next, taking into account the
above arguments, we can prove the existence of solution for problem BL.

Lemma 2.1 The application between topological spaces Â : Γ → Â(Γ ), where Γ

is endowed with the relative topology of R2ρ and Â(Γ ) with the final topology, is a
homeomorphism.

Proof As Â(Γ ) is endowed with the final topology, Â is continuous as application
between topological spaces. Observe that Â(Q) is different for each Q ∈ Γ , since
Â partitions a different set Ω(Q) for each Q ∈ Γ . Then, Â is injective. Moreover,
Â is bijective, since it is clearly surjective. Thus, given that the image space Â(Γ ) is
endowed with the final topology, Â is a homeomorphism. �

Lemma 2.2 Let i ∈ {1, . . . , ρ}. The function Ci (Q) = Ci

(
∫
Âi (Q)

D(q)dq

)

is con-

tinuous on Γ .

Proof Let μi : Â(Q) ∈ Â(Γ ) → ∫ Âi (Q)
D(q)dq ∈ [0, 1] ⊆ R, i.e., μi ( Â(Q)) is

the measure, with respect to the D density, of the i-th component of Â(Q). Note that
Ci (Q) = Ci (μi ( Â(Q))) for all Q ∈ Γ . The function Ci is continuous as well as the
application Â (moreover, by Lemma 2.1 it is a homeomorphism). Thus, if we prove
that μi is continuous, then Ci will be continuous.

To prove that μi is continuous, we have to show that μ−1
i (Z) is open in Â(Γ ) for

any open set Z in R, where Â(Γ ) is endowed with the final topology. Since the open
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Euclidean balls constitute a base of the usual topology, it is enough to consider open
Euclidean balls, i.e., intervals Z = (α, β) with α, β ∈ R and α < β.

For any Z = (α, β) as above, we have that

μ−1
i (Z) =

{

Â(Q) ∈ Â(Γ ) :
∫

Âi (Q)

D(q)dq ∈ (α, β)

}

.

Let Â(Q̃) ∈ μ−1
i (Z), where Q̃ = (q̃1, . . . , q̃ρ) ∈ Γ . Then,

∫
Âi (Q̃)

D(q)dq = ς ∈
(α, β). Next, we will prove that there exists ε > 0 such that Â(Q̃) ∈ Â(B∞(Q̃, ε) ∩
Γ ) ⊆ μ−1

i (Z). That result implies that μ−1
i (Z) is open, which will complete the

proof. Note that B∞(Q̃, ε) ∩ Γ is the relative open ball B∞(Q̃, ε) of R2ρ in Γ , so it
is open in Γ endowed with the relative topology of R2ρ . Hence, Â(B∞(Q̃, ε) ∩ Γ ) is
also open in Â(Γ ) endowed with the final topology, because Â is a homeomorphism.
Therefore, Â(B∞(Q̃, ε)∩Γ ) is an open neighborhood of Â(Q̃) contained inμ−1

i (Z),
which means that μ−1

i (Z) is open. �

Claim There exists ε > 0 such that Â(Q̃) ∈ Â(B∞(Q̃, ε) ∩ Γ ) ⊆ μ−1
i (Z).

Proof of the Claim Let ε > 0 be small enough. For each εn = ε/n with n ∈
N, we define the following sets: Ω−(Q̃, εn) = {q ∈ Ω : q /∈ int(Pq̆1

1 ) ∪
· · · ∪ int(P

q̆ρ
ρ ) for all Q̆ = (q̆1, . . . , q̆ρ) ∈ B∞(Q̃, εn)} and Ω+(Q̃, εn) =

{q ∈ Ω : q ∈ Ω\{int(Pq̆1
1 ) ∪ · · · ∪ int(P

q̆ρ
ρ )} for some Q̆ = (q̆1, . . . , q̆ρ) ∈

B∞(Q̃, εn)}. It is not difficult to see that the sets Ω−(Q̃, εn) and Ω+(Q̃, εn)

are measurable with respect to the Lebesgue measure m. Now, consider the
sets Â−

i (Q̃, εn) = {q ∈ Ω−(Q̃, εn) : ai + u(q, Pq̃i
i ) + 3ξn < a j +

u(u, P
q̃ j
j ) for all j ∈ {1, . . . , ρ} with j 	= i} and Â+

i (Q̃, εn) = {q ∈ Ω+(Q̃, εn) :
ai + u(q, Pq̃i

i ) < a j + u(q, P
q̃ j
j ) + 3ξn for all j ∈ {1, . . . , ρ} with j 	= i}, being

ξn = max
{∣
∣
∣u(q, P

q̃ j
j ) − u(q, P

q̆ j
j )

∣
∣
∣ : q ∈ Ω, j ∈ {1, . . . , ρ}, q̆ j ∈ cl(B∞(q̃ j , εn))

}
,

which are also Lebesgue measurable sets.
Note that Â−

i (Q̃, εn) ⊆ Â−
i (Q̃, εn+1) ⊆ Âi (Q̃) sinceΩ−(Q̃, εn) ⊆ Ω−(Q̃, εn+1)

⊆ Ω(Q̃). Analogously, Âi (Q̃) ⊆ Â+
i (Q̃, εn+1) ⊆ Â+

i (Q̃, εn) since Ω(Q̃) ⊆
Ω+(Q̃, εn+1) ⊆ Ω+(Q̃, εn). Indeed,

∞⋃

n=1

Â−
i (Q̃, εn) = Âi (Q̃) =

∞⋂

n=1

Â+
i (Q̃, εn)

up to m-negligible sets. Thus, applying the continuity properties of the Lebesgue
measure, it follows that
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lim
n→∞m

(
Â−
i (Q̃, εn)

)
= m

( ∞⋃

n=1

Â−
i (Q̃, εn)

)

= m
(
Âi (Q̃)

)
= m

( ∞⋂

n=1

Â+
i (Q̃, εn)

)

= lim
n→∞m

(
Â+
i (Q̃, εn)

)
. (8)

Let η = supq∈Ω D(q) and let φ > 0 be such that (ς − φ, ς + φ) ⊆
(α, β). Due to (8), there exists n0 ∈ N such that m

(
Âi (Q̃)\ Â−

i (Q̃, εn0)
)

<

φ/η and m
(
Â+
i (Q̃, εn0)\ Âi (Q̃)

)
< φ/η. Therefore,

∫
Âi (Q̃)\ Â−

i (Q̃,εn0 )
D(q)dq ≤

η
∫
Âi (Q̃)\ Â−

i (Q̃,εn0 )
dq < φ and

∫
Â+
i (Q̃,εn0 )\ Âi (Q̃)

D(q)dq ≤ η
∫
Â+
i (Q̃,εn0 )\ Âi (Q̃)

dq <

φ. Or equivalently,
∫
Â−
i (Q̃,εn0 )

D(q)dq > ς − φ and
∫
Â+
i (Q̃,εn0 )

D(q)dq < ς + φ.

Now, let Q̆ = (q̆1, . . . , q̆ρ) ∈ B∞(Q̃, εn0) ∩ Γ . Then,
∣
∣
∣u(q, P

q̃ j
j ) − u(q, P

q̆ j
j )

∣
∣
∣ ≤

ξn0 for all q ∈ Ω and j ∈ {1, . . . , ρ}. Therefore,
∣
∣
∣
(
u(q, Pq̃i

i )

−u(q, P
q̃ j
j )
)

−
(
u(q, Pq̆i

i ) − u(q, P
q̆ j
j )
)∣∣
∣ ≤ 2ξn0 < 3ξn0 for all q ∈ Ω and j ∈

{1, . . . , ρ}. Note that the above inequality together with the fact that Ω−(Q̃, εn0) ⊆
Ω(Q̆) ⊆ Ω+(Q̃, εn0) imply that:

Â−
i (Q̃, εn0) ⊆ Âi (Q̆) ⊆ Â+

i (Q̃, εn0).

Thus,

∫

Âi (Q̆)

D(q)dq ∈ (ς − φ, ς + φ) ⊆ (α, β).

Hence, it is enough to take ε = εn0 to complete the proof of the Claim. �

Lemma 2.3 Let i ∈ {1, . . . , ρ}. The function Ii (Q) = Ii

(
∫
P
qi
i

B(q)dq

)

is continu-

ous on Γ .

Proof The proof is similar to the one of Lemma 2.2 but using the sets P−
i (Q̃, εn) =

{q ∈ Ω : q ∈ Pq̆i
i for all Q̆ = (q̆1, . . . , q̆ρ) ∈ B∞(Q̃, εn)} and P+

i (Q̃, εn) = {q ∈
Ω : q ∈ Pq̆i

i for some Q̆ = (q̆1, . . . , q̆ρ) ∈ B∞(Q̃, εn)}. �

Lemma 2.4 The function L (Q) = L

(
∫
P
q1
1 ∪···∪P

qρ
ρ

D(q)dq

)

is continuous on Γ .

Proof The proof is similar to the one of Lemma 2.3 but using the sets
⋃ρ

i=1 P
−
i (Q̃, εn)

and
⋃ρ

i=1 P
+
i (Q̃, εn). �

Theorem 2.2 There exists an optimal solution for problem BL.

Proof Problem BL consists in minimizing the function F(Q) = ∑ρ
i=1Ii (Q) +∑ρ

i=1 Ci (Q) + L (Q) on Γ . The function F is continuous by Lemmas 2.2, 2.3 and
2.4, and the set Γ is compact, so the result follows using Weierstrass theorem. �
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Fig. 2 Sets Ω and ΩΩ for an example of a Borel set Ω and a regular grid G

Theorem 2.2 finally proves that problem BL is well defined and gives sufficient
conditions for the existence of optimal solutions.

3 A Convergent Discrete Approximation Scheme

The previous section states that problemBL is well defined. However, in spite of being
well defined, optimizing the problem BL is a very difficult task since it amounts to
minimize with a best reply function over the partitions ofΩ as a constraint defining the
feasible domain. To overcome that inconveniencewe propose a discrete approximation
of problem BL. This approximation provides good solutions for the original problem.
Since Ω is bounded by hypothesis, we can easily find a rectangle of R2 containing
Ω . Consider a grid G over that rectangle, and thus over Ω . Let G be the set of cells
of the grid G. We denote by (k, l) a cell of G, where k indexes the horizontal position
of the cell in the grid and l the vertical one. Now, consider the sets

Ω = {(k, l) ∈ G : int((k, l)) ∩ Ω 	= ∅}

and

ΩΩ =
⋃

(k,l)∈Ω

(k, l).

Clearly, Ω ⊆ ΩΩ and we want ΩΩ to be as similar to Ω as possible. Indeed, ΩΩ

is the outer approximation of Ω given by the cells of the grid G (see Fig. 2). The
finer the grid, the better the approximation. Note that, for an element of the problem
denoted by a letter, we use that letter in bold to represent the discrete counterpart
of the element. Moreover, with the hollow fonts we represent the approximation of
that element induced by its discrete counterpart, e.g., ΩΩ is the approximation of Ω

induced by Ω . Onwards, we keep this meaning for the notation in bold and hollow
fonts.

Before to describe the discretization of problem BL, we introduce the following
notation and define some elements involved in the discretization for each (k, l) ∈ Ω

and i ∈ {1, . . . , ρ}:
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– q(k,l): is the center of the cell (k, l) (if {(x−, y−), (x+, y−), (x−, y+), (x+, y+)} ⊆
R
2 are the extreme points of the cell (k, l), then the center of (k, l) is ((x− +

x+)/2, (y− + y+)/2) ∈ R
2).

– P (k,l)
i : is the subset of cells of Ω defined by

P (k,l)
i =

{
(r , s) ∈ Ω : int((r , s)) ∩ int

(
P
q(k,l)
i

)
	= ∅
}

.

– P
(k,l)
i : is the set defined by

P
(k,l)
i =

⋃

(r ,s)∈P (k,l)
i

(r , s).

The set P(k,l)
i is the approximation of the facility P

q(k,l)
i induced by the cells of

P (k,l)
i (the discretization scheme is the same that the one shown in Fig. 2). We

refer to P
(k,l)
i as cell facility. The finer the grid, the better the approximation.

– Ω i : is the subset of cells of Ω defined by

Ω i =
{
(k, l) ∈ Ω : Pq(k,l)

i ⊆ Ω
}

.

– ΩΩi : is the set defined by

ΩΩi =
⋃

(k,l)∈Ω i

(k, l).

The set ΩΩi is the approximation of Ωi induced by Ω i .

The discretized version of problem BL (DBL) is to locate ρ facilities P1, . . . , Pρ in
ΩΩ and to find their demand regions A1, . . . , Aρ optimizing the costs as in the original
continuous problem BL. To address this discretized problem, we need to transform
the original one making the following natural and simplifying assumptions:

Assumption 1 The dimensional facilities P1, . . . , Pρ can only be located at the
centers of the cells in Ω .
This is a simplifying choice that reduces the location problem to a finite number
of positions. Then, a suitable solution of problem DBL is determined by a ρ-tuple
Q = ((k1, l1), . . . , (kρ, lρ)) ⊆ Ωρ where (ki , li ) is the cell in whose center q(ki ,li )

is located the dimensional facility Pi , for each i ∈ {1, . . . , ρ}.
Assumption 2 We impose on the cell facilities some conditions induced by the
corresponding ones applicable to the sets P1, . . . , Pρ in problem BL.

Assumption 2.1 The interior of the cell facilities cannot intersect between
them.
This is a modeling assumption because we want that our facilities are placed
in a physical framework and overlapping of facilities is not allowed. So,
if we denote by Γ ⊆ Ωρ the set of suitable solutions of problem DBL,
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Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ iff P
q(ki ,li )

i ⊆ Ω for all i ∈ {1, . . . , ρ}
and int(P(ki ,li )

i ) ∩ int(P
(k j ,l j )
j ) = ∅ for all i, j ∈ {1, . . . , ρ} with i 	= j . Equiv-

alently, using the sets defined above:

Γ =
{

((k1, l1), . . . , (kρ, lρ)) ∈ Ω1 × · · · × Ωρ : P (ki ,li )
i ∩ P

(k j ,l j )
j = ∅,

∀i, j ∈ {1, . . . , ρ}, i 	= j

}

.

Assumption 2.2 Partitions are computed on the set of cells.
Given a suitable solution Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ , we have to find

the optimal partition of ΩΩ(Q) = ΩΩ\{int(P(k1,l1)
1 ) ∪ · · · ∪ int(P

(kρ,lρ)
ρ )}. The

reader should observe that this is the natural approach when one considers the
discrete approximation of the dimensional facilities by the cell facilities. Note
that ΩΩ(Q) is, up to D-negligible sets, the union of the cells of the set Ω(Q)

defined as

Ω(Q) = {(r , s) ∈ Ω : (r , s) /∈ P (ki ,li )
i ,∀i ∈ {1, . . . , ρ}}.

Assumption 2.3 The installation and lost demand costs are computed now
over the region occupied by the cell facilities.

Assumption 3 Each element of a partition must be composed by a finite number
of cells.
Given a suitable solution Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ , any partition A(Q) =
(A1(Q), . . . , Aρ(Q)) of the set ΩΩ(Q) must satisfy that each region Ai (Q) is the
union of a finite number of cells of Ω(Q), for all i ∈ {1, . . . , ρ}. Once again, this
assumption is the natural consequence of the discretization of the feasible region
Ω into cells.
Formally speaking, we denote by Ai (Q) the subset of Ω(Q) such that

Ai (Q) =
⋃

(r ,s)∈Ai (Q)

(r , s),

for each i ∈ {1, . . . , ρ}. The partition A(Q) = (A1(Q), . . . , Aρ(Q)) of Ω(Q)

assigns the demand cells in Ω(Q) among the facilities. Note that, for this element
of the problem, A(Q) = A(Q).
Assumption 4 Costs are computed with respect to centers of cells.
Specifically, suppose that the dimensional facilities P1, . . . , Pρ are located at Q =
((k1, l1), . . . , (kρ, lρ)) ∈ Γ . The costuG paid fromapointq ∈ ΩΩ(Q)with respect

to the dimensional facility P
q(ki ,li )

i is now induced by the grid G as:

uG
(
q, P

q(ki ,li )

i

)
= u
(
q(r ,s), P

q(ki ,li )

i

)
,

123



Journal of Optimization Theory and Applications (2019) 182:730–767 745

Fig. 3 Example 4.1 from [13] in the discrete scheme

being q(r ,s) the center of the cell (r , s) ∈ Ω(Q) to which the point q belongs to, for
each i ∈ {1, . . . , ρ}. Thus, in the discretizedproblem, all the points in a cell have the
same cost, namely the cost of the center of that cell in the non-discretized problem.
To ensure uG is well defined, if {(x−, y−), (x+, y−), (x−, y+), (x+, y+)} ⊆ R

2

are the extreme points of the cell (r , s), in terms of membershipness, we consider
(r , s) as [x−, x+)×[y−, y+) ⊆ R

2 (this avoid that q may belong to more than one
cell). Note that if the grid G is fine enough, uG(q, P

q(ki ,li )

i ) gives a good approxi-

mation of u(q, P
q(ki ,li )

i ).

Assumption 5 The cost functions I1, . . . , Iρ,C1, . . . ,Cρ, L are non-decreasing,
piecewise linear, continuous and nonnegative.
We denote by I PL1 , . . . , I PLρ ,CPL

1 , . . . ,CPL
ρ , LPL these cost functions in problem

DBL to emphasize that they are piecewise linear. Note that the piecewise linearity
assumption is not a big loss of generality. Indeed, taking a partition of the interval
[0, 1] and evaluating the congestion cost functionCi of problemBL at the points of
the partition, we can build, by linear interpolation, a piecewise linear congestion
cost function CPL

i that approximates Ci , for any i ∈ {1, . . . , ρ}. The finer the
partition, the better the approximation. The same applies for I1, . . . , Iρ and L .

Figure 3 shows, as an illustrative example, the discretized version of the Example
4.1 from [13] considering a regular grid G over Ω with 25× 25 cells (note that, as Ω

is the unit square, G = Ω).
Consider a suitable solution Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ of problem DBL and

let Â(Q) = ( Â1(Q), . . . , Âρ(Q)) be the optimal partition of the customers inΩΩ(Q)

under the assumptions above. Under those assumptions, for each i ∈ {1, . . . , ρ}, the
access cost incurred by all customers assigned to the dimensional facility Pi can be
expressed as
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∫

Âi (Q)

ai D(q)dq =
∑

(r ,s)∈̂Ai (Q)

∫

(r ,s)
ai D(q)dq =

∑

(r ,s)∈̂Ai (Q)

aiw
D
rs,

where we are using the notation wD
rs = ∫

(r ,s) D(q)dq for any (r , s) ∈ Ω . Moreover,

the distribution cost in the service region Âi (Q) is

Ui ( Âi (Q)) =
∫

Âi (Q)

uG
(
q, P

q(ki ,li )

i

)
D(q)dq =

∑

(r ,s)∈̂Ai (Q)

wD
rsu
(
q(r ,s), P

q(ki ,li )

i

)
,

for each i ∈ {1, . . . , ρ}. Thus, the partition Â(Q) = ( Â1(Q), . . . , Âρ(Q)) is given
by the solution Â(Q) = ( Â1(Q), . . . , Âρ(Q)) of the discretized lower level problem

min
A(Q)∈Aρ(Q)

ρ∑

i=1

∑

(r ,s)∈Ai (Q)

[
aiw

D
rs + wD

rsu
(
q(r ,s), P

q(ki ,li )

i

)]
, DLL(Q)

being Aρ(Q) the set of all partitions in ρ subsets (where the empty set is a valid
subset) of the set Ω(Q).

The assignment cost of a cell (r , s) ∈ Ω(Q) to a dimensional facility Pi in
{P1, . . . , Pρ} is aiwD

rs + wD
rsu(q(r ,s), P

q(ki ,li ) ). Then, note that in problem DLL(Q)

we are minimizing the sum of the assignment costs of the cells in Ω(Q). Thus, the
optimal partition Â(Q) is the one that allocates each cell (r , s) ∈ Ω(Q) to the dimen-
sional facility in {P1, . . . , Pρ} that provides the minimum assignment cost, i.e., if
(r , s) ∈ Âi (Q) for some i ∈ {1, . . . , ρ}, then

aiw
D
rs + wD

rsu
(
q(r ,s), P

q(ki ,li )

i

)
≤ a jw

D
rs + wD

rsu
(
q(r ,s), P

q(k j ,l j )

j

)
,

for all j ∈ {1, . . . , ρ}. Note that there may exist cells (r , s) ∈ Ω(Q) for which

aiw
D
rs + wD

rsu
(
q(r ,s), P

q(ki ,li )

i

)
= a jw

D
rs + wD

rsu
(
q(r ,s), P

q(k j ,l j )

j

)

for some i, j ∈ {1, . . . , ρ}with i 	= j , such that they have a non-D-negligible demand
densitywD

rs . Therefore, in the discrete scheme, we cannot define the best reply function
Â : Q ∈ Γ → Â(Q) ∈ Aρ(Q) as we have done in the non-discretized problem,
since it could be not injective. In this case, the application is not injective when two or
more dimensional facilities give the same minimum assignment cost to a cell (r , s).

Reasoning in the same way as above, problem DBL can be expressed as:

min F(Q)

s.t. Â(Q) ∈ arg min
A(Q)∈Aρ(Q)

ρ∑

i=1

∑

(r ,s)∈Ai (Q)

[
aiw

D
rs + wD

rsu
(
q(r ,s), P

q(ki ,li )

i

)]
,

Q ∈ Γ ,

DBL
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being

F(Q) :=
ρ∑

i=1

⎡

⎢
⎣I PLi

⎛

⎜
⎝
∑

(r ,s)∈P
(ki ,li )
i

wB
rs

⎞

⎟
⎠+ CPL

i

⎛

⎝
∑

(r ,s)∈ Âi (Q)

wD
rs

⎞

⎠

⎤

⎥
⎦

+ LPL

⎛

⎜
⎝

ρ∑

i=1

∑

(r ,s)∈P
(ki ,li )
i

wD
rs

⎞

⎟
⎠ ,

where we are using the notation wB
rs = ∫

(r ,s) B(q)dq for any (r , s) ∈ Ω . Prob-
lem DBL is again a bilevel problem since to evaluate a suitable solution Q ∈ Γ

in the objective function F one needs to solve before the problem DLL(Q), to
have an expression of Â(Q). Note that Q = (q(k1,l1), . . . , q(kρ ,lρ)) ∈ Γ for all
Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ , i.e., every suitable solution of problemDBLcodifies
a suitable solution of problem BL.

It is easy to prove that problemDBL is NP-hard with a reduction from the ρ-median
problem, where ρ is the number of facilities to be located in our problem.

In the following,we suppose that there exists a suitable solution Q̊ = (q̊1, . . . , q̊ρ) ∈
Γ for problemBL such that Pq̊i

i ∩∂Ω = ∅ for all i ∈ {1, . . . , ρ} and Pq̊i
i ∩P

q̊ j
j = ∅ for

all i, j ∈ {1, . . . , ρ} with i 	= j . This ensures the existence of a grid G, fine enough,
for which problem DBL has at least one suitable solution: take a grid G in which the
point q̊i is the center of one of the cells in G, say (k̊i , l̊i ), for each i ∈ {1, . . . , ρ}, and
fine enough to guarantee P (k̊i ,l̊i )

i ∩ P
(k̊ j ,l̊ j )
j = ∅ for all i, j ∈ {1, . . . , ρ} with i 	= j ;

then, Q̊ = ((k̊1, l̊1), . . . , (k̊ρ, l̊ρ)) ∈ Γ .
Next, we show our convergence results.
Let us consider a sequence of successively refined grids {G(n)}n∈N satisfying that

G(1) is a grid for which problem DBL has at least one suitable solution. The sequence
of grids {G(n)}n∈N is a sequence of successively refined grids if given a grid G(ñ)

and any of its cell (k̃, l̃), there exists n̆ ∈ N with n̆ > ñ such that (k̃, l̃) is the union of
a set of cells of the grid G(n̆) with strictly less width and height than (k̃, l̃). We add
an additional index n to the notation introduced in the section to indicate the grid of
the sequence which is being considered in each case. For example, DLL(Q, n) is the
discretized lower level problem for a suitable solution Q ∈ Γ (n) when we consider
the grid G(n), n ∈ N. Finally, we denote by κ(n) the maximum length of the cell sides
in G(n), n ∈ N.

In the following results, we assume that the functions I PL1 (·, n), . . . , I PLρ (·, n),CPL
1

(·, n), . . . ,CPL
ρ (·, n), LPL(·, n) of problem DBL(n) are obtained from the functions

I1(·), . . . , Iρ(·),C1(·), . . . ,Cρ(·), L(·) of problem BL by linear interpolation over a
partition of the corresponding domains, in such a way that the larger the n, the finer
the partition. Moreover, we suppose that the partition is such that, for any ε > 0, there
exists ñ ∈ N such that

∣
∣I1(ωB

1 ) − I PL1 (ωB
1 , n)
∣
∣ < ε, for all ωB

1 ∈ R and all n ∈ N

with n ≥ ñ. The same assumption is done for the remaining mentioned functions.
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Note that this assumptions can be done due to the properties assumed for the functions
I1, . . . , Iρ,C1, . . . ,Cρ, L .

Lemma 3.1 Let i ∈ {1, . . . , ρ}. For any ε > 0, there exists n(ε) ∈ N such that

∣
∣
∣
∣Ci

(∫

Âi (Q)

D(q)dq

)

− CPL
i

(∫

Âi (Q,n)

D(q)dq, n

)∣∣
∣
∣ < ε,

for all Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n), being Q = (q(k1,l1), . . . , q(kρ,lρ)), and all
n ∈ N with n ≥ n(ε).

Proof First, take ñ ∈ N such that
∣
∣Ci (ω

D
i ) − CPL

i (ωD
i , n)
∣
∣ < ε/2, for all ωD

i ∈ [0, 1]
and all n ∈ N with n ≥ ñ. Since Ci is continuous, it is uniformly continuous on
[0, 1], therefore, for ε/2 there exists ξ > 0 such that, when |ωD

i − ω̃D
i | < ξ , then

|Ci (ω
D
i ) − Ci (ω̃

D
i )| < ε/2, for all ωD

i , ω̃D
i ∈ [0, 1].

For eachqi ∈ R
2 and eachn ∈ N, letP+

i (qi , n) = {q ∈ R
2 : q ∈ Pq̃i

i for some q̃i ∈
B∞(qi , κ(n))}. For all Q = (q1, . . . , qρ) ∈ Γ and all n ∈ N, we define the set
Â

−
i (Q, n) = {q ∈ Ω : q ∈ ( Âi (Q))q̃i for all q̃i ∈ B∞(q̂i (Q, n), κ(n))}\P+

i (qi , n),
being q̂i (Q, n) any point in Âi (Q, n) and ( Âi (Q, n))q̃i the set Âi (Q, n) when

we apply to it the translation induced by the vector
−−−−−−→
q̂i (Q, n)q̃i ∈ R

2, for any
q̃i ∈ B∞(q̂i (Q, n), κ(n)). In the same way, we define Â

+
i (Q, n) = {q ∈ Ω : q ∈

( Âi (Q))q̃i for some q̃i ∈ B∞(q̂i (Q, n), κ(n))}. Note that the definition of the sets
above does not depend on the point q̂i (Q, n) chosen and induces two applications Â−

i
and Â

+
i with domain on Γ × N.

Let Q ∈ Γ . Note that Â
−
i (Q, n) ⊆ Â

−
i (Q, n + 1) ⊆ Âi (Q), and that

⋃∞
n=1 Â

−
i (Q, n) = Âi (Q) up to m-negligible sets. In the same way, Âi (Q) ⊆

Â
+
i (Q, n + 1) ⊆ Â

+
i (Q, n) and

⋂∞
n=1 Â

+
i (Q, n) = Âi (Q) up to m-negligible sets.

Then, reasoning in the same way that in the proof of Lemma 2.2, it can be shown
that, given ξ > 0, there exists n̆ ∈ N such that

∫
Âi (Q)\Â−

i (Q,n)
D(q)dq < ξ and

∫
Â

+
i (Q,n)\ Âi (Q)

D(q)dq < ξ for all n ∈ N with n ≥ n̆. Moreover, as the statement

above is true for all Q ∈ Γ , there exists n̄ ∈ N such that
∫
Âi (Q)\Â−

i (Q,n)
D(q)dq < ξ

and
∫
Â

+
i (Q,n)\ Âi (Q)

D(q)dq < ξ for all Q ∈ Γ and all n ∈ N with n ≥ n̄.

It is not difficult to see that Â
−
i (Q, n) ⊆ Âi (Q, n) ⊆ Â

+
i (Q, n), for all

Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n), being Q = (q(k1,l1), . . . , q(kρ ,lρ)), and

all n ∈ N. Therefore,
∣
∣
∣
∫
Âi (Q)

D(q)dq − ∫ Âi (Q,n)
D(q)dq

∣
∣
∣ < ξ for all Q =

((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n), being Q = (q(k1,l1), . . . , q(kρ ,lρ)), and all n ∈ N

with n ≥ n̄.
The proof is completed taking n(ε) = max{ñ, n̄}. �

Lemma 3.2 Let i ∈ {1, . . . , ρ}. For any ε > 0, there exists n(ε) ∈ N such that

∣
∣
∣
∣
∣
Ii

(∫

P
q(ki ,li )
i

B(q)dq

)

− I PLi

(∫

P
(ki ,li )
i (n)

B(q)dq, n

)∣∣
∣
∣
∣
< ε,
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for all Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n) and all n ∈ N with n ≥ n(ε).

Proof The proof is similar to the one of Lemma 3.1 but using the set P+
i (qi , n) defined

as above and the set P−
i (qi , n) = {q ∈ R

2 : q ∈ Pq̃i
i for all q̃i ∈ B∞(qi , κ(n))}. �

Lemma 3.3 For any ε > 0, there exists n(ε) ∈ N such that

∣
∣
∣
∣
∣
L

(∫

⋃ρ
i=1 P

q(ki ,li )
i

D(q)dq

)

− LPL

(∫

⋃ρ
i=1 P

(ki ,li )
i (n)

D(q)dq, n

)∣∣
∣
∣
∣
< ε,

for all Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n) and all n ∈ N with n ≥ n(ε).

Proof The proof is similar to the one of Lemma 3.2 but using the sets
⋃ρ

i=1 P
−
i (qi , n)

and
⋃ρ

i=1 P
+
i (qi , n). �

From these lemmas, one can obtain the final convergence result.

Theorem 3.1 Suppose that, for any suitable solution Q ∈ Γ of problem BL and for

any ε > 0, there exists Q̃ = (q̃1, . . . , q̃ρ) ∈ B∞(Q, ε) ∩ Γ such that Pq̃i
i ∩ ∂Ω = ∅

for all i ∈ {1, . . . , ρ} and Pq̃i
i ∩ P

q̃ j
j = ∅ for all i, j ∈ {1, . . . , ρ} with i 	= j . Then,

for any ε > 0, there exists n(ε) ∈ N such that:

1.
∣
∣F(Q∗) − F(Q∗, n)

∣
∣ < ε,

2.
∣
∣F(Q∗) − F(Q̄)

∣
∣ < ε,

for all n ∈ N with n ≥ n(ε), being Q∗ an optimal suitable solution of problem BL,
Q∗ = ((k∗

1 , l
∗
1 ), . . . , (k

∗
ρ, l∗ρ)) an optimal suitable solutions of problem DBL(n), and

Q̄ = (q(k∗
1 ,l∗1 ), . . . , q(k∗

ρ ,l∗ρ)) the suitable solution of problem BL codified by Q∗.

Proof From Lemmas 3.1, 3.2 and 3.3 is derived that there exists ñ ∈ N such that
|F(Q) − F(Q, n)| < ε/4, for all Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n), being Q =
(q(k1,l1), . . . , q(kρ ,lρ)), and all n ∈ N with n ≥ ñ.

Since F is continuous on Γ as it was been shown in the proof of Theorem 2.2,
there exists ε > 0 such that, if Q ∈ B∞(Q∗, ε) ∩ Γ , then |F(Q∗) − F(Q)| < ε/4.
Moreover, by hypothesis, there exists Q̃ = (q̃1, . . . , q̃ρ) ∈ B∞(Q∗, ε) ∩ Γ such that

Pq̃i
i ∩ ∂Ω = ∅ for all i ∈ {1, . . . , ρ} and Pq̃i

i ∩ P
q̃ j
j = ∅ for all i, j ∈ {1, . . . , ρ} with

i 	= j . It is not difficult to see that there exists n̆ ∈ N for which q̃i ∈ (ki , li ), for each
i ∈ {1, . . . , ρ}, for some Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n̆). Moreover, note that,
for all n ∈ N with n ≥ n̆, there always exists Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ (n)

such that q̃i ∈ (ki , li ) for each i ∈ {1, . . . , ρ}. Using the continuity of F on Γ and
taking into account that {G(n)}n∈N is a sequence of successively refined grids, it can

be proven that there exists n̄ ∈ N with n̄ ≥ n̆ such that
∣
∣
∣F(Q̃) − F(Q̆)

∣
∣
∣ < ε/4, being

Q̆ = (q
(k̃1,l̃1)

, . . . , q
(k̃ρ ,l̃ρ)

) ∈ Γ the suitable solution of problem BL codified by the

suitable solution Q̃ = ((k̃1, l̃1), . . . , (k̃ρ, l̃ρ)) ∈ Γ (n) of problem DBL(n) verifying
q̃i ∈ (k̃i , l̃i ) for each i ∈ {1, . . . , ρ}, for all n ≥ n̄.
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Letn(ε) = max{ñ, n̄}. Taken ∈ Nwithn ≥ n(ε) and let Q̆ = (q
(k̃1,l̃1)

, . . . , q
(k̃ρ ,l̃ρ)

)

∈ Γ the suitable solution of problem BL codified by the suitable solution Q̃ =
((k̃1, l̃1), . . . , (k̃ρ, l̃ρ)) ∈ Γ (n) of problem DBL(n) verifying q̃i ∈ (k̃i , l̃i ) for each

i ∈ {1, . . . , ρ}. From the reasoning above,
∣
∣
∣F(Q∗) − F( Q̃, n)

∣
∣
∣ <

3ε

4
. If Q∗ =

((k∗
1 , l

∗
1 ), . . . , (k

∗
ρ, l∗ρ)) ∈ Γ (n) is the optimal suitable solution of problem DBL(n),

then
∣
∣F(Q∗, n) − F(Q̄)

∣
∣ < ε/4, being Q̄ = (q(k∗

1 ,l∗1 ), . . . , q(k∗
ρ,l∗ρ)). Now, observe

that, if F(Q∗, n) ≤ F(Q∗), then F(Q∗, n) ≤ F(Q∗) ≤ F(Q̄), which implies∣
∣F(Q∗) − F(Q∗, n)

∣
∣ < ε/4 < ε. On the other hand, if F(Q∗) ≤ F(Q∗, n), then

F(Q∗) < F(Q∗, n) < F( Q̃, n), which implies
∣
∣F(Q∗) − F(Q∗, n)

∣
∣ <

3ε

4
< ε.

Finally, taking into account the above, it is not difficult to see that
∣
∣F(Q∗) − F(Q̄)

∣
∣ <

ε. �

The theorem above proves the convergence of the sequence of solutions for the
discrete approximation to the optimal objective value of problem BL.

4 Solution Approaches

Section 3 provides a methodology to solve problem BL by sequences of discrete
problems DBL that converge to the optimal objective value. However, solving each
one of those discrete approximations is an issue by itself, but, as we will see in the
following, we propose two methods to solve the problem DBL: one of them is exact
and it consists of a mixed-integer linear programming (MILP) model and the other
one is a GRASP heuristic (see [25]).

4.1 AMathematical Programming Formulation

This section provides a valid MILP formulation for problem DBL for a fixed grid G.
In order to give a valid formulation for problemDBL, we need to determine the sets

and parameters that charge the model with the necessary information of the problem.
At this point we remark that the overall global computation time to get an optimal
solution of problemDBL is the computing time to obtain the input sets and parameters
of the model plus the computing time required to reach the optimal solution. Our goal
is to get a computational time as small as possible, so that we have to properly balance
both components. On the one hand, if we do not preprocess adequately the information
from the elements of the problem, then the model will have to work too much to obtain
that information and, as it is known, this is not desirable since MILP models can be
really hard to solve. On the other hand, if we want to fully preprocess the elements
of the problem to do the model to work less, we will have to do different operations
over the set of cells of Ω . Since we are interesting in |Ω| (number of cells of Ω) to
be large (to better approximate problem BL by problem DBL), the time to obtain the
initial information sets and CPU memory consumption can increase dramatically.

We use the following sets and parameters to build our MILP model:
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– Ω i : set of candidates for feasible location of dimensional facility Pi in problem
DBL, i.e., the set of cells (k, l) ∈ Ω such that P

q(k,l)
i ⊆ Ω . This set is defined for

each i ∈ {1, . . . , ρ}.
– Ei

rs : set of cells (k, l) in Ω i verifying (r , s) ∈ P (k,l)
i . We define this set for each

(r , s) ∈ Ω and i ∈ {1, . . . , ρ}.
– wD

rs : the demand density in the cell (r , s). This parameter is defined for each
(r , s) ∈ Ω .

– wB
rs : the base installation cost density in the cell (r , s). This parameter is defined

for each (r , s) ∈ Ω .
– uirs,kl : u(q(r ,s), P

q(k,l)
i ), i.e., the cost in problem DBL paid from any point in (r , s)

with respect to the dimensional facility Pi when it is located at the center of the
cell (k, l). If (r , s) ∈ P (k,l)

i we take uirs,kl = −ai (the reason of this choice will
be easily understood when the model is presented). We define this parameter for
each (r , s) ∈ Ω , i ∈ {1, . . . , ρ} and (k, l) ∈ Ω i .

We now analyze the asymptotic computational complexity for obtaining these sets
and parameters assuming Ω has already been determined. For each i ∈ {1, . . . , ρ},
suppose that O( f1(Pi ,Ω)) is the asymptotic computational complexity bound for
testing if the dimensional facility Pi satisfies P

qi
i ⊆ Ω for the location qi ∈ R

2. Then,
obtaining Ω i can be done in O(|Ω| f1(Pi ,Ω)) (one check for each point q(r ,s) with
(r , s) ∈ Ω). Thus, the complexity to get all the sets {Ω1, . . . ,Ωρ} is bounded by
O(|Ω|∑ρ

i=1 f1(Pi ,Ω)).
For each i ∈ {1, . . . , ρ}, onceΩ i is computed, take (k, l) ∈ Ω i . For each (r , s) ∈ Ω

check if it occurs that int((r , s)) ∩ int(P
q(k,l)
i ) 	= ∅ and let O( f2(Pi )) be the time

required to do that test for the cell. If it occurs, add (k, l) to Ei
rs and take u

i
rs,kl = −ai .

Otherwise, compute u(q(r ,s), P
q(k,l)
i ) and take uirs,kl = u(q(r ,s), P

q(k,l)
i ). LetO( f3(Pi ))

be the complexity for computing the cost u(q, Pqi
i ) for any q, qi ∈ R

2. Hence, the
asymptotic computational complexity of obtaining all the sets Ei

rs and all the param-
eters uirs,kl can be bounded byO(|Ω|2∑ρ

i=1[ f2(Pi )+ f3(Pi )]) (|Ω i | is at most |Ω|).
As for the parameters wD

rs , to obtain all of them it is necessary to compute |Ω|
integrals. The same can be said for parameters wB

rs .
The above analysis shows that all the sets and parameters which we use to define

the MILP model can be obtained in a “reasonable” computation time. The space
requirements are also efficient and can be bounded above by:

∑ρ
i=1 |Ω i | ≤ ρ|Ω|,

∑ρ
i=1

∑
(r ,s)∈Ω |Ei

rs | ≤ ρ|Ω|2, there are |Ω| constants wD
rs , the same number of

parameters wB
rs , and the cardinality of uirs,kl is at most ρ|Ω|2.

Next, we describe the MILP model. Recall that any non-decreasing, bounded, con-
tinuous, piecewise linear function can be modeled with a MILP formulation, see,

for example, [30]. Below we represent by I PL1 (ωI
1), . . . , I

PL
ρ (ωI

ρ),CPL
1 (ωC

1 ), . . . ,CPL
ρ

(ωC
ρ ), LPL(ωL) the linearization of the functions I PL1 (ωI

1), . . . , I
PL
ρ (ωI

ρ),CPL
1 (ωC

1 ),

. . . ,CPL
ρ (ωC

ρ ), LPL(ωL) in the objective function of a suitable MILP formulation, and
by SCDV PL the Set of Constraints and the Domain declaration of the decision Vari-
ables involved in the model that together makes the representation of the Piecewise
Linear functions to be correct.
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In order to understand the model, we define the following families of decision vari-
ables. Binary variable θ ikl is a location variable: it takes the value 1 if the dimensional
facility Pi is located at the center of the cell (k, l) ∈ Ω i , and 0 otherwise, for each
i ∈ {1, . . . , ρ}. Binary variable τ irs is an allocation variable, and it takes the value
1 if customers in the cell (r , s) ∈ Ω are served by the dimensional facility Pi , and
0 otherwise, for each i ∈ {1, . . . , ρ}. Variable ϕrs will assume the value of the cost
uG paid from the cell (r , s) ∈ Ω when it is assigned to its dimensional facility in a
solution of problem DBL. We point out that the facility assigned to a cell must be the
one given by a solution of the corresponding discretized lower level problem. Variable
ϕrs will be 0 if (r , s) is contained in a cell facility, for each (r , s) ∈ Ω .

Theorem 4.1 Problem DBL is equivalent to the following MILP problem:

min
ρ∑

i=1

IPLi

⎛

⎜
⎝
∑

(r ,s)∈Ω

∑

(k,l)∈Ei
rs

wB
rsθ

i
kl

⎞

⎟
⎠+

ρ∑

i=1

CPL
i

⎛

⎝
∑

(r ,s)∈Ω

wD
rsτ

i
rs

⎞

⎠ (9)

+ LPL

⎛

⎝
∑

(r ,s)∈Ω

wD
rs

⎡

⎣1 −
ρ∑

i=1

τ irs

⎤

⎦

⎞

⎠

s.t. SCDVPL, (10)
∑

(k,l)∈Ωi

θ ikl = 1, ∀i ∈ {1, . . . , ρ}, (11)

ρ∑

i=1

τ irs +
ρ∑

i=1

∑

(k,l)∈Ei
rs

θ ikl = 1, ∀(r , s) ∈ Ω, (12)

ρ∑

j=1

a jw
D
rsτ

j
rs + wD

rsϕrs ≤ aiw
D
rs +

∑

(k,l)∈Ωi

wD
rsu

i
rs,klθ

i
kl , ∀(r , s) ∈ Ω, i ∈ {1, . . . , ρ},

(13)
∑

(k,l)∈Ωi

uirs,klθ
i
kl − M(1 − τ irs )

≤ ϕrs ≤
∑

(k,l)∈Ωi

uirs,klθ
i
kl + M(1 − τ irs ), ∀(r , s) ∈ Ω, i ∈ {1, . . . , ρ},

(14)

θ ikl ∈ {0, 1}, ∀i ∈ {1, . . . , ρ}, (k, l) ∈ Ω i ,

(15)

τ irs ∈ {0, 1}, ∀(r , s) ∈ Ω, i ∈ {1, . . . , ρ},
(16)

ϕrs ≥ 0, ∀(r , s) ∈ Ω, (17)

where M = max{uirs,kl : (r , s) ∈ Ω, i ∈ {1, . . . , ρ}, (k, l) ∈ Ω i }.

Proof The domain of the decision variables is stated in (15)–(17).
Suppose that Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ is the suitable solution of problem

DBL given by the formulation (9)–(17). Then, for each i ∈ {1, . . . , ρ}, θ iki li = 1 and
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θ ikl = 0 for all (k, l) ∈ Ω i other than (ki , li ), so

∑

(r ,s)∈Ω

∑

(k,l)∈Ei
rs

wB
rsθ

i
kl =

∑

(r ,s)∈P
(ki ,li )
i

wB
rs .

Moreover, if partition of Ω(Q) in problem (9)–(17) is done according to A(Q) ∈
Aρ(Q), it follows that

∑

(r ,s)∈Ω

wD
rsτ

i
rs =

∑

(r ,s)∈Ai (Q)

wD
rs,

since τ irs will be 1 iff (r , s) ∈ Ai (Q) for each (r , s) ∈ Ω . This last condition also
implies that, for each (r , s) ∈ Ω , τ irs = 0 for all i ∈ {1, . . . , ρ} iff (r , s) ∈ Ω\Ω(Q) =
{P (k1,l1)

1 ∪ · · · ∪ P
(kρ,lρ)
ρ }, therefore

∑

(r ,s)∈Ω

wD
rs

[

1 −
ρ∑

i=1

τ irs

]

=
∑

(r ,s)∈⋃ρ
i=1 P

(ki ,li )
i

wD
rs =

ρ∑

i=1

∑

(r ,s)∈P
(ki ,li )
i

wD
rs .

The objective function (9) of the problem (9)–(17) minimizes the same function as in

problemDBL, given that I PL1 , . . . , I PLρ ,CPL
1 , . . . ,CPL

ρ , LPL and SCDV PL in (10) are
a correct representation, respectively, of I PL1 , . . . , I PLρ ,CPL

1 , . . . ,CPL
ρ , LPL. It remains

to see that the solution given by the formulation (9)–(17) is a suitable solution Q ∈ Γ

of problem DBL and that it provides an optimal partition A(Q) of Ω(Q) in the
corresponding discretized lower level problem.

Constraints (11) state that the dimensional facility Pi has to be set in one of the
cells of its set Ω i of candidates for feasible location, for each i ∈ {1, . . . , ρ}.

With constraints (12), several conditions are imposed. On the one hand, (12) implies∑ρ
i=1 τ irs ≤ 1, so the demand of the cell (r , s) ∈ Ω cannot be satisfied by more than

one dimensional facility. On the other hand, implication
∑ρ

i=1

∑
(k,l)∈Ei

rs
θ ikl ≤ 1 of

(12) avoids intersections among the interiors of the cell facilities located according
to the variables θ ikl . Suppose that the dimensional facilities Pi and Pj have been
located at the centers of the cells (ki , li ) ∈ Ω i and (k j , l j ) ∈ Ω j , respectively, so

θ iki li
= 1 and θ

j
k j l j

= 1, i, j ∈ {1, . . . , ρ}, i 	= j . If P (ki ,li )
i ∩ P

(k j ,l j )
j 	= ∅, then

there exists (r , s) ∈ Ω such that (r , s) ∈ P (ki ,li )
i and (r , s) ∈ P

(k j ,l j )
j , and therefore

(ki , li ) ∈ Ei
rs and (k j , l j ) ∈ E j

rs . This implies
∑ρ

i=1

∑
(k,l)∈Ei

rs
θ ikl ≥ 2 which

contradicts implication
∑ρ

i=1

∑
(k,l)∈Ei

rs
θ ikl ≤ 1 of (12). Also, constraints (12) force

demand of cell (r , s) ∈ Ω to be satisfied by one dimensional facility if (r , s) does not
belong to any cell facility (

∑ρ
i=1 τ irs = 1 and

∑ρ
i=1

∑
(k,l)∈Ei

rs
θ ikl = 0), and to belong

to a cell facility if its demand is not satisfied by any dimensional facility (
∑ρ

i=1 τ irs = 0
and
∑ρ

i=1

∑
(k,l)∈Ei

rs
θ ikl = 1). So, constraints (13)–(14) ensure the feasible location

of the dimensional facilities and makes a distinction between demand cells and cells
contained in the cell facilities.
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The correct allocation of demand cells to dimensional facilities according to the
corresponding discretized lower level problem is achieved with constraints (13) and

(14). Indeed, suppose that, for (r̃ , s̃) ∈ Ω , τ ĩr̃ s̃ = 1 for some ĩ ∈ {1, . . . , ρ}. Hence, by
constraints (12), τ j

r̃ s̃ = 0 for all j ∈ {1, . . . , ρ} with j 	= ĩ , and thus constraints (13)
state that aĩw

D
r̃ s̃+wD

r̃ s̃ϕr̃ s̃ ≤ aiwD
r̃ s̃+
∑

(k,l)∈Ω i
wD
r̃ s̃u

i
r̃ s̃,klθ

i
kl for all i ∈ {1, . . . , ρ}. Note

that, as
∑

(k,l)∈Ω i
θ ikl = 1 by constraints (11), hence

∑
(k,l)∈Ω i

θ ikl = θ iki ,li
= 1, andwe

know (r̃ , s̃) /∈ P (ki ,li )
i due to constraints (12), then

∑
(k,l)∈Ω i

wD
r̃ s̃u

i
r̃ s̃,klθ

i
kl = uir̃ s̃,ki li =

u(q(r̃ ,s̃), P
q(ki ,li )

i ), for each i ∈ {1, . . . , ρ}. So, if ϕr̃ s̃ takes the value u(q(r̃ ,s̃), P
q(k

ĩ
,l
ĩ
)

ĩ
),

constraints (13) impose that cell (r̃ , s̃) is assigned to the dimensional facility that pro-
vides the smallest cost in the discretized lower level problem. By the constraint of type

(14) for (r̃ , s̃) and i = ĩ , ϕr̃ s̃ =∑(k,l)∈Ω ĩ
wD
r̃ s̃u

ĩ
r̃ s̃,klθ

ĩ
kl = uĩr̃ s̃,kĩ lĩ

= u(q(r̃ ,s̃), P
q(k

ĩ
,l
ĩ
)

ĩ
)

as M(1 − τ ĩr̃ s̃) = 0. When i 	= ĩ , constraints of type (14) for (r̃ , s̃) are not vio-

lated given that
∑

(k,l)∈Ω i
uir̃ s̃,klθ

i
kl = uir̃ s̃,ki li ≤ M and ϕrs = uĩr̃ s̃,kĩ lĩ

≤ M , for

M = max{u j
rs,kl : (r , s) ∈ Ω, j ∈ {1, . . . , ρ}, (k, l) ∈ Ω j }.

Now, suppose that for (r̃ , s̃) ∈ Ω , τ ir̃ s̃ = 0 for all i ∈ {1, . . . , ρ}. As τ ir̃ s̃ = 0 for

all i ∈ {1, . . . , ρ}, by constraints (12), we know θ ĩkĩ lĩ
= 1 for one ĩ ∈ {1, . . . , ρ}

and one (kĩ , lĩ ) ∈ Ω ĩ , i.e., (r̃ , s̃) ∈ P
(kĩ ,lĩ )

ĩ
. So, constraint of type (13) for (r̃ , s̃)

and i = ĩ imposes
∑ρ

j=1 a jw
D
r̃ s̃τ

j
r̃ s̃ + wD

r̃ s̃ϕr̃ s̃ ≤ aĩw
D
r̃ s̃ +∑(k,l)∈Ω ĩ

wD
r̃ s̃u

ĩ
r̃ s̃,klθ

ĩ
kl . But

∑ρ
j=1 a jw

D
r̃ s̃τ

j
r̃ s̃ = 0 and

∑
(k,l)∈Ω ĩ

wD
r̃ s̃u

ĩ
r̃ s̃,klθ

ĩ
kl = wD

r̃ s̃u
ĩ
r̃ s̃,kĩ lĩ

= −wD
r̃ s̃aĩ , according

to the definition of parameters uir̃ s̃,kl , therefore, ϕr̃ s̃ has to be 0. Constraints of type

(13) for (r̃ , s̃) when i 	= ĩ are satisfied trivially as
∑ρ

j=1 a jw
D
r̃ s̃τ

j
r̃ s̃ + wD

r̃ s̃ϕr̃ s̃ = 0.
In this case, constraints (14) for (r , s) are not violated since, by constraints (11),∑

(k,l)∈Ω i
uir̃ s̃,klθ

i
kl = uir̃ s̃,ki li for some (ki , li ) ∈ Ω i , and uir̃ s̃,ki li − M ≤ 0 = ϕr̃ s̃ ≤

uir̃ s̃,ki li + M given that M = max{u j
rs,kl : (r , s) ∈ Ω, j ∈ {1, . . . , ρ}, (k, l) ∈ Ω j }.

Here, note that M = max{u j
rs,kl : (r , s) ∈ Ω, j ∈ {1, . . . , ρ}, (k, l) ∈ Ω j } is the

minimum value of M that makes the model (9)–(17) to be correct.
From the above discussion, constraints (13)–(14) force the minimum cost assign-

ment of cell (r̃ , s̃) to a dimensional facility in {P1, . . . , Pρ} for each cell (r̃ , s̃) ∈ Ω that
is not contained in any cell facility. Hence, the constrains imposed by the discretized
lower level problem, in the constrained optimization problem DBL, are satisfied for
any feasible solution of the problem (9)–(17). So we conclude that problem (9)–(17)
is equivalent to problem DBL. �

4.2 Heuristic Method

As mentioned above, problem DBL is NP-hard, therefore one cannot expect to solve
large instances with the MILP formulation (9)–(17) which has 2ρ|Ω| binary variables
defined in (15)–(16) plus the number of binary variables in (10) required to modeling

123



Journal of Optimization Theory and Applications (2019) 182:730–767 755

the piecewise linear cost functions in (9). This makes the model difficult to solve,
especially when the considered number of cells |Ω| is large to better approximate
problem BL. For this reason, we introduce an alternative heuristic algorithm to get
“good/reasonable” feasible solutions of problem DBL for larger size instances.

The algorithm proposed is a GRASP (see [26] for details) in which we can distin-
guish threemodules. ThefirstmoduleGRASP_DIMFAC is actually theGRASP,which
uses the next two modules to build the final solution. From a location (q1, . . . , qρ) ∈
ΩΩ1 × · · · × ΩΩρ of the dimensional facilities P1, . . . , Pρ (not necessarily feasible),
the second module WAVE_DIMFAC, which is a continuous wavefront algorithm,
generates a random feasible solution ((k1, l1), . . . , (kρ, lρ)) ∈ Γ of problem DBL.
Recall that wavefront algorithms are a standard technique in computational geometry
to deal with continuous deformations of geometrical elements usually using breadth-
first search (see, for example, [31]). Finally, the third module GREEDY_DIMFAC is a
greedy algorithm, i.e., a local optimal search improvement at each step [32], that given
a feasible solution ((k1, l1), . . . , (kρ, lρ)) ∈ Γ of problem DBL, locally searches for
another feasible solution improving the objective value of the first one.

In what follows, and for the sake of simplicity, we consider that Ω , the sets
P1, . . . , Pρ and the grid G are fixed. This implies that all the elements that are derived
from them are also fixed.

4.2.1 GRASP Algorithm

Before describing the GRASP, we observe the following. Given a suitable solution
Q = ((k1, l1), . . . , (kρ, lρ)) ∈ Γ for problem DBL, computing its objective value
can be done easily. This is due to the fact that for each cell (r , s) ∈ Ω , we can
know if it is contained in a cell facility and in which, or if it is a demand cell. If
(r , s) is a demand cell we also know to which dimensional facility it is assigned:

the one with minimum assignment cost. In other words, P (k1,l1)
1 , . . . , P

(kρ,lρ)
ρ and

A(Q) = (A1(Q), . . . , Aρ(Q)) can be easily obtained processing sequentially all the
cells of Ω . So, obtained the above sets, we can compute F(Q).

The above is correct except for the case in which two or more dimensional facilities
provide equal minimum assignment cost for a cell (r , s) ∈ Ω . In that case, as we are
looking for a heuristic solution for problem DBL and we want to do this as fast as
possible, we assign the cell (r , s) to any of that dimensional facilities with minimum
assignment cost.

A formal pseudocode of our GRASP is given in Algorithm 1.
Our GRASP algorithm for problem DBL takes advantage of the fact that we have a

tool to generate and evaluate suitable solutions. Initially, in STEP1,GRASP_DIMFAC
generates a list Ψ of ψ random suitable solutions with procedure WAVE_DIMFAC
and improves them with procedure GREEDY_DIMFAC. These suitable solutions are
ordered in the list Ψ according with their objective values, being the best suitable
solution the first in the list.

The randomization part of the GRASP in STEP 2 tries to obtain new suitable
solutions from some already available solutions. It performs permutations among the
centroids of some dimensional facilities (� dimensional facilities, being� a parame-
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Algorithm 1 GRASP algorithm for problem DBL
PROCEDURE GRASP_DIMFAC

STEP 1 Create a list Ψ of ψ ∈ N suitable solutions for problem DBL as follows. For
each j ∈ {1, . . . , ψ}, randomly generate points q1 ∈ ΩΩ1, . . . , qρ ∈ ΩΩρ and do Ψ ( j) =
GREEDY_DIMFAC(WAVE_DIMFAC(q1, . . . , qρ)). Then, order Ψ so thatF(Ψ ( j)) ≤ F(Ψ ( j + 1))
for any j ∈ {1, . . . , ψ − 1}.

STEP 2 Process Ψ visiting its elements from Ψ (1) to Ψ (ψ). For each Ψ ( j) ∈ Ψ do:
• If Ψ ( j) = ((k1, l1), . . . , (kρ, lρ)), consider the ρ-tuple (q(k1,l1), . . . , q(kρ ,lρ)) and generate a

new ρ-tuple (q̃1, . . . , q̃ρ) randomly permuting exactly � ∈ {2, . . . , ψ} of its elements.
•Obtain anewsuitable solution Q doing Q = GREEDY_DIMFAC(WAVE_DIMFAC(q̃1, . . . , q̃ρ)).
• IfF(Q) < F(Ψ (ψ)), update Ψ doing Ψ (ψ) = Q and reorder the list.
• If this instruction has been visited a maximum number of times, go to RETURN.
• If j + 1=ψ + 1, begin STEP 2 again.
Note: WAVE_DIMFAC(q̃1, . . . , q̃ρ) requires q̃i ∈ ΩΩi for all i ∈ {1, . . . , ρ} to work. In order

to apply the procedure WAVE_DIMFAC, if q̃i /∈ ΩΩi for some i ∈ {1, . . . , ρ}, we replace q̃i by its
�1-projection in ΩΩi .

RETURN Ψ (1) andF(Ψ (1)).
END PROCEDURE

ter). Given a suitable solution in the list we obtain another one usingWAVE_DIMFAC.
This suitable solution may not have the resulting permuted centroids since permuting
the positions of the dimensional facilities P1, . . . , Pρ in a suitable solution of problem
DBL may not provide another suitable solution, as the interior of the dimensional
facilities could intersect or they could not be contained in Ω . Next, we improve that
suitable solution with GREEDY_DIMFAC. If the resulting suitable solution is better
than any in the list, we replace the worst suitable solution by the new one, reorder
the suitable solutions in the list, and continue the process with the following not yet
processed solution in the list. The process is repeated, starting the list by the beginning
again if it is necessary, a predefined number of times: termination criterion. The algo-
rithm returns the first element in Ψ , i.e., the best suitable solution found for problem
DBL and its objective value.

4.2.2 Wavefront Algorithm

The main idea of the wavefront algorithm to generate random suitable solutions
for problem DBL is the following: since directly locating dimensional facilities
P1, . . . , Pρ in the demand region in a validway (i.e., in away such that their interiors do
not intersect) could not be an easy task, we begin by locating in a valid way a shrunken
version of them, which is easier, and then we make these shrunken dimensional facil-
ities to grow. The wavefront is shown in Algorithm 2. If Pqi

i is the homothecy of
center qi and ratio λ ≥ 0 applied to the set Pqi

i , in the algorithm, we characterize the
location of the setPqi

i by its centroid qi , for each i ∈ {1, . . . , ρ}. In addition, we use
the following notation in the algorithm: �1(P

qi
i ,P

q j
j ) is the minimum �1-distance

between a point in P
qi
i and a point in P

q j
j ; κx and κ y denote the maximum width

and the maximum height of a cell in Ω , respectively.
The wavefront algorithm begins in STEP 1 with a shrunken versionPq1

1 , . . . ,P
qρ
ρ

(determined by parameter λ) of the sets Pq1
1 , . . . , P

qρ
ρ . In STEP 2, if condition

123



Journal of Optimization Theory and Applications (2019) 182:730–767 757

Algorithm 2Wavefront algorithm to generate random suitable solutions for problem
DBL

PROCEDURE WAVE_DIMFAC(q1, . . . , qρ )
STEP 1 For each i ∈ {1, . . . , ρ}, let Pqi

i be the homothecy of center qi and ratio λ ∈ (0, 1) with

1/λ ∈ N applied to the set P
qi
i .

STEP 2 If {Pq1
1 , . . . ,P

qρ
ρ } = {Pq1

1 , . . . , P
qρ
ρ }, go to STEP 6. Otherwise:

• Check if �1(P
qi
i ,P

q j
j ) ≥ 3(κx + κ y) for all i, j ∈ {1, . . . , ρ} with i 	= j .

− If it is verified, for each i ∈ {1, . . . , ρ}, replace Pqi
i by the homothecy of center qi and

ratio λ applied to it, and begin STEP 2 again.
− If it is not verified, go to STEP 3.

STEP 3 For each pair i, j ∈ {1, . . . , ρ} with i 	= j , let

−→υi j =

⎧
⎪⎨

⎪⎩

−−→qi q j
‖−−→qi q j‖2

if �1(P
qi
i ,P

q j
j ) < 3(κx + κ y),

0 otherwise.

STEP 4 Do:

• For each i ∈ {1, . . . , ρ}, if qi + ϑ

∑ρ
j=1

−→υ j i

‖∑ρ
j=1

−→υ j i‖2
∈ ΩΩi , translate P

qi
i replacing qi for

qi + ϑ

∑ρ
j=1

−→υ j i

‖∑ρ
j=1

−→υ j i‖2
. � ϑ > 0

• If �1(P
qi
i ,P

q j
j ) < 3(κx + κ y) for some i, j ∈ {1, . . . , ρ} with i 	= j , go to STEP 3.

• If this line has been revisited a number Υ1 ∈ N of consecutive times without pass by a step
different from STEP 3 and STEP 4, go to STEP 5.

• If STEP 4 has been revisited a number Υ2 ∈ N of consecutive times without pass by another
step, go to STEP 2. Otherwise, begin STEP 4 again.

STEP 5 For each i ∈ {1, . . . , ρ − 1}, let Ti be the set of indices in {i + 1, . . . , ρ} such that

�1(P
qi
i ,P

q j
j ) ≥ 3(κx + κ y).

• For each i ∈ {1, . . . , ρ − 1}, if Ti 	= ∅, compute the point q∗ that solves the problem

max
q∈ΩΩi

min
j∈Ti

�2(q, q j ).

• For each i ∈ {1, . . . , ρ − 1}, if Ti 	= ∅, replace qi by a point randomly selected in B�1 (q
∗, ε).

� ε > 0
Note: if B�1 (q

∗, ε) ∩ ΩΩi = ∅, replace qi by the �1-projection of q∗ in ΩΩi .
• Randomly permute the order of the dimensional facilities {1, . . . , ρ}.
• Go to STEP 1.

STEP 6Undo the possible permutations applied to the order of the dimensional facilities {1, . . . , ρ}
done in STEP 5, i.e., order the indices {1, . . . , ρ} of the dimensional facilities as in the input.

STEP 7 For each i ∈ {1, . . . , ρ}, determine the cell (ki , li ) ∈ Ω to which qi belongs to.
RETURN ((k1, l1), . . . , (kρ, lρ)).

END PROCEDURE

�1(P
qi
i ,P

q j
j ) ≥ 3(κx + κ y) is satisfied for all i, j ∈ {1, . . . , ρ} with i 	= j , we

can continue making to grow P
q1
1 , . . . ,P

qρ
ρ applying them a homothecy of ratio λ.

The meaning of the condition above (onwards, the minimum �1-separation-condition)
is the following: the algorithm WAVE_DIMFAC is able to find a suitable solution for
problem BL from an initial location (q1, . . . , qρ) ∈ ΩΩ1 × · · · × ΩΩρ (not necessarily
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feasible) of the dimensional facilities P1, . . . , Pρ ; from this suitable solution of prob-
lem BL we will obtain a suitable solution of problem DBL moving each dimensional
facility from the location qi to the center of the cell ofΩ towhich qi belongs to (STEP7
of the algorithm); however, thismovementmay lead to some caseswhere the interior of
the cell facilities intersect, producing a non-suitable location of the facilities in problem
DBL; it is easy to see that theminimum �1-separation-condition avoids this undesirable
situation in STEP 7. Since 1/λ ∈ N, it holds that {Pq1

1 , . . . ,P
qρ
ρ } = {Pq1

1 , . . . , P
qρ
ρ }

after a finite number of homothecies of ratio λ applied to setsPq1
1 , . . . ,P

qρ
ρ in STEP

2. If the minimum �1-separation-condition is not satisfied for some i, j ∈ {1, . . . , ρ}
with i 	= j in STEP 2, we have to separate the pairs of problematic shrunken dimen-
sional facilities.

The separation of the dimensional facilities Pq1
1 , . . . ,P

qρ
ρ in STEP 3 and STEP

4 is done with the separator vectors −→υ . The separator vector −→υi j gives the direction
that moves away the centroid q j of the dimensional facilityP

q j
j from the centroid qi

of the dimensional facilityPqi
i such that does not verify the minimum �1-separation-

conditionwith respect toP
q j
j (if theminimum �1-separation-condition is verified then

−→υi j = 0). Thus, (
∑ρ

j=1
−→υi j )/‖∑ρ

j=1
−→υi j‖2 can be used as a direction to separatePq j

j
from the other sets which are too close to it. Parameter ϑ controls the distance of the
separations. Separation steps are applied Υ2 ∈ N times if all the pairs of dimensional
facilities satisfy the minimum �1-separation-condition in each iteration, otherwise,

−→υ
has to be updated and the separation process has to begin again. So, the separation
process ends when Υ2 iterations are done fixed υ or when an overall number Υ1 ∈ N

of iterations is reached.
If the maximum number of iterations is reached (the third line of STEP 4 has been

revisited a number Υ1 ∈ N of consecutive times without pass by a step different
from STEP 3 and STEP 4), we have to relocate in STEP 5 the dimensional facilities
P

q1
1 , . . . ,P

qρ
ρ which do not satisfy the minimum �1-separation-condition and begin

the growing process again (from STEP 1). The point qi is relocated maximizing
the minimum Euclidean distance from the centroid q j of the dimensional facility
P

q j
j violating the minimum �1-separation-condition with respect to P

qi
i : found the

solution q∗ of the problem maxq∈ΩΩi min j∈Ti �2(q, q j ), we relocate the point qi at
a point randomly selected in a neighborhood of q∗ (we use the ball B�1(q

∗, ε) as
that neighborhood). Actually, in STEP 5 of our algorithm, instead of solving a global
maximin problem, we solve a local maximin problem which needs a random point
to start, making the process more random. As relocation of points qi done in STEP
5 depends on the order of the dimensional facilities, we then permute the order of
the dimensional facilities to get more randomness in the algorithm. That permutations
has to be undone (STEP 6) before to determine the suitable solution of dimensional
facilities P1, . . . , Pρ found (STEP 7) and to return it.

4.2.3 Greedy Algorithm

Consider now that we are given a suitable solution Q ∈ Γ for problem DBL. The
greedy algorithm shown in Algorithm 3 performs a local search to improve the objec-
tive value given by the current suitable solution Q. Specifically, if (ki , li ) ∈ Ω is
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the cell in whose center is located the dimensional facility Pi , the greedy algorithm
evaluates the objective function of problem DBL if we move Pi to the centers of the
cells in a neighborhood of (ki , li ) (determined by parametersΔk,Δl ∈ N) keeping the
position of the remaining dimensional facilities, provided that the movement produces
a suitable solution. This is done for each i ∈ {1, . . . , ρ}. Then, we relocate the dimen-
sional facilities whose movement to a neighbor cell provides the best improvement of
the objective value. This process is repeated until no improvement is obtained.

Algorithm 3 Greedy algorithm to improve a suitable solution of problem DBL
PROCEDURE GREEDY_DIMFAC(((k1, l1), . . . , (kρ, lρ)))

STEP 1 For each i ∈ {1, . . . , ρ}, compute the best improvement in the objective value of problem
DBL given by a suitable solution of the form ((k1, l1), . . . , (ki + jk , li + jl ), . . . , (kρ, lρ)), for any
jk ∈ {−Δk , . . . , Δk } and jl ∈ {−Δl , . . . , Δl }.

• If no improvement is achieved for all i ∈ {1, . . . , ρ}, then ((k1, l1), . . . , (kρ, lρ)) is the suitable
solution obtained by the algorithm. Go to RETURN.

• Otherwise, go to STEP 2.
STEP2 If i∗ is the indexwhich provides the best improvement in the objective value of problemDBL

in STEP 1 among all the indices in {1, . . . , ρ}, replace ((k1, l1), . . . , (kρ, lρ)) by ((k1, l1), . . . , (ki∗ +
j∗k , li∗ + j∗l ), . . . , (kρ, lρ)), being j∗k and j∗l the values of jk and jl that give the best improvement for
index i∗. Go to STEP 1.

RETURN ((k1, l1), . . . , (kρ, lρ)).
END PROCEDURE

Note that Algorithm 3 is presented for a grid G where the neighbors of a cell
(r , s) ∈ G are determined by the adjacent horizontal and vertical cells in G. This is
done for the sake of simplicity. However, it is easy to extend the Algorithm 3 to more
general grids if the neighborhood of a cell is well defined in the considered grid.

4.3 Computational Experiments

This section reports some computational experiments performed to show the useful-
ness of the proposed methodologies to solve problem BL. Our code is implemented in
MATLAB R2017A and it makes calls to the XPRESS solver version 8.0 to solve the
MILP programs. All experiments were run in a computer DellT5500 with a processor
Intel(R) Xeon(R) with a CPU X5690 at 3.75 GHz and 48 GB of RAM memory.

We have included several test examples. Some of them were already proposed in
[13] and some others are new. Including the new examples we want to compare the
diversity of the solutions when different service costs, distance measures, shapes of
the dimensional facilities, cost functions and densities are combined. In addition, we
also show how the solutions of the examples are affected when they are included in
the bilevel approach combining the different elements of the problem.

In all cases, we use regular grids to approximate the exact solution of the bilevel
problem BL. We always begin by solving the problem by means of our heuristic
algorithm (Algorithm 1) with the following parameters. Algorithm 1 runs with a list
of solutions of length ψ = 50, � = 2 centroids to be permuted and the stopping
criterion, in STEP 2, consists of processing the list without improvement. Algorithm 2
is executed with a homothecy ratio λ = 0.05 (which results in applying the homothecy
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transformation, at least, 1/λ = 20 times), a separation parameter ϑ = 0.05 and
stopping separation criterion Υ1 = 9 and Υ2 = 3. Finally, Algorithm 3 is applied with
Δk = Δl = 5. Once the heuristic solution is found, we next improve that solution
adding it as an initial feasible solutions to the exact MILP formulation and then we let
it run for 4 h (14,400 s) of CPU time. The performance of the GRASP heuristic and
the MILP formulation is reported in Table 1. This table shows, for both methods, the
time required for the preprocessing of the information (PT), the execution time once
the information has been preprocessed (ET), the best objective value found (BOVF)
and the gap obtained for the solution provided by the MILP formulation (GAP).

Example 4.1 Our first test illustrates how the approach in this paper applies to one
example borrowed from the literature [13]. First, we consider that the demand region
Ω , the dimensional facilities P1, P2, P3 and all the elements of the lower level problem
are the ones given in Example 4.1 in [13]. In addition, we will assume that there also
exists an installation cost described by the base installation cost density B(q) =
6(x − y) if x ≥ y and B(q) = 0 otherwise, and the installation cost functions
Ii (ωI

i ) = ωI
i for all ωI

i ∈ [0, 1].
Tobetter illustrate the performanceof ourmethodology,wedistinguish twodifferent

situations.

Example 4.1.1 The first situation includes non-uniform demand density D onΩ , given
by D(q) = 8(x−0.5) if x ≥ 0.5 and D(q) = 0 otherwise. In addition,we also consider
the following non-zero lost demand cost L(ωL) = ωL for all ωL ∈ [0, 1] and zero
congestion costs Ci (ω

C
i ) = 0 for all ωC

i ∈ [0, 1], for each i ∈ {1, . . . , 3}. Note that,
in this example, the problem does not explicitly depend on the partition of the demand
region.

Example 4.1.2 The second example considers uniform demand density D(q) = 1, as
in the original example in [13], it does not apply any lost demand cost (i.e., L(ωL) = 0
for all ωL ∈ [0, 1]) but it includes the following congestion costs: Ci (ω

C
i ) = ωC

i if
ωC
i < ω̃C

i /3 and Ci (ω
C
i ) = ωC

i + 100(ωC
i − ω̃C

i /3) otherwise, for all ωC
i ∈ [0, 1]

and each i ∈ {1, . . . , 3}, being ω̃C
i = 1 − ∫⋃3

i=1 Pi
D(q)dq. The inclusion of this

congestion cost term makes the problem to depend on the partition of the demand
region. The choice of this particular expression forces a fairly equal splitting of the
demand among the three facilities.

We have solved the location-allocation problems defined by these situations, and
the results can be seen in Fig. 4 and Table 1.

The graphical output of our algorithms reports the results that could have been
anticipated. In the Example 4.1.1 (Fig. 4a, b), since the base installation cost density
is null in the upper triangle and the demand is also null in the left half of the region Ω ,
the dimensional facilities tend to be located, as much as possible, in the upper triangle
and in the left half of the square region. However, their measure does not allow them
to be completely included in that region. This is the reason why two of them have a
portion on the higher installation cost (lower triangle) and higher lost demand (right
half square) parts of the diagram. The MILP formulation provides a solution (Fig. 4b)
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Fig. 4 Graphical output of the solutions for Example 4.1

Table 1 GRASP heuristic and MILP formulation performance

Method GRASP heuristic MILP formulation

Example Grid PT (s) ET (s) BOVF PT (s) ET (s) BOVF GAP (%)

4.1.1 60 × 60 11,336 515 0.1109 469 3306 0.0995 0.00

4.1.2 60 × 60 11,496 350 0.6479 472 14,400 0.6479 8.89

4.2 20 × 20 52 101 1.4594 48 1209 1.4594 0.00

4.2 30 × 30 331 193 1.3236 249 14,400 1.3236 20.56

4.2 40 × 40 1422 364 1.3012 724 14,400 1.3012 22.26

4.2 50 × 50 5261 524 1.2451 1845 14,400 1.2451 22.80

4.2 60 × 60 14,333 721 1.2123 3817 14,400 1.2123 25.24

4.3.1 60 × 60 108,802 55,356 3.1889 4670 450 3.1889 0.00

4.3.2 60 × 60 110,915 25,303 2.1139 4824 14,400 2.1139 42.97

slightly better than the one obtained by the GRASP heuristic (Fig. 4a). The reader
should observe that the solution provided by the MILP formulation is optimal (it has
zero GAP) as it can be seen in Table 1.

The solutionof the location-allocationproblemofExample 4.1.2 is shown inFig. 4c,
d. The result shown in these figures is consistent and it shows that the installation cost
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does not fully determine the final location of the dimensional facilities. This can be
explain because, a non-approximate equal splitting of the demand among the facilities,
is highly penalized by the installation cost functions I1, I2, I3. Even so, the solution
attempts to place the facilities in the upper triangle to also reduce the installation cost,
actually, the biggest facility is completely contained in the upper triangle. The solution
obtained by the MILP formulation (Fig. 4d) is the same that the one provided by the
GRASP heuristic (Fig. 4c). This means that, in this case, the MILP formulation is not
able to find a better solution than the GRASP heuristic within the CPU time limit.
However, the use of the MILP approach provides the GAP of the solution obtained
(see Table 1). Finally, in Fig. 4c, d, it seems that the demand region A2, assigned to the
second facility P2, has two connected components. This fact is not strange if one has
in mind the properties of bisectors for different distance measures, as it is our case,
see [3,33] for more details.

Example 4.2 This situation is included to illustrate the use of different service costs
in the model. We consider that the demand region Ω is the unit square and there
are three dimensional facilities. The first one, P1, is a non-convex polygon with cost
based on the worst case situation given by u1(q, q1) = 0.8maxq̃∈P

q1
1

�2(q − q̃).

The second facility, P2, is a regular pentagon and its cost, is given by u2(q, q2) =
�2(q − q2), where q2 is the centroid of P2. Finally, the last facility, P3, is the unit ball
of a weighted Euclidean norm, namely P3 := {(x, y) : √75x2 + 150y2 ≤ 1}; and
its cost u3(q, q3) = 0.2γP3(q − q3). This is the case where the cost is induced by a
Minkowski functional.

The remaining parameters of this example are the following: a1 = a2 = a3 = 1
and the demand density is uniform, namely D(q) = 1. The congestion costs, Ci

are: Ci (ω
C ) = ωC if ωC ≤ 0.25 and Ci (ω

C ) = ωC + ℵiω
C if ωC ≥ 0.25, where

ℵ1 = ℵ2 = 0.5 and ℵ3 = 0.25; and the lost demand cost is L(ωL) = ωL .
Finally, the base installation cost density is defined by the expression

B(q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(x + y), if x ≤ 0.5 and y ≤ 0.5,

2(x + 1 − y), if x ≤ 0.5 and y > 0.5,

2(1 − x + y), if x > 0.5 and y ≤ 0.5,

2(1 − x + 1 − y), if x > 0.5 and y > 0.5.

This function accumulates the density in the center of the square since the bivariate
density function increases from the vertices of the unit square to its center. We take as
base installation costs I1(ωI ) = I2(ωI ) = I3(ωI ) = 5ωI .

We solve this configuration for gridswith different sizes to illustrate the convergence
of our discretization approach.We have chosen grids of 20×20 (see Fig. 5a, b), 30×30
(see Fig. 5c, d), 40 × 40 (see Fig. 5e, f), 50 × 50 (see Fig. 5g, h) and 60 × 60 (see
Fig. 5i, j).

From our results we report that in all cases (i.e., for the different grid sizes) the exact
MILP approach could not improve the solution found by our heuristic algorithm. In
the 20× 20 grid case the solution found is optimal, as certified by the MILP problem
(see Table 1). The configuration of the solutions found can be explained by the shapes
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Fig. 5 Graphical output of the solutions for Example 4.2
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Fig. 6 Graphical output of the solutions for Example 4.3

of the densities and costs functions. Since the base installation density is lower in the
vicinity of the vertices of Ω and the demand is uniform, the facilities try to locate the
closer to the vertices the better. Nevertheless, the congestion cost makes that one of
the facilities that is less congested, P3, moves closer to P1 to cannibalize part of its
demand. The two connected components in the partition allocated to P1 in Fig. 5i, j can
be explained, as before, by the properties of bisectors with different norms. Finally,
one observes some stability in the solutions whenever the grids are denser.

Example 4.3 This situation is included to illustrate our methodology with a larger
number of facilities, 10, and also with different congestion costs associated to each of
them. We assume a cost ui (q, qi ) = �2(q − qi ), for all i = 1, . . . , 10. Once again, we
consider that the demand region Ω is the unit square and there are ten tetrominoes as
dimensional facilities. Ω is discretized in a 60× 60 grid. Since, our tetrominoes have
small measure with respect to Ω , this example considers that the installation and lost
demand costs are negligible and thus we take them as null.

We report two examples that depend on different demand density functions and in
both cases the congestion costs for the tetrominoes are the same. These congestion
costs are: Ci (ω

C ) = ωC if ωC ≤ ℵi and Ci (ω
C ) = ℵi + 100(ωC − ℵi ) if ωC ≥ ℵi

where ℵ = 1/30(5, 5, 3, 3, 3, 3, 3, 3, 1, 1).
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Example 4.3.1 In this case, we have chosen a uniform demand density D(q) = 1.

Example 4.3.2 This second case considers as demand density for eachq = (x, y) ∈ Ω ,
D(q) = 3(x − y) if x ≥ y, and D(q) = 3(y − x), if x < y. Observe that this density
is null on the diagonal of Ω and is maximal at the points (1, 0) and (0, 1).

As it can be seen in Fig. 6, the results provided by the two methods, in the two
cases (Examples 4.3.1 and 4.3.2), are consistent. As it occurs in Example 4.2, the
exact MILP approach could not improve the solution found by our GRASP algorithm
in both cases. Analyzing the results in each case, we observe that in Example 4.3.1
(Fig. 6a, b) the facilities are spread more or less “uniformly” on the unit square. This
is due to the considered uniform demand density. On the other hand, in Example 4.3.2
(Fig. 6c, d) the facilities are mainly concentrated close to the points (1, 0) and (0, 1),
where the demand density is much higher. It is also interesting to remark the excellent
behavior of our MILP formulation in Example 4.3.1. We observe in Table 1 that,
given the structure of the problem defined in Example 4.3.1 (there is no installation
cost, no lost demand cost, and all the cells have the same demand density), the MILP
formulation is able to prove optimality [GAP (%) is zero] of the solution found by the
GRASP heuristic in a rather short computing time.

5 Conclusions

This paper gives a first complete proof of existence of optimal solutions of a general
location-allocation problem with dimensional facilities. This result includes as par-
ticular instances previously published results in the field with dimensionless facilities
(point facilities). It also provides two methods to solve this problem using sequences
of solutions for a discrete approximation of the problem. One is exact and it is based on
a new mixed-integer linear programming formulation and the other one is a GRASP
heuristic that results in very good solutions.

This paper has a number of possible extensions that may open some interesting
research lines. Among them, we would like to mention relaxing some conditions
ensuring existence of optimal solutions, as for instance the continuity of the utilities
in the objective function of the lower level problem, although this is beyond the scope
of this paper. In addition, these results can be extended to the case where the facili-
ties are allowed to be rotated: existence of solutions can be proved similarly but the
discretization scheme would need to consider also a finite number of rotation angles
which would make the algorithms more complicated. Moreover, although we have
restricted ourselves to consider problems on the plane most of our results extend to
any finite dimension space assuming that facilities are full dimension compact sets. In
that case, one can adapt the existence of solutions and convergence proofs, redefining
the grid to be a generic subdivision of the feasible domain. The discretization results
can be also adapted although at the price of increasing the complexity of the models
that then become exponential in the dimension of the space.
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