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Abstract

This research work considers waveform design for an adaptive radar system. The aim
is to achieve enhanced feature extraction performance for multiple extended targets.
There are two scenarios to consider: multiple extended targets separated in range and
multiple extended targets close in range. We propose a waveform optimization scheme
based on Kalman filtering by minimizing the mean square error of separated target
scattering coefficient estimation and a waveform optimization approach by minimiz-
ing the mean square error of closed power spectrum density estimation. A convex cost
function is established, and the optimal solution can be obtained using the existing
convex programming algorithm. With subsequent iterations of the algorithm, the simu-
lation results demonstrate an improvement in the estimation of target parameters from
the dynamic scene, such as target scattering coefficient and power spectrum density,
while maintaining relatively lower computational complexity.
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1 Introduction

Cognitive radar (CR) has received much attention in recent years. Similar to brain-
empowered system architectures, CR employs the adaptive feedback principle to
facilitate adaptive detection of the time-varying target scene [1-3]. Subsequently, the
target feature information in the backscatter signal is exploited to allocate the power
or spectrum of the probing signal at the transmitter [4, 5]. CR usually forms a closed
feedback from the receiver to the transmitter. It is able to adaptively adjust probing
signals or the receiver to suit the time-variant target scene [6, 7]. The feedback loop
has great potential for improving the performance of target recognition and detection,
as demonstrated in [8, 9]. Augusto and Antonio developed joint design of the trans-
mit waveform and receive filter in the presence of noise interference [10]. Seyyed and
Augusto consider that multiple-input-multiple-output (MIMO) radar utilizes informa-
tion provided by a dynamic environmental database. The authors discussed designs
of the space—time transmit code and space—time receive filter in the presence of noise
interference [11]. Reference [12] proposed a novel method to design transmit wave-
forms sharing desirable spectral features, which ensure coexistence with wireless
networks and optimal performance of target detection.

The transmitted waveforms of the CR are constantly adjusted in order to extract
target feature information in a time-variant environment [13]. Many methods in sev-
eral recent works have been proposed to design the cognitive waveform. The literature
[14] developed waveform design methods, which provide good performance in terms
of target resolution. Reference [15] proposed the design of the transmit waveform
with aperiodic autocorrelation properties in terms of peak sidelobe level and inte-
grated sidelobe level. Bell [16] discussed the waveform design problem for extended
target detection and parameter estimation. Considering that the received signals are
interfered with by the clutter noise, several waveform design algorithms are proposed
by maximizing the signal-to-interference plus noise ratio (SINR) of the output sig-
nal [17, 18]. The CR waveform is optimized by maximizing the probability of target
detection instead of the SINR of the output signal [19]. The corresponding algorithm
is also discussed in the literature [20-22]. Under the condition of a given transmit-
ted power constraint, the water-filling method is presented to allocate the transmitted
power and maximize the mutual information [23-25]. Cognitive waveform design has
been studied for improving the performance of target estimation and identification
[26, 27]. The information theoretic criterion is generally used for target estimation
[28]. For instance, references [29, 30] propose to minimize the mutual information
(MI) between the echo waveform and the estimate of target impulse response (TIR).
References [31, 32] propose minimization of the MSE of the TIR estimation.

Reference [33], which exploits temporal correlation of target response to obtain a
good performance of target parameter estimation, proposed a scheme based on the
Kalman filtering method. However, low reliability and high complexity were caused
by the convolution operation in the time domain. The estimation of target scattering
coefficients (TSCs) has received significant attention in recent studies of radar systems.
References [34-36] are focused on maximizing the signal-to-noise ratio (SNR) of
the backscattering signal or the MI between the backscattering signal and the TSC.
However, TSC will continuously vary as the target and radar environment changes [37].
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From the perspective of the cognitive system, the estimate of TSC should be updated to
design CR waveforms constantly. Reference [38] presents a genetic algorithm based on
the water-filling method to optimize the power spectrum density (PSD) of the transmit
waveform for a single extended target. However, the computational complexity is high,
and the algorithm is not practical. Optimization of the transmission waveform and the
receiver impulse response is investigated by maximizing the probability of correct
identification between two target classes [39].

Pursuant to the above discussion, we intend to improve the target feature extraction
performance by minimizing the MSE of TSC estimation for separated targets, in
addition to minimizing the MSE of target PSD estimation for closed targets. The
first proposed waveform design algorithm is intended to improve the performance of
the TSC estimation and is summarized as follows: (1) we extract the target feature
information derived from successive received signals at the receiver. TSC can be
considered as a temporally correlated function during the pulse repetition interval
(PRI). (2) By utilizing this temporal correlation of TSC changes, the waveform design
problem is modeled by minimizing the MSE of the TSC estimation. The MSE of the
TSC estimation can be obtained during the Kalman filtering-based iteration process.

Compared with the TSC, the target PSD is robust to the size of the target range
cell and target-radar orientation. When multiple extended targets are close to each
other and the radar echoes from different targets are superimposed, a target PSD is
employed to describe the target feature. The second waveform design algorithm is
proposed to improve the performance of target PSD estimation. The optimization pro-
cess is preceded by target PSD estimation. The target PSD estimation is performed
by the receiver. The receiver continually updates the target PSD estimation and uses
the information to select the optimal waveform for illumination. An adaptive feed-
back loop enables the delivery of the estimated value of PSD to the transmitter. The
transmitter adapts its transmitted waveform to suit the time-variant environment.

The main contributions of the research work are summarized as follows:

1. We present an adaptive radar system model based on the idea of the MSE of TSC
or target PSD minimization.

2. We present a Kalman filtering-based waveform design approach by making use of
the temporal correlation of TSC derived from successive received signals.

3. Weprovide performance analysis of the adaptive system in terms of TSC estimation
and target PSD estimation by the proposed iteration steps. The proposed algorithm
has relatively lower computational complexity.

The organization of this paper is as follows. In Sect. 2, a radar system model for
multitarget parameter estimation is formulated. In Sect. 3, TSC estimation based on the
maximum a posteriori (MAP) criterion is discussed. In Sect. 4, we propose a waveform
optimization scheme based on Kalman filtering for separated targets by minimizing
the MSE of TSC estimation and a waveform design scheme for closed targets by
minimizing the MSE of target PSD estimation. The simulation results illustrating the
proposed methods are provided in Sect. 5, and the conclusions are summarized in
Sect. 6.
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Fig. 1 Adaptive radar architecture for multiple target estimation

2 Radar System Model

In the intelligent transportation scenario, we analyze the performance of an adaptive
radar system that contains the idea of “Kalman filtering” and “target estimation.” The
system architecture of the adaptive radar is presented in Fig. 1. The system consists
of four modules: the transceiver device, TSC estimation module, Kalman filtering
module, and waveform optimization module. The Kalman filtering module and TSC
estimation module are the novel schemes that distinguish the proposed adaptive system
from a traditional feedback system.

Throughout this paper, vectors are denoted by boldface lowercase letters and matri-
ces by boldface uppercase letters. In this work, a range-extended target can be modeled
as a linear time-invariant system with a random impulse response. The TIR can be
denoted by g(m),m = 0,..., M — 1, where M is the number of range cells. The
movement of the target causes the angles to change between the targets and the radar,
which causes fluctuations of the amplitudes and angles of the target echoes. Since
these fluctuations are temporally correlated during the PRI, the extended targets can
be described by a wide-sense stationary (WSS)-uncorrelated scattering model. The
TIRs of different times in a short interval are correlated, and the correlation coef-
ficient decreases with increasing time interval [33]. During the ith pulse, the time
dynamic characteristic of the kth TIR can be described as

qri=e T Tqii1+u, )]

where i is the index of the radar pulses and k is the index of the extended target. The
vector qi,; = [qk,,‘ M), qx.i (), ..., qk.i (M)]T describes the kth TIR at time i. where
()T denotes the transpose. T denotes the radar pulse interval. T denotes the temporal
correlation of target impulse during PRI, which is determined by the change rate of
the target angle. u is zero-mean complex Gaussian noise. To simplify the discussion,
we assume that the correlation coefficients of all K targets are 7.
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During the ith pulse, the change in characteristic of the frequency spectrum can be
expressed by TSC as follows:

gi=e g ii+v, 2)

where g ; = I'qx,; and I is the matrix of the Fourier transform. Similarly, v is zero-
mean complex Gaussian noise. We denote the waveform that will be emitted as f; =
Lfi(D), fi), ..., fi(M)]T, where M is the number of samples. The target echo in
the time domain is the convolution of the TIR with the transmit waveform, which
is characterized by high computational cost. The complexity of waveform design is
increased and cannot be solved efficiently. In this work, through Fourier transforms,
the expressions in physical space are transformed into wave number space, which
facilitates the application of many mathematical natures and principles. The backscat-
tering signals in the frequency domain scattered by the kth target at time i disturbed
by the AWGN w can be expressed as follows:

Yi,i= Ligp i+W, 3)

where z; = I'f;, and Z; = diag{z;} € CM*M _diag(.) denotes the diagonal matrix.
Note that the model in Eq. (3) approximates the linear convolution with the circular
convolution. We consider that the targets are dispersed from each other (maintain a
distance between each other). We assume that Y; = [yl,i Y2.i .- YK.i ] and G; =
[glgi 2 ... 8K.i ] are the matrices of the received signals and TSC, respectively;
W = [wl W2 ... Wk ] is the AWGN matrix. As a result, the backscattering signals
reflected from all K targets can be denoted as follows:

Yl' = Zi Gi +W. (4)

We consider that G; and W are independent of each other. Since the range delay
and the target locations are not useful for CR waveform design, they are ignored in
this paper.

3 TSC Estimation Based on the MAP Criterion

From Ref. [35], the TSC estimation ability should also be considered to provide prior
knowledge for the optimization of the next waveform in CR waveform design for target
detection. We intend to estimate TSC for improving the performance of multitarget
detection in the CR system. During the ith pulse sample, TSC estimation based on the
MAP criterion can be written as follows:

A Y;|G;)p(G;
G, = arg max p(GilY;) = arg max %, )
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where

1
p(YilGi) = —=(Y; —ZG)"C (Y, —z,-G,-)),

1
—_— X
Q)M Cy (K72 p( 2

1 1
pG) = Wexp(—E(Gi)HC;‘Gi) (©)

where C, = E{W#W} is the covariance matrix of the AWGN. g; ~ N(0, Cr)
describes a zero-mean complex Gaussian vector with covariance matrix Cr (Cr
denotes the covariance matrix of g;). Substituting (6) into (5), TSC estimation based
on the MAP criterion can be written as follows:

Gi = QY. O
where
Q= [ cy'z+ 7' @ ey ®)

The MSE of TSC estimation based on the MAP criterion can be expressed as
follows:

E { HGi - G; i} =Q (ZiCT @) +CT> (s

—QiZiCr — Cr Z)" Q" + Cr, )

where E{.} denotes the expectation operator and ||-||, is the /> norm. The weighted
sum of the normalized MSE at time i can be described as follows:

 efjon-eal )
T TEIGE] o

The vector n = [ny, ..., nK]T, (||1r| ||% = 1) is employed for distributing the target
weights.

4 Waveform Optimization
4.1 Separated Targets

Considering the problem of separated targets estimation, we propose a scheme of the
waveform optimization on the premise of ensuring TSC estimation precision, which
can be summarized as follows:

In the first step, we extract an estimate of TSC derived from successive received
signals in the previous time instant. A method based on the MAP criterion is adopted
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Fig. 2 The process of waveform optimization for TSC estimation

to estimate the current TSC. The MSE of TSC estimation can be obtained during the
Kalman filtering-based iteration process.

In the second step, an optimization problem is modeled to design the transmit
waveform by minimizing the MSE of the estimates of TSC, where a weight vector is
introduced to achieve a trade-off among different targets.

The cognitive processing is summarized as follows. The receiver employs the
Kalman filtering approach for updating the target parameters. The radar system updates
the TSC estimation and utilizes this information to choose the optimal waveform for
transmission. An adaptive feedback loop enables delivery of the estimate of TSC to the
transmitter. The transmitter adapts its probing signals to suit the time-varying envi-
ronment. The process of waveform optimization for TSC estimation is depicted in
Fig. 2.

The TSC state transition and the observation process are denoted by Egs. (2) and
(4), respectively. The procedure of Kalman filtering for TSC estimation is summarized
as Algorithm 1 in Table 1.

In parameter estimation, MSE is generally taken as the performance measurement.
We develop a waveform optimization algorithm by minimizing the MSE of TSC
estimation. During the ith pulse sample, the MSE of TSC estimation is preliminarily
described as follows:

f@Z) =Tr{Py }, (11)
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Table 1 Kalman filtering for TSC estimation (Algorithm 1)

Initializing iteration index i = 1, the observed state of TSC G] = Q1Y and the MSE of TSC
P1/1 =0.
Step 1: The predicted matrix of TSC can be expressed as
Gijio1 = T/"Gi i
Step 2: The predicted MSE of TSC can be obtained as
P11 = esz/rP,',H,',] + (1 - 6727“/1>CT.
Step 3: The Kalman gain matrix can be expressed as
®; =P (QiYi)H[(QiYi)Pi\iﬂ QYD+ QiCN(Qi)H]
Step 4: The estimate of TSC can be expressed as
Giji =Gijji—1 +2,QY;.
Step 5: The MSE of TSC is updated as
Py =Pii1 —®;Q;Y;P;ji_;.
If i = Imax, it ends; otherwise, we must repeat Step 1.

where T'r{.} denotes the trace of a matrix. Subject to transmitted power and detection
probability constraints, the waveform design problem can be described as

IT%iin f(Zi)

stIZiI3 < Ef, Paze, (12)
where E y describes the power of the transmitted waveform and P, represents the prob-
ability of detection. The expression P; > ¢ can be expressed by ZIH Gf’ CX,I(A},- Z, > ¢
(see Appendix A). From the literature [40], we can utilize the Woodbury identity to

simplify the objective function. The objective function in (12) under the AWGN chan-
nel can be expressed by the trace of the MSE of estimates of TSC as follows:

p— 71 N
= Tr|:(Pi|ifl) Lecr! - (crrcr@nticy'zicr) ]

~ Ty ((P,-h-_l)*l+(Z,~)HC&1Z,~)711|. (13)
The waveform optimization problem (12) can be rewritten as
. -1 _ -1
7 :I%;H{Tr[((P,-“l) +(Z,»)HCNIZZ-> ”
st Zil3 < Ef, ZHGHCL'GiZi > ¢ (14)
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The objective function in (14) can be rewritten as
—1 . H~—14: -1
f(z)=Tr ((P,-\i_l) + diag(z;) " Cy, dlag(z,-))

— Tr[((P“_l)_l + oc,—vl)_l], (15)

The symbol o is the Hadamard product. U; = zile , and C;l =
Cri .- Ci i

L1 YLK

. . Therefore, the above waveform design problem (12) is rewritten

-1 -1
Ci't - Ci'k
as

_ -1
Z; = argmin Tr[((Piil) '+U; 0 C;l) ]

S.t. Zin,- <Ey, p@)= ZHGHCEI(A},-zi > 8/, (16)
where U is real and symmetric. The target detection constraint is described by
p(z;), which can achieve a maximum value via eigen-decomposition. z; is the
eigenvector corresponding to the maximum eigenvalue of G{'I C;,l(A},-; we have p
(z;) = Amax“rfrllax“max’ where Amax is the maximum eigenvalue of (A}IH C;,] f}i and
Uax is the corresponding maximum eigenvector. AmaxulhaxUmax > ¢ is a neces-
sary condition for the optimization problem. According to [40], the objective function
Tr [(-) - 1] is convex. Therefore, the above waveform optimization problem (14) is con-
vex. We can obtain the optimal solution directly by using a MATLAB optimization
toolbox, such as CVX [40].

However, the proposed scheme is a nonconvex problem in the presence of clutter
interference. Then, the objective function in the optimization problem (12) can be
rewritten as

f(Z)—Tr{ l|l}
_171-!
[ ili— 1‘ —(CT+CT(Z,~)HC;VIZ,~CT) }

1
P +Virf oy, ] } (17)

H . . . .
where V; = (f; +a)(f, +a)" is real and symmetric and a is the clutter interference
vector. The waveform optimization problem (12) can be rewritten as

_ -1
V;k :argn\lfinTr{[(P,-“O 1+Vl-I‘HoC;,1] }
st. TriVi} < Eg, pf) = (£ +a)'THGHC'GiT(f, +a) > ¢.  (18)

@ Springer



Journal of Optimization Theory and Applications (2019) 181:684-705 693

If rank{V}} = 1, we have V} = (f, +a)(f, + a)H. The initial waveform £, is the
optimal solution. If rank{V;k} > 1, since the expression p(f;) > ¢ is not a convex set,
the waveform optimization problem (18) is a nonconvex problem. Then, the expression
p) > ¢ can be rewritten as

£ 9% (rmax) > /&' /0max . (19)

where Omax is the maximal eigenvalue of r# Gfl C]T,](A}il', and rmax is the cor-
responding eigenvector. Through eigen-decomposition, we have '/ (A}[H C;,l GT =
> rikr,f] . As aresult, the convex problem is obtained as follows:

k

+ E fVmax

Vv
Ivmaxllz |,

st 613 < Ep,  £79%(rmax) > /€' /Omax , (20)

where vmax is the eigenvector corresponding to the maximum eigenvalue of V. The
convex problem can be solved using the optimization toolbox, and f* is the optimal
waveform.

£ = argn}in fi+a—

1

4.2 Closed Targets

The description of TSC is mentioned at the beginning of this section. However, when
targets are close to each other, the backscatter signals from different targets are super-
imposed. The existence of this phenomenon may make it difficult to estimate the TSC.
To address this problem, a waveform optimization scheme is proposed by minimizing
the MSE of target PSD estimation instead of TSC estimation. The process of waveform
optimization for target PSD estimation is shown in Fig. 3.

We employ a wideband radar waveform for illumination in order to implement the
target PSD estimation in each frequency sub-band. We consider transmitted waveform
f(¢) as finite duration, which illuminates multiple extended targets. The jth target sig-
nal can be expressed by the convolution of the jth TIR with the transmitted waveform,
sj(t) = qj(t) * f(t), where * denotes the linear convolution operator. The backscat-
tered signals can be expressed by combining all K target signals with background
noise n(t).

K
r(O)=isj0+ Y i) +n(@)

k=1,k#j
= /njsj() +g@) +n()
= s (1) + (o), 1)

where 1y, is the weight coefficient. We define Q(f,) and F(f,) as the Fourier trans-
forms of ¢ ;(¢) and f(¢), respectively, at frequency f. G( f p) is the Fourier transform
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Fig. 3 The process of waveform optimization for target PSD estimation

of g() at frequency f,. The PSD of the jth TIR can be expressed by Py, (f) =

‘ fé‘) qj (1)e/?m /1 dtr. The PSD of transmitted waveform F ( fp) can be expressed by
Ps(fp) = F(fp)F*(fp). p =1.2,..., P, where p is the number of frequency sub-
bands. During the PSD estimation of the jth target, the echo signals from the other
K — 1 targets can be modeled as interference. Therefore, the PSD of backscattered
signals is presented by the sum of the PSD of the jth target signals and the PSD of the
interference and background noise term.

Pr(fp) =n;P, (fp Py fp Z i P fp Pf(fp)"'PN(fp)

k=1,k#£j
=1 Py; (fp) Pr(fp) + Pc(fp) + P (fp)
=n;Py; (fp)Pr(fp) + Pc(fp). P=12.....P. 22)

We assume that background noise is WSS Gaussian distributed with known PSD
PN(fp) = E{N(fp)N(fp)}. N(fp) is the background noise at frequency f,. C
(f») = G(f»)+N(fp) is the Fourier transform of c(¢) at frequency f,,. We considered
that C ( f p) follows a complex Gaussian distribution with zero mean and variance, G¢
(f,,) = Pc (fp). Consequently, we have E{ﬁc (f,,)} = G¢ (f,,). To reduce the
computational burden, the target PSD is estimated using a single sample. Then, we
define Py, ,(fp) and P, (f,) as the PSD of the jth TIR and target signal at time i
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and define Q;, ,( fp) and F; ( fp) as the Fourier transform of ¢ ;(¢) and f(¢) at time i.
Hence, the estimation of Py, ( fp) at time i can be expressed as follows:

r;z(fp) (V15 Q1.i(Fp) Fi(fp) + C(£o)) (V7 Q)i (fo) Fi (f) + C(£p))"
=n; q,-,,-(fp)Pﬁ(fp)"'ﬁC(fﬂ)+ZRG(«/’?_J'Q/J(fp)Fi(fﬂ)C(fp))-

(23)
Then, the estimation of Py, ; ( f p) at time i can be written as follows:
X Pryi(fp) = E{ Pe(£5) + 2Re( 0,1 (£o) Fi (£5)C (1)) }
Py;i(fp) = e
Py, (fp)

The radar target echoes are assumed to be independent of each other and the back-
ground noise, that is,E{Re(Q; i (f) Fi(f»)C(fp))} = 0. Then, the above Eq. (24)
can be rewritten as follows:

B (fp) = Gelfy)
Py, (pr)
Py; (fp) + Pc(f,,) +2Re(‘/n_jQ/’i})(Jfl(’;$(fﬁ)C(fp)) ~ GC(fp)_

ﬁ‘!j.i (fp) =

(25)

Note that the target echoes are also independent of the background noise. The MSE
of the jth target PSD estimation at time i can be expressed as follows (see Appendix
B):

E<P¢1_i,i (fp) = ﬁq-f’i (fp)>2

|:G%(fp) .\ 20;Ge(fp) Py, (fp):|
P (1) P (1) '

[
NE

E(lle()13)

N
Il
_

(26)

I
M~

1

p

From the above Eq. (26), the MSE of the jth target PSD estimation increases with
the decrease in P (fp). If P.(fp) is small, the MSE of the jth target PSD estimation
may be large. To ensure the estimation performance, we consider P, ( fp) in each
frequency sub-band f), to be no less than a specified threshold E7. Durlng the ith
pulse sample, the waveform design for the jth target estimation is implemented by
minimizing the MSE of the jth target PSD estimation. The waveform optimization
problem can be described as follows:

min S Gzc(fp) +2anC(fP)qu.i(fP):|
Z |:P12”f(f1’) Pf,-(fp)
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P
s.t. AfZPfi(fp):Ef, Ps(fp) = Er, Py >, 27)
p=1

where Af is the sub-bandwidth and E ¢ is the transmit power. The expression Py > ¢
can be expressed by ZiH f}f’ le,l(AliZi > ¢'. Then, the optimization problem (27) can
be rewritten as follows:

& |:G2C(fp) + 2anC(f”)qu,i (f/’):|
P; (/) P, (fp)

P
st. Af Y Pi(fp) =Es. Pr(fp) = Er. ZPGIRY'GiZ, = (28)
p=1

Obviously, the above Eq. (28) is a convex optimization problem. The Lagrange
multiplier A is employed to satisfy the transmit power constraint.

G% (fp) + 2’7-/GC(fP)Pth,f (fp)
Pi(7r) P (fr)

E P
H(Py (1)) = e k= Pl
p=1

(29)

Taking the gradient of (29) with respect to Py ( fp) and making it equal to zero,

w = 0. From Ref. [38], the optimal solution to (29) can be obtained as

oPy, (fp)
follows:
N s PA(f s PA(f
Pﬁ(fp):\/—¥+ﬁ+\/—#—ﬁ, (30)
K 3
P4(f ) SPI%J(fP)<k¥1 nthlk.i (f!’))
where u = X Aé” + 773 . The above Eq. (30) is a monotonic

function and single-variable optimization problem, which can be implemented via the
dichotomy method. The procedure of waveform optimization for target PSD estimation
is summarized as Algorithm 2 in Table 2.

In this paper, we assume that all radar targets have a similar reflection characteristic.
To simplify the discussion, if the multiple targets always overlap each other during
the entire observation period, the reflection characteristics of the radar scene can be
regarded as time-invariant. The target PSD, viewed as long-term memory, can be used
in transmit waveform design for a relatively long time.

In summary, we aim to explore the waveform optimization for an adaptive radar
system under a multitarget scenario. There are two scenarios to consider: multiple
extended targets separated in range and multiple extended targets close in range. We
propose a waveform optimization scheme based on Kalman filtering by minimizing
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Table 2 Waveform Optimization for target PSD estimation (Algorithm 2)

Initializing iteration index t = 1, Ajpax» Amin and tolerance o

A A .
Stepl:r=t+1,1, = m, calculate the PSD of optimized waveform Py, , (fps Ar)-

P
Step 2: Calculate the power of optimized waveform E; = Y pr’,(fp, A)AS.
p=1

Step 3: If |E, - Ef|/Ef < a, output optimal solution Pr ;(f) = Pr :(f, Ar).
Step 4: If E; = E ¢ end; otherwise, repeat Step 1

(a) 15 (b)lS
10
10
st
N m st
A 2
a ’f a
2] )
Aot -
-15
S
20t
225 -10
0 100 200 300 400 500 0 100 200 300 400 500
Frequency index Frequency index
Fig. 4 a The PSD of Target 1; b the PSD of Target 2
Table 3 Simulation parameters Eg Transmitted power 1
L Length of signal 30
T Temporal correlation 0.1s
M Pulse interval 1 ms
Pd Detection probability 0.95
N Target number 2

the MSE of separated TSC estimation and a waveform optimization approach by
minimizing the MSE of closed target PSD estimation.

5 Simulation

In this section, we simulate Algorithm 1 by minimizing the MSE of TSC estimation
and Algorithm 2 by minimizing the MSE of target PSD estimation. We consider two
extended targets with different TSC and PSD. We define g, (k = 1, 2) as the TSC of
the kth target. g ~ N(O, CT,k) denotes a zero-mean complex Gaussian vector with
covariance matrix Cr ;. The PSDs of two targets are depicted in Fig. 4a, b.

The center frequency is 10 GHz, and the bandwidth is 500 MHz. The number of
sub-bands is 500, and the sub-bandwidth is 1 MHz. The simulation parameters are
reported in Table 3.
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Fig. 5 The normalized MSE of separated TSC estimation a Target 1 and b Target 2

5.1 Separated Targets

We employ three kinds of transmit waveforms to compare the performance of TSC
estimation: (1) the random waveform based on the MAP criterion, (2) the opti-
mized waveform employing the water-filling method, and (3) the optimized waveform
employing the proposed Algorithm 1. Eight hundred simulations have been run for
each at a particular value of the received SNR. We simulate the proposed Algorithm
1 by using the scattering characteristics of the first and second targets. The perfor-
mances of TSC estimation for the first and second targets are shown in Fig. 5a, b,
respectively.

Figure 5a, b indicates the normalized MSE with regard to TSC estimation under
the constraint of detection probability in multipath environments [41, 42]. We discuss
the problem of estimating multitarget parameters in diffuse multipath environments,
modeling the target echo as the superposition of multiple time-varying signals (due to
multiple direct paths) as shown in Eq. (4).

Figure 5a shows that for Target 1, the normalized MSE of TSC estimation provided
by the proposed Algorithm 1 is less than the one using the MAP criterion and the water-
filling method. Similarly, from Fig. 5b, for Target 2, the performance of TSC estimation
generated by the proposed Algorithm 1 is improved by several times compared with
the MAP criterion and the water-filling method after 20 iterations.

Because the proposed Algorithm 1 utilizes the temporal correlation of TSC during
the pulse interval, the proposed radar system adapts its probing signal to the fluctuating
target RCS. On the other hand, the optimized waveform provided by the water-filling
method is unable to match the time-varying TSC after multiple iterations. Therefore,
the estimation performance provided by the proposed Algorithm 1 is optimal in this
case.

To make a trade-off between two targets, we use the vector y to assign weights of
separated targets dynamically. The performances of TSC estimation for two targets
with different weight coefficients are shown in Fig. 6a, b: (a) the normalized MSE of
TSC estimation for Target 1 and (b) the normalized MSE of TSC estimation for Target
2. As shown in Fig. 6a, b, the estimation performance is improved by increasing the
weight coefficient of the corresponding target after the first small iteration.
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For the joint waveform design consideration, vector n is adopted to assign the
weights of different targets. The joint normalized MSE of TSC estimation for two
separated targets is depicted in Fig. 7. The curve is generated at the end of 20 itera-
tions. The + denotes the random waveform based on the MAP criterion; the * denotes
the optimized waveform employing the water-filling method; and o denotes the opti-
mized waveform employing the proposed Algorithm 1. Multiple red points denote
the estimation performance of two targets with different vectors of weight coefficients
(m=1[1,0];m =[0.8,0.2];y = [0.6,0.4];n = [0.4,0.6]; 1 = [0.2, 0.8]; y = [0, 1]).
As we can observe from Fig. 7, when the weight coefficients are between [0.8, 0.2] and
[0.2, 0.8], the curve of the joint normalized MSE provided by the proposed Algorithm
1 is at the lower-left corner. The normalized MSE of TSC estimation generated by
the proposed Algorithm 1 is approximately 0.15, compared with 0.78 offered by the
water-filling method and 0.86 generated by the MAP criterion. The optimized wave-
form generated by the proposed Algorithm 1 has the best estimation performance. No
significant improvement was observed after 20 iterations.
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Fig. 8 The normalized MSE of close-target PSD estimation a Target 1 and b Target 2

5.2 Closed Targets

We demonstrate the benefits of the proposed Algorithm 2 for target PSD estimation. We
employ three types of transmit waveforms to compare the performance of target PSD
estimation: (1) the random waveform based on the MAP criterion; (2) the optimized
waveform generated by the proposed Algorithm 1; and (3) the optimized waveform
generated by the proposed Algorithm 2. Eight hundred simulations have been run
for each at a particular value of the received SNR. The performances of target PSD
estimation for the first and second targets are shown in Fig. 8a, b, respectively.

Figure 8a, b indicates the normalized MSE of close-target PSD estimation under
the constraint of detection probability in multipath environments. The notations are
the same as that in Fig. 6. These plots demonstrate an improved MSE performance
generated by the proposed Algorithm 2 compared with the MAP method and the
proposed Algorithm 1. As can be observed from Fig. 8a, for Target 1, the normalized
MSE of target PSD estimation generated by the proposed Algorithm 2 is improved
by 25% compared with the proposed Algorithm 1. Similarly, from Fig. 8b, for Target
2, the normalized MSE of TSC estimation generated by the proposed Algorithm 2
is improved by 20% compared with the proposed Algorithm 1. The performance of
TSC estimation generated by the proposed Algorithm 2 is improved by 75% compared
with the MAP method after 20 iterations. The optimized waveform generated by the
proposed Algorithm 2 is able to increase the energy of the target echo, which is useful
for target estimation.

The joint normalized MSE of PSD estimation for two closed targets is depicted
in Fig. 9. The curve is generated at the end of 20 iterations. The notations are the
same as those in Fig. 7. When the weight coefficients are between [0.6, 0.4] and
[0.4, 0.6], the curve of the joint normalized MSE generated by the proposed Algorithm
2 is at the lower-left corner. The normalized MSE of PSD estimation generated by
the proposed Algorithm 2 is approximately 0.7 compared with 0.91 offered by the
proposed Algorithm 1 (y = [0.8, 0.2]). The normalized MSE of TSC estimation
generated by the proposed Algorithm 2 and Algorithm 1 are compared to verify the
efficiency of the proposed Algorithm 2 at each iteration step.

@ Springer



Journal of Optimization Theory and Applications (2019) 181:684-705 701

Fig. 9 The joint normalized MSE 1 T T T T T
of closed target PSD estimation 3
0.95 - 1
Weight[1,0]
09+ 1
N
EI = Unoptimized waveform(MAP)
&0 0.85 Optimized waveform(The proposed approach 1)| |
EI -©- Optimized waveform(The proposed approach 2)
QD 08r 1
22}
s Weight[0.8,0,2]
0.75 1 Weight[0.6,0,4] 1
0.7 FWeight[0.4,0,6] 4
Weight[0,1]
Weight[0.2,0,
0.65 h . . . . .
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MSE target 1

6 Conclusions

We have proposed a waveform optimization scheme based on Kalman filtering by
minimizing the MSE of separated TSC estimation, in addition to a waveform design
scheme based on minimizing the MSE of close-target PSD estimation. An adaptive
feedback loop enables the delivery of parameter estimation to the transmitter. The
radar system updates the parameter estimation and utilizes this information to choose
the optimal waveform for illumination. Finally, subject to the transmitted power and
detection probability constraints, the simulation results demonstrate that the proposed
schemes provide higher performance gains in terms of TSC estimation and target PSD
estimation while still maintaining relatively lower computational complexity.
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Appendix A: Derivation of the Probability Constraints in (12)
Since the true TSC is unknown, the estimate of TSC based on Kalman filtering is
used to replace the true TSC to design the radar waveform. We assume that H; and

Hy are the presence and absence of a target, respectively. Then, the distribution of
backscattered signals can be expressed as

Yi|Ho ~ N{0, Cy},
YilHy ~N{z:Gi. Cy . (3D

where Ci is the estimate of TSC. The likelihood estimation is
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N{Z,-G,-,CN} "

Y)=—~———— 2 <T
(v, N{0,Cn} 1,

L H
s YICy'2,G s T, 32)
Hy
where T is the detection threshold. The false alarm probability of CFAR detection is

Pro=P(WIC}'2:6G = 7)
~ \H N
- Q(T/\/<Z,»Gi) c;,‘z,-G,-). (33)

Q(.) is the Q-function. The detection threshold is T = 0!

~ \H ~
(P fa)\/ (Z,- G,-) C;,l Z;G;. The probability of detection can be rewritten as
. H .
P;=P (ZiGi +W) CN 7;,Gi>T

= Q(Q_I(Pfa) —\/(Ziéi)HC;IZ[éi). (34)

Since the Q-function describes a monotonically decreasing function, the expression
P; > & can be rewritten as

Z1GICy'Giz, > ¢ (35)

Appendix B: Derivation of (26)

The estimation error of Py, ( fp) can be expressed as

R

g(fl’) = Py;,; (fp) - ﬁq_f,i (fp)
_ Ge(fp) = Pe(fp) = 2Re( ;)i (fp) Fi(£2)C (1))
- Py, (fp) '

(36)

The MSE of the jth target PSD estimation at time i can be expressed by

E(ne(f)n%) = XPj E(qu,i (fp) = Py, (fp))2
p=1
P
-y 2‘ E{cc( fp) = Be(fp) —2Re(/ﬂ Qj.i(fp)Fi(fP)C(fP))}z
p=1 Ff; (7)
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(Ge o) — Pelfy)) +4nj(Re(04 (£ Fi£)C(£))?

P
= Z E

b= PP\ —are(7505.4 () F ()€ ) (Ge () = Pe (1)
(37)
In (37), we have
£((Gelr) = Pels)') = G2 (7). o)
E(Re(Qj,i(fp)Fi(fp)c(fp))(GC(fp) - ﬁC(fp)» =0. 39

E(4nRe(0,.i (/o) Fi(£5)C (1)) = 20,Gc (fo) Py, (o) Py (o) (40)
Substituting (38)—(40) into (37), we have

ul G2 (f ) zanC(fP)qu,i (fP)
E(leHI3) = p?, (f;’) R WA . (1)

p=1
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