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Abstract In this paper, one of our main purposes is to prove the boundedness of the
solution set of tensor complementarity problems such that the specific bounds depend
only on the structural properties of such a tensor. To achieve this purpose, firstly,
we prove that this class of structured tensors is strictly semi-positive. Subsequently,
the strictly lower and upper bounds of operator norms are given for two positively
homogeneous operators. Finally, with the help of the above upper bounds, we show
that the solution set of tensor complementarity problems has the strictly lower bound.
Furthermore, the upper bounds of spectral radius are obtained, which depends only
on the principal diagonal entries of tensors.

Keywords Structured tensor · Tensor complementarity problems · Spectral radius ·
Operator norms · Upper and lower bounds
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1 Introduction

As a natural extension of linear complementarity problem, the tensor complemen-
tarity problem is a new topic emerged from the tensor community. Meanwhile, such
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a problem is a special type of nonlinear complementarity problems. So the tensor
complementarity problem seems to have similar properties to the linear complemen-
tarity problem, and to have its particular properties other than ones of the classical
nonlinear complementarity problem, and to have some nice properties that depended
on itself special structure. The notion of the tensor complementarity problem was
used firstly by Song and Qi [1,2]. Recently, Huang and Qi [3] formulated a multi-
player non-cooperative game as a tensor complementarity problem and showed that
a Nash equilibrium point of the multilinear game is equivalent to a solution of the
tensor complementarity problem. By using specially structured properties of tensors,
the properties of the tensor complementarity problem have been well studied in the
literatures. For example, see Song andYu [4], Song andQi [5] for strictly semi-positive
tensors, Gowda et al. [6], Luo et al. [7] for Z-tensors, Ding et al. [8] for P-tensors,Wang
et al. [9] for exceptionally regular tensors, Bai et al. [10] for strong P-tensors, Che et
al. [11] for some special tensors, Huang et al. [12] for Q-tensors. Song and Qi [13],
Ling et al. [14,15], Chen et al. [16] studied the tensor eigenvalue complementarity
problems.

In past several decades, numerous mathematical works concerned with error bound
analysis for the solution of linear complementarity problem by means of the special
structure of the matrices. For more details, see [17–22]. Recently, motivated by the
study on error bounds for linear complementarity problems, Song and Yu [4] and Song
and Qi [23] extended the error bounds results of the linear complementarity problems
to the tensor complementarity problems with strictly semi-positive tensors. However,
there are relatively few works in the specific upper or lower bounds of the tensor
complementarity problems, which is a weak link in this topics.

In this paper,wewill give the boundedness of solution set of tensor complementarity
problem with B-tensors. Moreover, we will present the specific lower bounds of such
a problem, which depend only upon the structural properties of B-tensors.

To achieve the above goal, we need study the structured properties of B-tensors.
Nowadays, miscellaneous structured tensors have been widely studied (Qi and Luo
[24]), which is one of hot research topics. For more detail, see Zhang et al. [25] and
Ding et al. [26] for M-tensors, Song and Qi [1] for P-tensors and B-tensors, Li and
Li [27] for double B-tensors, Song and Qi [28,29] and Mei and Song [30] for Hilbert
tensors. Recently, the concept of B-tensors was first used by Song and Qi [1]. They
gavemany nice structured properties which are similar to ones of B-matrices. Formore
nice properties and applications of B-matrices, see Peña [31,32]. It is well known that
each B-matrix is a P-matrix. However, the same conclusion only holds for even-order
symmetric B-tensors [33]. Qi and Song [34] showed that an even-order symmetric
B-tensor is positive definite. Yuan and You [33] proved that a non-symmetric B-tensor
is not P-tensor in general. So there are many special properties of B-tensors for further
and serious consideration.

In Sect. 3, we prove that each B-tensor is strictly semi-positive. So, the solution set
of tensor complementarity problem with B-tensor is bounded. In order to presenting
the specific lower bounds of such a problem, in Sect. 4, we give the strictly lower
and upper bounds of the norms for two positively homogeneous operators induced by
B-tensors. By means of the above upper bounds, we establish the strictly lower bound
of solution set of tensor complementarity problem with B-tensors. Furthermore, we
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achieve our another objective with the help of upper bounds of operator norms. That
is, we obtain the upper bounds of spectral radius and E-spectral radius of B-tensor,
which depends only on the principal diagonal entries of tensors.

2 Preliminaries and Basic Facts

An m-order n-dimensional tensor (hypermatrix)A = (ai1···im ) is a multi-array of real
entries ai1···im ∈ R, where i j ∈ [n] = {1, 2, . . . , n} for j ∈ [m] = {1, 2, . . . , m}. The
set of all m-order n-dimensional tensors is denoted by Tm,n . If the entries ai1···im are
invariant under any permutation of their indices, then A is called a symmetric tensor,
denoted by Sm,n . Let A = (ai1···im ) ∈ Tm,n and a vector x = (x1, x2, . . . , xn)� ∈ R

n .
Then Axm−1 is a vector with its i th component defined by

(
Axm−1

)
i
:=

n∑
i2,...,im=1

aii2···im xi2 · · · xim ,∀i ∈ [n]

and Axm is a homogeneous polynomial of degree m, defined by

Axm := xT
(
Axm−1

)
=

n∑
i1,i2,...,im=1

ai1i2···im xi1xi2 · · · xim .

For any q ∈ R
n , the tensor complementarity problem, denoted by T C P(A, q), is

to find x ∈ R
n such that

x ≥ 0, q + Axm−1 ≥ 0 and xT (q + Axm−1) = 0, (1)

or to show that no such vector exists.
An n-dimensional B-matrix B = (bi j ) is a square real matrix with its entries

satisfying that for all i ∈ [n]
n∑

j=1

bi j > 0 and
1

n

n∑
j=1

bi j > bik, i �= k

As a natural extension of B-matrices. Song and Qi [1] gave the definitions of B-tensors
and B0-tensors.

Definition 2.1 Let B = (bi1···im ) ∈ Tm,n . Then B is said to be

(i) a B-tensor iff for all i ∈ [n],
n∑

i2,...,im=1
bii2i3···im > 0 and

1

nm−1

⎛
⎝

n∑
i2,...,im=1

bii2i3···im

⎞
⎠ > bi j2 j3··· jm , for all ( j2, j3, . . . , jm) �= (i, i, . . . , i);
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(ii) a B0-tensor iff for all i ∈ [n],
n∑

i2,...,im=1
bii2i3···im ≥ 0 and

1

nm−1

⎛
⎝

n∑
i2,...,im=1

bii2i3···im

⎞
⎠ ≥ bi j2 j3··· jm , for all ( j2, j3, . . . , jm) �= (i, i, . . . , i).

For each i ∈ [n], let

ηi (B) = max{bi j2 j3··· jm ; ( j2, j3, · · · , jm) �= (i, i, · · · , i), j2, . . . , jm ∈ [n]}

and
βi (B) = max{0, ηi (B)}. (2)

Lemma 2.1 (Song and Qi [1, Theorems 5.1, 5.2, 5.3]) Let B = (bi1···im ) ∈ Tm,n. If B
is a B-tensor, then, for each i ∈ [n],
(i) bii ···i > |bi j2 j3··· jm | for all ( j2, j3, . . . , jm) �= (i, i, . . . , i), j2, j3, . . . , jm ∈ [n];
(ii)

n∑
i2,...,im=1

bii2i3···im > nm−1βi (B);

(iii) bii ···i >
∑

bii2 ···im <0
|bii2i3···im |.

If B is a B0-tensor, then, the above three inequalities hold with “>” being replaced
by “≥”.

The concepts of tensor eigenvalues were introduced by Qi [35,36] to the higher-
order symmetric tensors, and the existence of the eigenvalues and some applications
were studied there. Lim [37] independently introduced the concept of real tensor
eigenvalues and obtained some existence results using a variational approach.

Definition 2.2 Let A = (ai1···im ) ∈ Tm,n .

(i) A number λ ∈ C is called an eigenvalue ofA iff there is a nonzero vector x such
that

Axm−1 = λx [m−1]. (3)

and x is called an eigenvector ofA associated with λ. Such an eigenvalue is called
H -eigenvalue if it is real and has a real eigenvector x , and such a real eigenvector
x is called H-eigenvector.

(ii) A number μ ∈ C is said to be an E-eigenvalue of A iff there exists a nonzero
vector x such that

Axm−1 = μx(xT x)
m−2
2 , (4)

and x is called an E-eigenvector of A associated with μ. It is clear that if x is
real, then, μ is also real. In this case, μ and x are called a Z -eigenvalue ofA and
a Z -eigenvector of A, respectively.
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We now give the definitions of (strictly) semi-positive tensors (Song and Qi [2,5]).

Definition 2.3 Let A = (ai1···im ) ∈ Tm,n . A is said to be

(i) semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ [n] such
that

xk > 0 and
(
Axm−1

)
k

≥ 0;

(ii) strictly semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ [n]
such that

xk > 0 and
(
Axm−1

)
k

> 0.

For x ∈ R
n , it is well known that

‖x‖∞ := max{|xi |; i ∈ [n]} and ‖x‖p :=
(

n∑
i=1

|xi |p

) 1
p

(p ≥ 1) (5)

are two main norms defined on R
n . Then, for a continuous, positively homogeneous

operator T : Rn → R
n , it is obvious that

‖T ‖p := max‖x‖p=1
‖T (x)‖p and ‖T ‖∞ := max‖x‖∞=1

‖T (x)‖∞ (6)

are two operator norms of T. For A ∈ Tm,n , we may define a continuous, positively
homogeneous operator TA : Rn → R

n by

TA(x) :=
{

‖x‖2−m
2 Axm−1, x �= 0,

0, x = 0.
(7)

When m is even, we may define another continuous, positively homogeneous operator
FA : Rn → R

n by for any x ∈ R
n ,

FA(x) :=
(
Axm−1

)[
1

m−1

]
. (8)

The following upper bounds and properties of the operator norm were established by
Song and Qi [23,38].

Lemma 2.2 (Song and Qi [38, Theorem 4.3] and [23, Lemma 3, Lemma 4]) Let
A = (ai1···im ) ∈ Tm,n. Then,

(i) ‖TA‖∞ ≤ max
i∈[n]

n∑
i2,...,im=1

|aii2···im |;
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(ii) ‖FA‖∞ ≤ max
i∈[n]

(
n∑

i2,...,im=1
|aii2···im |

) 1
m−1

if m is even;

(iii) ‖TA‖p ≤ n
m−2

p

(
n∑

i=1

(
n∑

i2,...,im=1
|aii2···im |

)p) 1
p

;

(iv) ‖FA‖p ≤
⎛
⎝ n∑

i=1

(
n∑

i2,...,im=1
|aii2···im |

) p
m−1

⎞
⎠

1
p

if m is even.

3 The Strictly Semi-Positivity of B-Tensors

Theorem 3.1 Let B be an m-order n-dimensional B-tensor. Then, B is strictly semi-
positive.

Proof Suppose thatB is not strictly semi-positive. Then, there exists x ≥ 0 and x �= 0,
for all k ∈ [n] with xk > 0 such that

(
Bxm−1

)
k

≤ 0.

Choose xi > 0 with xi ≥ xk for all k ∈ [n]. Clearly, (Bxm−1
)

i ≤ 0. Then, we have

0 ≥
(
Bxm−1

)
i
=

n∑
i2,i3,...,im=1

bii2···im xi2xi3 · · · xim

= bii ···i xm−1
i +

∑
bii2 ···im <0

bii2···im xi2xi3 · · · xim

+
∑

bii2 ···im >0

bii2···im xi2xi3 · · · xim

≥ bii ···i xm−1
i +

∑
bii2 ···im <0

bii2···im xm−1
i

+
∑

bii2 ···im >0

bii2···im xi2xi3 · · · xim

≥
⎛
⎝bii ···i +

∑
bii2 ···im <0

bii2···im

⎞
⎠ xm−1

i .

By Lemma 2.1 (iii), we obtain

0 <

⎛
⎝bii ···i +

∑
bii2 ···im <0

bii2···im

⎞
⎠ xm−1

i ≤
(
Bxm−1

)
i
≤ 0,

123



J Optim Theory Appl (2018) 176:289–305 295

a contradiction. Consequently, B must be strictly semi-positive. ��
Using the similar proof technique, it is easy to prove the following conclusion.

Theorem 3.2 Let B be an m-order n-dimensional B0-tensor. Then, B is semi-positive.

Clearly, by Theorem 3.2 of Song and Yu [4] and Corollary 3.3 of Song and Qi [2],
we easily obtain the following.

Corollary 3.3 Let B be an m-order n-dimensional B-tensor. Then, for each q ∈ R
n,

the tensor complementarity problem T C P(B, q) has always a solution. Furthermore,
the solution set of the T C P(B, q) is bounded for each q ∈ R

n.

4 Boundedness About B-Tensors

We now present the upper and lower bounds of the operator norm associated with a
B-tensor.

Theorem 4.1 Let B be an m-order n-dimensional B tensor. Then,

(i) n
m
2 maxi∈[n] βi (B) < n

2−m
2 max

i∈[n]
n∑

i2,...,im=1
bii2···im ≤ ‖TB‖∞ < n

m
2 max

i∈[n] bii ···i ;

(ii) n
mp−2
2p

(
n∑

i=1
(βi (B))p

) 1
p

< n
2p−pm−2

2p

(
n∑

i=1

(
n∑

i2,...,im=1
bii2···im

)p) 1
p

≤ ‖TB‖p <

n
mp−2
2p (

n∑
i=1

bp
ii ···i )

1
p if p ≥ 1,

where βi (B) is defined by (2).

Proof (i) Choose e = (1, 1, . . . , 1)�. Then, ‖e‖∞ = 1 and ‖e‖2 = n
1
2 , and hence, by

Lemma 2.1 (ii), we have

‖TB(e)‖∞ = max
i∈[n]

∣∣∣∣∣∣
‖e‖2−m

2

n∑
i2,...,im=1

bii2···im

∣∣∣∣∣∣

= n
2−m
2 max

i∈[n]

n∑
i2,...,im=1

bii2···im

> n
2−m
2 max

i∈[n] nm−1βi (B)

= n
m
2 max

i∈[n] βi (B).

Consequently,

n
m
2 max

i∈[n] βi (B) < n
2−m
2 max

i∈[n]

n∑
i2,...,im=1

bii2···im ≤ ‖TB‖∞.
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Now we show the right inequality. It follows from Lemma 2.1 (i) together with the
fact that ‖x‖1 ≤ n‖x‖∞ and ‖x‖2 ≤ √

n‖x‖∞ that

‖TB‖∞ = max‖x‖∞=1
‖TB(x)‖∞ = max‖x‖∞=1

max
i∈[n]

∣∣∣∣∣∣
‖x‖2−m

2

n∑
i2,...,im=1

bii2···im xi2xi3 · · · xim

∣∣∣∣∣∣

≤ max‖x‖∞=1
n

2−m
2 ‖x‖2−m∞ max

i∈[n]

⎛
⎝

n∑
i2,...,im=1

|bii2···im ||xi2 ||xi3 | · · · |xim |
⎞
⎠

< n
2−m
2 max‖x‖∞=1

‖x‖2−m∞ max
i∈[n]

⎛
⎝bii ···i

n∑
i2,...,im=1

|xi2 ||xi3 | · · · |xim |
⎞
⎠

= n
2−m
2 max‖x‖∞=1

‖x‖2−m∞ max
i∈[n]

⎛
⎝bii ···i

(
n∑

k=1

|xk |
)m−1

⎞
⎠

= n
2−m
2 max‖x‖∞=1

‖x‖2−m∞ max
i∈[n](bii ···i‖x‖m−1

1 )

≤ n
2−m
2 max‖x‖∞=1

‖x‖2−m∞ (n‖x‖∞)m−1 max
i∈[n] bii ···i

= n
m
2 max

i∈[n] bii ···i .

(ii) Choose y = (n− 1
p , n− 1

p , . . . , n− 1
p )�. Then, ‖y‖p = 1 and ‖y‖2 = n

p−2
2p , and

hence, by Lemma 2.1 (ii), we have

‖TB(y)‖p
p =

n∑
i=1

∣∣∣∣∣∣
‖y‖2−m

2

n∑
i2,...,im=1

bii2···im (n− 1
p )m−1

∣∣∣∣∣∣

p

= n
(p−2)(2−m)

2

n∑
i=1

n1−m

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

p

> n
(p−2)(2−m)

2

n∑
i=1

n1−m
(

nm−1βi (B)
)p

= n
mp−2

2

n∑
i=1

(βi (B))p .

Consequently,

n
mp−2
2p

(
n∑

i=1

(βi (B))p

) 1
p

< n
2p−pm−2

2p

⎛
⎝

n∑
i=1

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

p⎞
⎠

1
p

≤ ‖TB‖p.
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Next we show the right inequality. By Lemma 2.1 (i) together with the fact that

‖x‖q ≤ ‖x‖p ≤ n
1
p − 1

q ‖x‖q for q > p, we obtain

‖TB‖p
p = max‖x‖p=1

‖TB(x)‖p
p

= max‖x‖p=1

n∑
i=1

∣∣∣∣∣∣
‖x‖2−m

2

n∑
i2,...,im=1

bii2···im xi2xi3 · · · xim

∣∣∣∣∣∣

p

≤ max‖x‖p=1
‖x‖(2−m)p

2

n∑
i=1

⎛
⎝

n∑
i2,...,im=1

|bii2···im ||xi2 ||xi3 | · · · |xim |
⎞
⎠

p

< max‖x‖p=1
‖x‖(2−m)p

2

n∑
i=1

⎛
⎝bii ···i

n∑
i2,...,im=1

|xi2 ||xi3 | · · · |xim |
⎞
⎠

p

= max‖x‖p=1
‖x‖(2−m)p

2

n∑
i=1

⎛
⎝bii ···i

(
n∑

k=1

|xk |
)m−1

⎞
⎠

p

= max‖x‖p=1
‖x‖(2−m)p

2

n∑
i=1

(bii ···i‖x‖m−1
1 )p

≤ max‖x‖p=1
‖x‖(2−m)p

2 (
√

n‖x‖2)(m−1)p
n∑

i=1

bp
ii ···i

= max‖x‖p=1
n

(m−1)p
2 ‖x‖p

2

n∑
i=1

bp
ii ···i

≤ max‖x‖p=1
n

(m−1)p
2 (n

1
2− 1

p ‖x‖p)
p

n∑
i=1

bp
ii ···i

= n
mp−2

2

n∑
i=1

bp
ii ···i .

The desired conclusions follow. ��

Theorem 4.2 Let B be an m-order n-dimensional B-tensor. If m is even, then,

(i) n (βi (B))
1

m−1 < max
i∈[n]

(
n∑

i2,...,im=1
bii2···im

) 1
m−1

≤ ‖FB‖∞ ≤ max
i∈[n]

(
n∑

i2,...,im=1
|bii2···im |

) 1
m−1

< n max
i∈[n] b

1
m−1
i i ···i ;
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(ii) n
p−1

p

(
n∑

i=1
(βi (B))

p
m−1

) 1
p

< 1
p√n

⎛
⎝ n∑

i=1

(
n∑

i2,...,im=1
bii2···im

) p
m−1

⎞
⎠

1
p

≤ ‖FB‖p <

n
p−1

p

(
n∑

i=1
b

p
m−1
i i ···i

) 1
p

(p ≥ 1).

Proof (i) Choose e = (1, 1, . . . , 1)�. Then, ‖e‖∞ = 1, and hence, by Lemma 2.1
(ii), we have

‖FB(e)‖∞ = max
i∈[n]

∣∣∣∣∣∣
n∑

i2,...,im=1

bii2···im

∣∣∣∣∣∣

1
m−1

= max
i∈[n]

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

1
m−1

> n max
i∈[n] (βi (B))

1
m−1 .

So, by the definition of the operator norm, we have

n max
i∈[n] (βi (B))

1
m−1 < max

i∈[n]

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

1
m−1

≤ ‖FB‖∞.

From Lemmas 2.2 (ii) and 2.1 (i), it follows that

‖FB‖∞ ≤ max
i∈[n]

⎛
⎝

n∑
i2,...,im=1

|bii2···im |
⎞
⎠

1
m−1

< max
i∈[n]

⎛
⎝

n∑
i2,...,im=1

bii ···i

⎞
⎠

1
m−1

= n max
i∈[n] b

1
m−1
i i ···i .

(ii) Choose y = (n− 1
p , n− 1

p , . . . , n− 1
p )�. Then, ‖y‖p = 1, and hence, by Lemma 2.1

(ii), we have

‖FB(y)‖p
p =

n∑
i=1

∣∣∣∣∣∣
n∑

i2,...,im=1

bii2···im (n− 1
p )m−1

∣∣∣∣∣∣

p
m−1

=
n∑

i=1

1

n

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

p
m−1

>
1

n

n∑
i=1

(
nm−1βi (B)

) p
m−1

= n p−1
n∑

i=1

(βi (B))
p

m−1 .
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Consequently,

n
p−1

p

(
n∑

i=1

(βi (B))
p

m−1

) 1
p

<
1

p
√

n

⎛
⎜⎝

n∑
i=1

⎛
⎝

n∑
i2,...,im=1

bii2···im

⎞
⎠

p
m−1

⎞
⎟⎠

1
p

≤ ‖FB‖p.

Next we show the right inequality. By Lemma 2.1 (i) together with the fact that

‖x‖1 ≤ n1− 1
p ‖x‖p for p > 1, we obtain

‖FB‖p
p = max‖x‖p=1

‖FB(x)‖p
p = max‖x‖p=1

n∑
i=1

∣∣∣∣∣∣
n∑

i2,...,im=1

bii2···im xi2xi3 · · · xim

∣∣∣∣∣∣

p
m−1

< max‖x‖p=1

n∑
i=1

⎛
⎝bii ···i

n∑
i2,...,im=1

|xi2 ||xi3 | · · · |xim |
⎞
⎠

p
m−1

= max‖x‖p=1

n∑
i=1

⎛
⎝bii ···i

(
n∑

k=1

|xk |
)m−1

⎞
⎠

p
m−1

= max‖x‖p=1
‖x‖p

1

n∑
i=1

b
p

m−1
i i ···i

≤ max‖x‖p=1

(
n1− 1

p ‖x‖p

)p n∑
i=1

b
p

m−1
i i ···i

= n p−1
n∑

i=1

b
p

m−1
i i ···i .

The desired conclusions follow.
��

Theorem 4.3 Let B be an m-order n-dimensional B0-tensor. Then,

(i) n
m
2 maxi∈[n] βi (B) ≤ ‖TB‖∞ ≤ n

m
2 max

i∈[n] bii ···i ;

(ii) n
mp−2
2p

(
n∑

i=1
(βi (B))p

) 1
p ≤ ‖TB‖p ≤ n

mp−2
2p

(
n∑

i=1
bp

ii ···i
) 1

p

if p ≥ 1;

(iii) n (βi (B))
1

m−1 ≤ ‖FB‖∞ ≤ n max
i∈[n] b

1
m−1
i i ···i if m is even;

(iv) n
p−1

p

(
n∑

i=1
(βi (B))

p
m−1

) 1
p ≤ ‖FB‖p ≤ n

p−1
p

(
n∑

i=1
b

p
m−1
i i ···i

) 1
p

if m is even and p ≥
1.

For aB-tensorB, it is obvious that the upper bounds of its operator norms are simpler
in form than ones of Lemma 2.2, but we cannot compare their size relationship. By
constructing following two examples, we show that there exists B-tensors such that
the above upper bounds of ‖TB‖ and ‖FB‖ are smaller than the ones of Lemma 2.2.
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Example 4.1 Let B = (bi1i2i3i4) ∈ S4,3, where b1111 = b3333 = 6, b2222 = 5,
b1333 = b3133 = b3313 = b3331 = 1, b2322 = b2232 = b2223 = b3222 = 1.5 and all
other bi1i2i3i4 = 2. Then, B is a B-tensor.

Proof It is obvious that
3∑

i2,i3,i4=1
bii2i3i4 > 0 for i = 1, 2, 3.

For i = 1, we have

1

nm−1

⎛
⎝

3∑
i2,i3,i4=1

b1i2i3i4

⎞
⎠ = 1

34−1 × 57 = 57

27
> 2,

and hence, 1
nm−1

(
3∑

i2,i3,i4=1
b1i2i3i4

)
> b1 j2 j3 j4 for all ( j2, j3, j4) �= (1, 1, 1).

For i = 2, we have

1

nm−1

⎛
⎝

3∑
i2,i3,i4=1

b2i2i3i4

⎞
⎠ = 1

34−1 × 55.5 = 55.5

27
> 2,

and so, 1
nm−1

(
n∑

i2,i3,i4=1
b2i2i3i4

)
> b2 j2 j3 j4 for all ( j2, j3, j4) �= (2, 2, 2).

For i = 3, we have

1

nm−1

⎛
⎝

3∑
i2,i3,i4=1

b3i2i3i4

⎞
⎠ = 1

34−1 × 54.5 = 54.5

27
> 2,

and so, 1
nm−1

(
n∑

i2,i3,i4=1
b3i2i3i4

)
> b3 j2 j3 j4 for all ( j2, j3, j4) �= (3, 3, 3).

Thus, B is a B-tensor. ��
Clearly, for the upper bounds of ‖TB‖∞, we have

n
m
2 max

i∈[n] biiii = 3
4
2 × 6 = 54 and max

i∈[n]

⎛
⎝

n∑
i2,i3,i4=1

|bii2i3i4 |
⎞
⎠ = 57,

and hence, n
m
2 max

i∈[n] biiii < max
i∈[n]

(
n∑

i2,i3,i4=1
|bii2i3i4 |

)
.

It is obvious that for the upper bounds of ‖FB‖p and p = 1,

3
p−1

p

(
3∑

i=1

b
p

m−1
i i i i

) 1
p

<

⎛
⎜⎝

3∑
i=1

⎛
⎝

3∑
i2,i3,i4=1

bii2i3i4

⎞
⎠

p
m−1

⎞
⎟⎠

1
p

.
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Example 4.2 Let B = (bi1i2i3im ) ∈ S4,4, where b1111 = b2222 = b3333 = b4444 = 3,
b1444 = b4144 = b4414 = b4441 = 0.7, b2333 = b3233 = b3323 = b3332 = 0.5 and all
other bi1i2i3i4 = 1. Then, B is a B-tensor.

Proof It is obvious that
4∑

i2,i3,i4=1
bii2i3i4 > 0 for i = 1, 2, 3, 4.

For i = 1,

1

nm−1

⎛
⎝

n∑
i2,i3,i4=1

b1i2i3i4

⎞
⎠ = 1

44−1 × 65.7 = 65.7

64
> 1.

So we have 1
nm−1

(
n∑

i2,i3,i4=1
b1i2i3i4

)
> b1 j2 j3 j4 for all ( j2, j3, j4) �= (1, 1, 1).

For i = 2,

1

nm−1

⎛
⎝

n∑
i2,i3,i4=1

b2i2i3i4

⎞
⎠ = 1

44−1 × 65.5 = 65.5

64
> 1.

So we have 1
nm−1

(
n∑

i2,i3,i4=1
b2i2i3i4

)
> b2 j2 j3 j4 for all ( j2, j3, j4) �= (2, 2, 2).

For i = 3,

1

nm−1

⎛
⎝

n∑
i2,i3,i4=1

b3i2i3i4

⎞
⎠ = 1

44−1 × 64.5 = 64.5

64
> 1.

So we have 1
nm−1

(
n∑

i2,i3,i4=1
b3i2i3i4

)
> b3 j2 j3 j4 for all ( j2, j3, j4) �= (3, 3, 3).

For i = 4

1

nm−1

⎛
⎝

n∑
i2,i3,i4=1

b4i2i3i4

⎞
⎠ = 1

44−1 × 65.1 = 65.1

64
> 1.

So we have 1
nm−1

(
n∑

i2,i3,i4=1
b4i2i3i4

)
> b4 j2 j3 j4 for all ( j2, j3, j4) �= (4, 4, 4).

Therefore, B is a B-tensor. ��
It is obvious that for the upper bounds of ‖TB‖p,

n
mp−2
2p

(
n∑

i=1

bp
iii i

) 1
p

= 4
4p−2
2p × (3p × 4)

1
p = 4

2p−1
p × 3 × 4

1
p = 48
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and

n
m−2

p

⎛
⎝

n∑
i=1

⎛
⎝

n∑
i2,i3,i4=1

|bii2i3i4 |
⎞
⎠

p⎞
⎠

1
p

= 4
4−2

p × (65.7p + 65.5p + 64.5p + 65.1p)
1
p

> 4
4−2

p × (64p × 4)
1
p

= 64 × 4
3
p .

Since 4
3
p > 1, we have n

mp−2
2p

(
n∑

i=1
bp

iii i

) 1
p

< n
m−2

p

(
n∑

i=1

(
n∑

i2,i3,i4=1
|bii2i3i4 |

)p) 1
p

.

Theorem 4.4 Let B be a B-tensor. Then,

(i) |λ| <

(
n∑

i=1
b

1
m−1
i i ···i

)m−1

for all eigenvalues λ of B if m is even;

(ii) |μ| < n
m−1
2

(
n∑

i=1
b2i i ···i

) 1
2

for all E-eigenvalues μ of B.

Proof (i) From the definition of the operator FB, it follows that λ is an eigenvalue

of B if and only if λ
1

m−1 is an eigenvalue of FB. By Theorem 4.2 of Song and Qi
[38], we have

|λ| 1
m−1 ≤ ‖FB‖1, i.e., |λ| ≤ ‖FB‖m−1

1 .

By Theorem 4.2 (ii), we have

‖FB‖1 <

n∑
i=1

b
1

m−1
i i ···i .

So we obtain

|λ| ≤ ‖FB‖m−1
1 <

(
n∑

i=1

b
1

m−1
i i ···i

)m−1

.

(ii) From the definition of the operator TB, it follows that μ is an E-eigenvalue of B
if and only if μ is an eigenvalue of TB. By Theorem 4.2 of Song and Qi [38], we
have

|μ| ≤ ‖TB‖∞ and |μ| ≤ ‖TB‖2.
By Theorem 4.1, we obtain

‖TB‖∞ < n
m
2 max

i∈[n] bii ···i and ‖TB‖2 < n
m−1
2

(
n∑

i=1

b2i i ···i

) 1
2

.
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Then, we have

|μ| < n
m
2 max

i∈[n] bii ···i and |μ| < n
m−1
2

(
n∑

i=1

b2i i ···i

) 1
2

.

So, the desired conclusion follows. ��
Similarly, we easily show the following.

Theorem 4.5 Let B be a B0-tensor. Then,

(i) |λ| ≤
(

n∑
i=1

b
1

m−1
i i ···i

)m−1

for all eigenvalues λ of B if m is even;

(ii) |μ| ≤ n
m−1
2

(
n∑

i=1
b2i i ···i

) 1
2

for all E-eigenvalues μ of B.

For the tensor complementarity problemwith aB-tensorB, denoted by T C P(B, q),
we show the lower bound of the solution set of T C P(B, q).

Theorem 4.6 Let B be a B-tensor. Assume that x is a nonzero solution of T C P(B, q)

and y+ = (max{y1, 0},max{y2, 0}, . . . ,max{yn, 0})�. Then,

(i)
‖(−q)+‖∞

nm−1 max
i∈[n] bii ···i

< ‖x‖m−1∞ ;

(ii)
‖(−q)+‖2

n
m−1
2

(
n∑

i=1
b2i i ···i

) 1
2

< ‖x‖m−1
2 ;

(iii)
‖(−q)+‖m

n
(m−1)2

m

(
n∑

i=1
b

m
m−1
i i ···i

)m−1
m

< ‖x‖m−1
m if m is even.

Proof Theorem 3.1 implies that each B-tensor is strictly semi-positive. FromTheorem
5 of Song and Qi [23], it follows that

‖(−q)+‖∞
n

m−2
2 ‖TA‖∞

≤ ‖x‖m−1∞ and
‖(−q)+‖2

‖TA‖2 ≤ ‖x‖m−1
2 . (9)

By Theorem 4.1, we have

‖TA‖∞ < n
m
2 max

i∈[n] bii ···i and ‖TA‖2 < n
m−1
2

(
n∑

i=1

b2i i ···i

) 1
2

. (10)

Then, combining the inequalities (9) and (10), the conclusions (i) and (ii) are proved.
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Similarly, we may show (iii). In fact, if m is even, Theorem 5 of Song and Qi [23]
implies

‖(−q)+‖m

‖FA‖m−1
m

≤ ‖x‖m−1
m . (11)

By Theorem 4.2, we have

‖FA‖m < n
m−1

m

(
n∑

i=1

b
m

m−1
i i ···i

) 1
m

. (12)

So, the desired conclusion follows by combining the inequalities (11) and (12). ��

5 Conclusions

In this paper, we show that eachB-tensor is strictly semi-positive.We obtain the strictly
lower bounds of the solution set of tensor complementarity problem with B-tensors.
We establish the upper bounds of spectral radius and E-spectral radius of B-tensors.
The following topics are worth of further and serious consideration.

– For two positively homogeneous operators induced by B-tensors, whether or not
their operator norms may be found exactly.

– Do there exist similar bounds of the operator norm associated with some other
structured tensors such as Z-tensors, H-tensors, M-tensors and so on?

– Are the upper bounds and lower bounds best in this paper?
– How to design an effective algorithm to compute the upper or lower bounds?
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