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Abstract In the present paper, we propose a novel convergence analysis of the alter-
nating direction method of multipliers, based on its equivalence with the overrelaxed
primal–dual hybrid gradient algorithm.We consider the smooth case, where the objec-
tive function can be decomposed into one differentiable with Lipschitz continuous
gradient part and one strongly convex part. Under these hypotheses, a convergence
proof with an optimal parameter choice is given for the primal–dual method, which
leads to convergence results for the alternating direction method of multipliers. An
accelerated variant of the latter, based on a parameter relaxation, is also proposed,
which is shown to converge linearly with same asymptotic rate as the primal–dual
algorithm.

Keywords Alternating direction method of multipliers · Primal–dual algorithm ·
Strong convexity · Linear convergence rate
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1 Introduction

The alternating direction method of multipliers (ADMM) was initially introduced
by Gabay–Mercier [1] and Glowinski–Marrocco [2] for solving convex composite
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problems. This method has been intensively studied in the past years. One may see for
instance a comprehensive review in [3]. The point of main interest is the convergence
of ADMM and its convergence rate. Under some assumptions, linear rates can be
achieved [4].

The ADMM is linked to another famous algorithm, which is known as the primal–
dual hybrid gradient (PDHG)method [5]. Thismethod can be accelerated [6–9], thanks
to an overrelaxation step by Nesterov [10], which leads to the overrelaxed PDHG
(OPDHG) method. This algorithm is also shown to converge linearly under some
regularity assumptions [7].

Other linear convergence results for variants of the ADMM can be found in the lit-
erature. Generally speaking, they differ from our result on the hypotheses made on the
problem (both on the regularity of the objective function and on the operators). In [11],
the authors propose to add an overrelaxation step in the spirit of Nesterov’s acceler-
ation. They show linear convergence rate for special case requiring strong convexity,
Lipschitz continuity of the gradient, invertibility and full column-rank hypotheses.
In [12], the authors study the ADMM in a wider framework, by allowing in each
partial minimization to add an extra proximal term, which leads to a generalized
ADMM. Linear convergence rates are proved for four scenarios, which require both
strong convexity and smoothness, but an explicit convergence rate is given for only
one scenario [12, Corollary 3.6]. It can be shown that the ADMM iterations are also
equivalent to applying the Douglas-Rachford splitting (DRS) to the dual problem [1].
A relaxed version of the DRS, called relaxed Peaceman–Rachford splitting, thus leads
to a relaxed version of the ADMM [13]. In [13, Theorem 6.3], the authors prove the
linear convergence rate of this variant of theADMMin various cases (including the one
we studied here), which depends on the assumptions made on the problem regularity.
However, the study is theoretical and does not provide explicit optimal convergence
rates.

The OPDHG has also been subject of numerous studies. A convergence analysis
of the method is investigated in [7] under many different assumptions on the problem.
A key point is the choice of the method parameters, which can affect the convergence
rate [14].

In this paper, we provide a new analysis of the ADMM based on the known equiv-
alence between the ADMM and the OPDHG method. More specifically, we use this
analysis to derive convergence rate for the ADMM in a case we refer to be smooth.
We indeed made restrictive assumptions on the linear coupling constraint and on the
objective function, which is supposed to be strongly convex, with a smooth part. We
first establish new linear convergence rates of the OPDHG method, by generalizing
the proofs of [7,9]. This leads to a linear convergence rate for the ADMM and its
relaxed variant. The latter is then shown to achieve faster convergence rates.

The present paper is organized as follows. In Sect. 2, we define what we call the
smooth case, which will be considered throughout this paper. In Sect. 3, we establish
the linear convergence of the OPDHG method, and we provide the best parameter
choice. In Sect. 4, we take advantage of the equivalence between the ADMM and the
OPDHG to derive new linear convergence rates for the ADMM. We also propose a
relaxed variant of the ADMM, which achieves the same asymptotic convergence rate
as the OPDHG method, if the parameters are properly chosen. Eventually, in Sect. 5,
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we applied our relaxed ADMM on two problems, and compared the results with the
classical ADMM, the OPDHG and FISTA [15].

2 The Problem and Some Preliminaries

Let X andY be twofinite-dimensional realHilbert spaces. The inner product is denoted
by 〈·, ·〉 and ‖ · ‖ is the induced norm.

2.1 Strong Convexity and Duality

Here are some facts about strong convexity that will be used in this paper.

Definition 2.1 A function f : X → IR ∪ {+∞} is said to be strongly convex of
parameter α > 0 or α − convex iff for any (x1, x2) ∈ dom( f )2 and p ∈ ∂ f (x1),

f (x2) ≥ f (x1) + 〈p, x2 − x1〉 + α

2
‖x2 − x1‖2. (1)

where dom( f ) is the domain of f , i.e., the set of x ∈ X for which f (x) < +∞.

Proposition 2.1 [16] Let f : X → IR ∪ {+∞} be an α-convex function. Then its
convex conjugate f ∗, defined for any y ∈ X by

f ∗(y) = sup
x∈X

{
〈x, y〉 − f (x)

}
(2)

is differentiable, and its gradient ∇ f ∗ is Lipschitz continuous of constant 1/α.

2.2 Smooth Composite Problem

We consider the composite problem

min
x∈X

{
f (x) := g(x) + h(Ax)

}
, (3)

under the following assumptions:

Assumption (S) The convex objective function f in (3) is supposed to satisfy the
following smooth case condition:

(a) g : X → IR ∪ {+∞} is a proper,1 strongly convex of parameter γ , and lower
semi-continuous (l.s.c.) function.

(b) h : Y → IR ∪ {+∞} is a proper, convex, and a continuously differentiable
function, and its gradient ∇h is Lipschitz continuous of constant 1/δ.

(c) A : X → Y is a bounded linear operator, of norm LA and of adjoint A∗.

1 that is, g is not identically equal to +∞
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Let us briefly discuss the assumptions made above. Though they may seem to
be very restrictive, they can be satisfied in many applications. Assumption (S)-(a) is
fulfilled for instancewith the least squares error which is widely used as a fidelity term.
Assumption (S)-(b) is a typical assumption for many convex optimization algorithms,
including the forward–backward algorithm and its variants. When h(Ax) stands for
the regularity term, (S)-(b) can be satisfied by considering smooth approximations
of classical regularizations (e.g., Huber regularization). Assumption (S)-(c) is also
fulfilled in many applications, since it is typically a gradient operator, or a degradation
kernel.

Remark 2.1 Problem (3) is a particular instance of the general problem

min
(x,z)∈X×Z :Ax+Bz=c

g(x) + h(z) (4)

with Z = Y , B = −Id and c = 0. For the sake of simplicity, and since problems of
standard form (3) arise in many contexts, we focus on problems of this form. However,
the interested reader will easily extend our result to the case, when B has full row rank
(see Remark 4.3).

Remark 2.2 According to Assumption (S), h ◦ A is Lipschitz continuous, of constant
L2
A/δ. Hence, one can define κ f := L2

A/(δγ ) the condition number of f as the ratio
between the Lipschitz constant of the smooth part and the strong convexity parameter
of the nonsmooth part g. When f is both strongly convex and smooth with ∇ f
Lipschitz continuous, this definition recovers the usual definition, and κ f is always
larger than 1 [17]. In the general case, it can be less than 1. When κ f is large, the
function f is said ill-conditioned.

3 New Convergence Analysis for OPDHG in the Smooth Case

As shown in Sect. 4, our convergence analysis of the ADMM and its variants rely on
an equivalence with the OPDHG algorithm. Thus, let us introduce this method and
state some convergence results.

3.1 Primal–Dual Problem and the OPDHG Algorithm

Let us consider the following saddle-point problem:

min
ξ∈Z sup

y∈Y

{
L(ξ ; y) := G(ξ) + 〈K ξ, y〉 − H∗(y)

}
(5)

where the convex–concave function L satisfies the following assumption:

Assumption (S2) Let Z and Y be two finite-dimensional real Hilbert spaces.

(a) G : Z → IR ∪ {+∞} is a proper, γ̃ -convex, and l.s.c. function.
(b) H∗ : Y → IR ∪ {+∞} is a proper, δ̃-convex, and l.s.c. function.
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(c) K : Z → Y is a bounded linear operator of norm LK .

We recall that, for any convex function F : X → IR ∪ {+∞}, one can define the
proximal operator of F [18] as

∀ x0 ∈ X, proxF (x0) := argmin
x∈X

{
F(x) + 1

2
‖x − x0‖2

}
(6)

which is uniquely defined for any x0 ∈ X as the minimizer of a strongly convex
problem. In this section, we establish the convergence proof of the following primal–
dual algorithm

Algorithm 1 (OPDHG with overrelaxation on the primal variable)

Initialization: (y0, ξ0) ∈ Y × Z, ξ̄0 = ξ0 and 0 < τ, σ, 0 < θ ≤ 1
General Step: for n = 0, 1, . . ., compute

yn+1 = proxσH∗(yn + σ K ξ̄n) (7)

ξn+1 = proxτG

(
ξn − τ K ∗yn+1

)
(8)

ξ̄n+1 = ξn+1 + θ (ξn+1 − ξn) (9)

until stopping criterion is satisfied.

which aims at solving problem (5). The parameters τ, σ > 0 and 0 < θ ≤ 1 are to be
specified.

Remark 3.1 When θ = 0, this algorithm is known as the PDHG method [5] or as
the Arrow-Hurwicz algorithm [19]. It consists in a proximal gradient ascent step for
the dual variable (7), followed by a proximal gradient descent step for the primal
variable (8). The overrelaxation step (9) has been added in [6] and studied in [8,9].
When θ = 1 and τσ �= 1/L2

K , the iterations are equivalent to a preconditioned version
of the ADMM [7,8].

3.2 Convergence Analysis for OPDHG

We set G(ξ ′, ξ ; y, y′) := L(ξ ′; y) − L(ξ ; y′) for any (ξ, ξ ′) ∈ Z2 and (y, y′) ∈ Y 2.
Moreover, if 0 < ω < 1, then we denote

TN :=
N∑

n=1

1

ωn−1= 1 − ωN

ωN−1(1 − ω)
, �N := 1

TN

N∑
n=1

ξn

ωn−1 , YN := 1

TN

N∑
n=1

yn
ωn−1 .

(10)
Let us formulate our main result for the OPDHG algorithm in the smooth case.
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Theorem 3.1 Let L satisfy Assumption (S2) and (yn, ξn, ξ̄n)n a sequence generated
by Algorithm 1. Assume problem (5) has a solution, which is a saddle point of L,
denoted by (ξ∗, y∗). Choose τ > 0, σ > 0 and 0 < θ ≤ 1 such that

max

{
1

τ γ̃ + 1
,

1

σ δ̃ + 1

}
≤ θ ≤ 1

L2
K τσ

. (11)

Then, for any ω < 1 such that

max

{
1

τ γ̃ + 1
,

θ + 1

σ δ̃ + 2

}
≤ ω ≤ θ (12)

we have the following bound for any (ξ, y) ∈ Z × Y and for any N ≥ 1:

1 − ω

ω(1 − ωN )

(‖ξ − ξN‖2
2τ

+ (1 − ωL2
K τσ )

‖y − yN‖2
2σ

)
+ G(�N , ξ ; y,YN )

≤ 1

TN

(‖ξ − ξ0‖2
2τ

+ ‖y − y0‖2
2σ

)
. (13)

This theorem is an improvement on a result proved in [7, Theorem 3]. The rate we
provide here is indeed better, since no restrictive assumptions are made on the param-
eters values, unless necessary. The proof of Theorem 3.1 is proposed in Appendix A.
A consequence of this proof is the linear convergence of the iterates:

Corollary 3.1 Let L satisfy Assumption (S2) and (yn, ξn, ξ̄n)n a sequence generated
by Algorithm 1. Assume problem (5) has a solution, which is a saddle point of L,
denoted by (ξ∗, y∗). Suppose there exist τ , σ , θ and ω satisfying both conditions (11)
and (12). Then, for any N ≥ 1,

‖ξ∗ − ξN‖2 ≤ ωN
(
‖ξ∗ − ξ0‖2 + τ

σ
‖y∗ − y0‖2

)
. (14)

Moreover, if ωL2
K τσ < 1, then we also have

‖y∗ − yN‖2 ≤ ωN

1 − ωL2
K τσ

(σ

τ
‖ξ∗ − ξ0‖2 + ‖y∗ − y0‖2

)
. (15)

3.3 Choice of Parameters and Convergence Rates

Theorem 3.1 holds, provided one can properly choose the steps τ and σ and the relax-
ation parameter θ . In particular, one can tune (τ, σ, θ), so that the resulting convergence
rate ω is minimal.
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Theorem 3.2 Let κF := L2
K /(δ̃γ̃ ). The best convergence rate in Theorem 3.1 is

achieved when the parameters are (τ, σ, θ) = (τ ∗, σ ∗, θ∗), given by

τ ∗ = 1 + √
1 + 4κF

2γ̃ κF
, σ ∗ = 1 + √

1 + 4κF
2δ̃κF

and θ∗ =
√
1 + 4κF − 1√
1 + 4κF + 1

(16)

which satisfy τ γ̃ = σ δ̃. The resulting convergence rate is ω = θ∗.

Let us first prove the following lemma, which gives conditions on τ and σ , so that
(11) is well-defined:

Lemma 3.1 For any τ > 0, we define a quantity σmax(τ ) > 0 given by

σmax(τ ) =
{

(1/τ + γ̃ )/L2
K , if 0 < τ ≤ τ ∗,

1/(L2
K τ − δ̃), if τ > τ ∗, (17)

where τ ∗ is given by (16). Then, for any (τ, σ ) ∈]0,+∞[×]0, σmax(τ )], there exists
θ satisfying (11).

Proof Let τ > 0. The inequality (11) is feasible, if 1/(τ γ̃ + 1) ≤ 1/(L2
K τσ ) and

1/(σ δ̃ + 1) ≤ 1/(L2
K τσ ), which, respectively, read

σ ≤ 1/τ + γ̃

L2
K

and (L2
K τ − δ̃) σ ≤ 1. (18)

Let us show that these inequalities hold iff σ is less than σmax(τ ). Because of the
second inequality in (18), one should consider two cases.

1. Case L2
K τ − δ̃ ≤ 0. In this case, the second inequality is always true and (18)

reduces to its first inequality, which is σ ≤ σmax(τ ), since τ ≤ δ̃/L2
K < τ ∗.

2. Case L2
K τ − δ̃ > 0. Then one can divide the second inequality by L2

K τ − δ̃ and
(18) reads σ ≤ min{(1/τ + γ̃ )/L2

K , 1/(L2
K τ − δ̃)}. One can check that

1/τ + γ̃

L2
K

≤ 1

L2
K τ − δ̃

⇐⇒ L2
K τ 2 − δ̃τ − δ̃

γ̃
≤ 0 ⇐⇒ τ ≤ τ ∗. (19)

Thus, σ ≤ σmax(τ ). ��
Proof of Theorem 3.2 Let (τ, σ ) ∈]0,+∞[×]0, σmax(τ )]. We denote

θmin(τ, σ ) := max

{
1

τ γ̃ + 1
,

1

σ δ̃ + 1

}
and θmax(τ, σ ) := 1

L2
K τσ

. (20)

One has θmin(τ, σ ) ≤ θmax(τ, σ ) (Lemma 3.1). Let θ ∈ [θmin(τ, σ ), θmax(τ, σ )]. The
best convergence rate that appears in Theorem 3.1 for (τ, σ, θ) is given by the lower
bound of (12), namely
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ω(τ, σ, θ) = max

{
1

τ γ̃ + 1
,

θ + 1

σ δ̃ + 2

}
. (21)

The aim is thus to find stepsizes τ ∗ ∈]0,+∞[, σ ∗ ∈]0, σmax(τ
∗)], and parameter θ∗ ∈

[θmin(τ
∗, σ ∗), θmax(τ

∗, σ ∗)], which minimize ω(τ, σ, θ). We first note that, for any
feasible (τ, σ, θ), one has

ω(τ, σ, θmin(τ, σ )) ≤ ω(τ, σ, θ). (22)

Thus, Problem (21) is equivalent to minimizingω(τ, σ, θmin(τ, σ )) subject to (τ, σ ) ∈
]0,+∞[×]0, σmax(τ )]. Let σmin(τ ) := τ γ̃ /δ̃. One can verify that

θmin(τ, σ ) =
⎧⎨
⎩
1/(σ δ̃ + 1), if τ > τ ∗,
1/(σ δ̃ + 1), if (τ ≤ τ ∗ and 0 < σ ≤ σmin(τ )),

1/(τ γ̃ + 1), if (τ ≤ τ ∗ and σmin(τ ) < σ ≤ σmax(τ )).

(23)

This yields

θmin(τ, σ ) + 1

σ δ̃ + 2
=

⎧
⎪⎪⎨
⎪⎪⎩

1/(σ δ̃ + 1), if τ > τ ∗,
1/(σ δ̃ + 1), if (τ ≤ τ ∗ and 0 < σ ≤ σmin(τ )),

τ γ̃ + 2

(τ γ̃ + 1)(σ δ̃ + 2)
, if (τ ≤ τ ∗ and σmin(τ ) < σ ≤ σmax(τ )).

(24)
Obviously, for any feasible (τ, σ ), one has

θmin(τ, σmax(τ )) + 1

σmax(τ )δ̃ + 2
≤ θmin(τ, σ ) + 1

σ δ̃ + 2
. (25)

As a consequence, ω(τ, σmax(τ ), θmin(τ, σmax(τ ))) ≤ ω(τ, σ, θmin(τ, σ )). Thus,
Problem (21) reduces to minimize ω∗(τ ) := ω(τ, σmax(τ ), θmin(τ, σmax(τ ))). Let
τ > 0. According to (24) and the definition of σmax(τ ),

θmin(τ, σmax(τ )) + 1

σmax(τ )δ̃ + 2
=

⎧
⎪⎨
⎪⎩

1/(σmax(τ )δ̃ + 1), if τ > τ ∗,
τ γ̃ + 2

(τ γ̃ + 1)(σmax(τ )δ̃ + 2)
, if τ ≤ τ ∗.

(26)

It can be deduced from (23) that τ γ̃ > σmax(τ )δ̃ iff τ > τ ∗. This proves that

ω∗(τ ) =
{
1 − δ̃/(L2

K τ), if τ > τ ∗,
1/(τ γ̃ + 1), if τ ≤ τ ∗, (27)
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which is minimal for τ = τ ∗. This leads to the rate ω = ω∗(τ ∗), which is attained for
τ = τ ∗, σ = σmax(τ

∗) = σ ∗ and θ = θmin(τ
∗, σ ∗) = θ∗. ��

3.4 Overrelaxation on the Dual Variable

Thanks to the symmetry of (5), similar results still hold, if the relaxation is done on
the dual variable y, which leads to Algorithm 2.

Algorithm 2 (OPDHG with overrelaxation on the dual variable)

Initialization: (y0, ξ0) ∈ Y×Z, ȳ0 = y0 and 0 < τ, σ, 0 < θ ≤ 1
General Step: for n = 0, 1, . . ., compute

ξn+1 = proxτG(ξn − τK ∗ ȳn) (28)

yn+1 = proxσH∗(yn + σK ξn+1) (29)

ȳn+1 = yn+1 + θ (yn+1 − yn) (30)

until stopping criterion is satisfied.

As it will be seen later on, such an overrelaxation will be useful for the analysis of
the ADMM. Algorithm 2 is obtained by inverting the role of the dual and the primal
variables in the saddle-point problem (5). Hence, applying Theorem 3.1 yields the
following result:

Theorem 3.3 Let L satisfy Assumption (S2) and (ξn, yn, ȳn)n a sequence generated
by Algorithm 2. Assume problem (5) has a solution, which is a saddle point of L,
denoted by (ξ∗, y∗). Choose τ > 0, σ > 0 and 0 < θ ≤ 1 such that (11) holds. Then,
for any ω < 1 such that

max

{
θ + 1

τ γ̃ + 2
,

1

σ δ̃ + 1

}
≤ ω ≤ θ, (31)

we have the following bound for any (ξ, y) ∈ Z × Y and for any N ≥ 1:

1 − ω

ω(1 − ωN )

(
(1 − ωL2

K τσ )
‖ξ − ξN‖2

2τ
+ ‖y − yN‖2

2σ

)
+ G(�N , ξ ; y,YN )

≤ 1

TN

(‖ξ − ξ0‖2
2τ

+ ‖y − y0‖2
2σ

)
. (32)

Note that the conditions on the parameters (31) now slightly differ from the ones in
the previous case (see (12)). A variant can be found in [20, Appendix C2]. Similar
computations as in the previous section show the linear convergence of the iterates.
The parameters, that minimize the convergence rate ω appearing in (32), can also be
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computed as in Sect. 3.3. In particular, the best rate can be shown to be the same as in
Theorem 3.2.

4 A Relaxed Variant of the ADMM in the Smooth Case

Let us now consider the initial primal problem (3), which can be interpreted as a
constrained problem (see (4) in Remark 2.1). The ADMMaims at solving it by finding
a saddle point of the augmented Lagrangian

min
x∈X
z∈Z

sup
y∈Y

{
Lτ (x, z; y) := g(x) + h(z) + 〈Ax − z, y〉 + 1

2τ
‖Ax − z‖2

}
(33)

for τ > 0, by alternating in partial minimizations and gradient ascent:

Algorithm 3 (ADMM)

Initialization: (y0, z0) ∈ Y × Z and 0 < τ

General Step: for n = 0, 1, . . ., compute

xn+1 = argmin
x∈X

{
g(x) + 〈Ax, yn〉 + ‖Ax − zn‖2/(2τ)

}
(34)

zn+1 = argmin
z∈Y

{
h(z) − 〈z, yn〉 + ‖Axn+1 − z‖2/(2τ)

}
(35)

yn+1 = yn + (Axn+1 − zn+1)/τ (36)

until stopping criterion is satisfied.

Remark 4.1 If A is the identity operator, the minimization steps in Algorithm 3
can be interpreted as proximal gradient descent steps for the ordinary Lagrangian
L∞(x, z; y) := g(x) + h(z) + 〈x − z, y〉 associated with Problem (3). We recall that
both the Lagrangian L∞ and the augmented Lagrangian Lτ , τ > 0 have same saddle
points [1, Theorem 2.2].

4.1 Relaxed Variant of the ADMM

We propose to relax the choice of step τ in the updates of z and of y in Algorithm 3.
Replacing τ by τ ′ ≤ τ in these two updates leads to:
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Algorithm 4 (Relaxed ADMM)

Initialization: (y0, z0) ∈ Y × Z and 0 < τ ′ ≤ τ

General Step: for n = 0, 1, . . ., compute

xn+1 = argmin
x∈X

{
g(x) + 〈Ax, yn〉 + ‖Ax − zn‖2/(2τ)

}
(37)

zn+1 = argmin
z∈Y

{
h(z) − 〈z, yn〉 + ‖Axn+1 − z‖2/(2τ ′)

}
(38)

yn+1 = yn + (Kxn+1 − zn+1)/τ
′ (39)

until stopping criterion is satisfied.

One recovers the ADMM (Algorithm 3), when τ = τ ′.

4.2 Equivalence Between the Relaxed ADMM and OPDHG

We show in Appendix B that, for n ≥ 2, the iterations in Algorithm 4 are equivalent
to those of OPDHG with overrelaxation on the dual variable (Algorithm 2), with
overrelaxation parameter θ = τ ′/τ and stepsize (τ, σ = 1/τ ′) applied to

min
ξ∈Y sup

y∈Y

{
L(ξ ; y) := gA(ξ) + 〈ξ, y〉 − h∗(y)

}
, (40)

namely
ξn+1 = proxτgA

(
ξn − τ ȳn

)
yn+1 = proxh∗/τ ′(yn + ξn+1/τ

′)
ȳn+1 = yn+1 + (τ ′/τ) (yn+1 − yn)

(41)

with gA(ξ) := inf{g(x) : Ax = ξ} and ξn+1 := Axn+1.

Remark 4.2 The equivalence between the ADMM (τ = τ ′) and OPDHG has already
been investigated in [8].

Remark 4.3 The equivalence between the relaxed ADMM and the OPDHG iterations
as demonstrated in Appendix B still holds, when B �= −Id has full row rank. Indeed,
one can check that Appendix B remains true, if h∗ ◦ B∗ is strongly convex, so that
h−B : ν → inf{h(z) : −Bz = ν} has a Lipschitz continuous gradient, which is the
case if B has full row rank, see [21].

Because of the equivalence between the relaxed ADMM and OPDHG recalled
above, the convergence analysis of the relaxed ADMM and the classical ADMM
may be investigated by applying Theorem 3.3. Let us first check that the equivalent
primal–dual problem (40) satisfies Assumption (S2), when the problem (3) satisfies
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Assumption (S). According to Assumption (S), h∗ is δ-convex. Let us prove that, if g
is γ -convex, then gA is (γ /L2

A)-convex. Indeed,

g∗
A(y) = sup

ξ∈Y
Ax=ξ

{
〈ξ, y〉 − g(x)

}
= sup

x∈X

{
〈Ax, y〉 − g(x)

}
= g∗(A∗y) (42)

where ∇g∗ is (1/γ )-Lipschitz continuous according to Proposition 2.1. By compo-
sition, g∗

A is differentiable and ∇g∗
A is (L2

A/γ )-Lipschitz continuous. Thus, gA is
(γ /L2

A)-convex (Proposition 2.1). Hence, L in (40) satisfies Assumption (S2). Then,
if we denote for any ω > 0 and for any N > 1

XN := 1

TN

N∑
n=1

xn
ωn−1 (43)

applying Theorem 3.3 yields

Proposition 4.1 Let f satisfy Assumption (S) and (xn, yn, zn)n a sequence generated
by Algorithm 4. Assume problem (3) has a solution denoted by x∗. Choose τ ≥ τ ′ > 0
such that

max

{
1

τγ /L2
A + 1

,
1

δ/τ ′ + 1

}
≤ τ ′

τ
≤ 1. (44)

Then, for any ω < 1 such that

max

{
τ ′/τ + 1

τγ /L2
A + 2

,
1

δ/τ ′ + 1

}
≤ ω ≤ τ ′

τ
, (45)

we have the following bound for any (x, y) ∈ X × Y and for any N ≥ 2:

1 − ω

ω(1 − ωN )
(1 − ωτ/τ ′)‖Ax − AxN‖2

2τ
+ 1 − ω

ω(1 − ωN )

‖y − yN‖2
2/τ ′

+G(AXN , Ax; y,YN ) ≤ 1

TN

(‖Ax − Ax1‖2
2τ

+ ‖y − y1‖2
2/τ ′

)
. (46)

An interesting consequence of this proposition is the ergodic convergence of the
relaxed ADMM in terms of objective error and solution error.

Theorem 4.1 Let f satisfy Assumption (S) and (xn, yn, zn)n a sequence generated
by Algorithm 4. Assume problem (3) has a solution denoted by x∗. Choose τ ≥ τ ′ > 0
satisfying (44). Then, for any ω < 1 satisfying (45) and for any N ≥ 1, one has

f (XN ) − f (x∗) ≤ 1

TN

L2
A

2τ

(
1 + N

TN

2τ

δ2/τ ′
ω

1 − ωτ/τ ′

)
‖x∗ − x1‖2

+ 1

TN

1

1/τ ′

(
1 + N

TN

τ

δ2/τ ′
ω

1 − ωτ/τ ′

)
‖y∗ − y1‖2 (47)
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with N/TN → 0 as N goes to infinity. Moreover, one has for any N ≥ 1

‖XN − x∗‖2 ≤ 2

TN

L2
A

γ τ

(
1 + N

TN

2τ

δ2/τ ′
ω

1 − ωτ/τ ′

)
‖x∗ − x1‖2

+ 4

TN

1

γ /τ ′

(
1 + N

TN

τ

δ2/τ ′
ω

1 − ωτ/τ ′

)
‖y∗ − y1‖2. (48)

Proof For any (x, y) ∈ X × Y , one has L(Ax; y) = g(x) + 〈Ax, y〉 − h∗(y) and
f (x) = supy∈Y L(Ax; y). Let us apply inequality (46) to x = x∗. Since

f (x∗) = L(Ax∗; y∗) = sup
y∈Y

L(Ax∗; y) ≥ L(Ax∗; YN ) (49)

we get L(AXN ; y) − f (x∗) ≤ L(AXN ; y) − L(Ax∗; YN ) = G(AXN , Ax∗; y,YN )

for any y ∈ Y , which implies

1 − ω

ω(1 − ωN )
(1 − ωτ/τ ′)‖Ax

∗ − AxN‖2
2τ

+ 1 − ω

ω(1 − ωN )

‖y − yN‖2
2/τ ′

+L(AXN ; y) − f (x∗) ≤ 1

TN

(‖Ax∗ − Ax1‖2
2τ

+ ‖y − y1‖2
2/τ ′

)
. (50)

Let us define y∗
N ∈ Y as the maximizer of L(AXN ; ·) so that L(AXN ; y∗

N ) = f (XN ).
The left-hand side in (50) is then nonnegative for y = y∗

N and yields

0 ≤ f (XN ) − f (x∗) ≤ 1

TN

1

2τ
‖Ax∗ − Ax1‖2 + 1

TN

1

2/τ ′ ‖y∗
N − y1‖2. (51)

Let us bound that the quantity ‖y∗
N − y1‖. One can check by first-order optimal-

ity condition that y∗
N = ∇h(AXN ) and y∗ = ∇h(Ax∗). Thanks to the Lipschitz

continuity of ∇h (according to Assumption (S)), this implies that ‖y∗
N − y1‖ ≤

‖Ax∗ − AXN‖/δ +‖y∗ − y1‖. Using that (a+b)2 ≤ 2a2 +2b2 for any (a, b) ∈ IR2,
one gets

‖y∗
N − y1‖2 ≤ 2

‖Ax∗ − AXN‖2
δ2

+ 2 ‖y∗ − y1‖2 (52)

However, applying (50) to y = y∗ and N = n yields after simplification

‖Ax∗ − Axn‖2 ≤ ω(1 − ωn)

(1 − ω)(1 − ωτ/τ ′)
τ

Tn

(
1

τ
‖Ax∗ − Ax1‖2 + 1

1/τ ′ ‖y∗ − y1‖2
)

.

(53)
Using the definition of XN and the convexity of the quadratic norm, we get

‖Ax∗ − AXN‖2 ≤ τN

TN

ω

1 − ωτ/τ ′

(
1

τ
‖Ax∗ − Ax1‖2 + 1

1/τ ′ ‖y∗ − y1‖2
)

(54)
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since TN = (1 − ωN )/(ωN−1(1 − ω)) according to (10). Injecting (54) in (52), and
using the definition of L A, we get (47). The ergodic convergence of (XN )N comes
from the strong convexity of f [22, Theorem 9.2.6]. ��
Remark 4.4 The convergence rate for the (relaxed) ADMM slightly differs from the
linear rate for OPDHG stated in Corollary 3.1 (and, similarly, in Theorem 3.3). Indeed,
for the (relaxed) ADMM, the bounds for the objective error (47) and the solution error
(48) are of form

C ωN 1

1 − ωN

(
1 + C ′ N ωN

1 − ωN

)
C,C ′ > 0 constant (55)

while the bounds for the OPDHG are only of form C ωN . The extra multiplicative
factor, which appears in (55), decreases to 1. Hence, asymptotically, OPDHG and
the (relaxed) ADMM are expected to have same linear convergence rate, provided
the same value ω can be chosen in both bounds. However, in the first iterations, the
decrease in the multiplicative factor can visibly affect the convergence (see Sect. 5.1).

4.3 New Convergence Rate for the Classical ADMM and Acceleration

Let us estimate the best convergence rate, which can be achieved by the ADMM and
its relaxed variant in the smooth case.

Theorem 4.2 Let f satisfy Assumption (S). Assume problem (3) has a solution
denoted by x∗. Let κ f := L2

A/(δγ ).

(i) The best convergence rate in Proposition 4.1 and Theorem 4.1 for the ADMM

(Algorithm 3) is reached, when the parameter is τ =
√
2δ2κ f . We call this

parameter the optimal parameter for the ADMM. The resulting convergence rate
is ω = 1/(

√
1/(2κ f ) + 1).

(ii) The best convergence rate in Proposition 4.1 and Theorem 4.1 for the relaxed
ADMM (Algorithm 4) is reached, when the parameters are τ = τ ∗ and τ ′ = 1/σ ∗
given by

τ ∗ = δ

2

(
1 + √

1 + 4κ f

)
and σ ∗ = γ

2L2
A

(
1 + √

1 + 4κ f

)
(56)

We call these parameter the optimal parameters for the relaxed ADMM. The
resulting rate is ω = (

√
1 + 4κ f − 1)/(

√
1 + 4κ f + 1), which is the same that

the one achieved in Theorem 3.2.

Proof (i) When τ ′ = τ , the condition (44) is fulfilled for any τ > 0. Then, the
convergence rate for any τ > 0 is given by the left-hand side of (45), that is:

ω(τ) := max

{
2

τγ /L2
A + 2

,
1

δ/τ + 1

}
(57)
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Let us minimize this quantity with respect to τ . One can first check that

ω(τ) =
⎧⎨
⎩
1/(τγ /(2L2

A) + 1), if τ <

√
2δL2

A/γ ,

1/(δ/τ + 1), if τ ≥
√
2δL2

A/γ .
(58)

Hence, the minimizer is obviously τ =
√
2δL2

A/γ .

(ii) To prove this statement, it is sufficient to find τ ≥ τ ′ satisfying both (44) and (45),
which minimize

ω(τ, τ ′) := max

{
τ ′/τ + 1

τγ /L2
A + 2

,
1

δ/τ ′ + 1

}
(59)

Set γ̃ = γ /L2
A and δ̃ = δ. Then, (59) is exactly the lower bound of (31), applied to

(τ, σ = 1/τ ′, θ = τ ′/τ). Because of the link between τ and θ , it follows that

min
(τ,σ,θ)

satisfying (11)

max

{
θ + 1

τ γ̃ + 2
,

1

σ δ̃ + 1

}
≤ min

(τ,σ,θ)

satisfying (11)
and θ=1/(τσ )

max

{
θ + 1

τ γ̃ + 2
,

1

σ δ̃ + 1

}
. (60)

According to Sect. 3.4, the left-hand side equals the rate given by Theorem 3.2. Oth-
erwise said, √

1 + 4κ f − 1√
1 + 4κ f + 1

≤ min
τ≥τ ′

satisfying (44)

and (45)

ω(τ, τ ′). (61)

Hence, it suffices to check that (τ, τ ′) = (τ ∗, 1/σ ∗) satisfy both (44) and (45), and
realize the equality. ��

5 Numerical Applications

5.1 Denoising with TV-Huber

We apply the relaxed ADMM to a denoising problem. Let u ∈ IR3Nx Ny be a color
(noisy) image. We want to solve the following problem:

min
x∈IR3Nx Ny

{
f (x) := μ

2
‖x − u‖22 + h(∇x)

}
, (62)

where the gradient linear operator∇ = (δx , δy)
T is defined by the forward differences.

The TV-Huber regularization term is defined by

h(∇x) =
Nx−1∑
i=0

Ny−1∑
j=0

h0
(‖(∇x)i, j‖

)
with h0(z) =

{ |z|2/2, if|z| ≤ 1,
|z| − 1/2, if|z| > 1.

(63)
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Fig. 1 Empirical convergence of the solution error for TV-Huber denoising. The plain lines stand for the
sequence (xn) while the dashed line stand for (Xn). The y-scale is logarithmic. The x-axis corresponds to
the iteration number.

Hence, this term acts like a quadratic regularization, when the image variations are
small, and like a TV regularization, when they are larger. The quantity μ > 0 is a
weight parameter. Let g := μ ‖ · −u‖22/2. Functions h∗ and g are, respectively, 1-
convex andμ-convex. The gradient operator is bounded of norm L ≤ 2

√
2 (this bound

being tight when Nx or Ny go to +∞). Thus, we set L = 2
√
2.

The noisy image u is generated by addingGaussianwhite noise of standard variation
of 10 to a RGB color image of size 201×201. The image values are between 0 and 255.
The code used in written in MATLAB. We chose μ = 0.1. Iterations for the ADMM
and the relaxed ADMM can be explicitly computed, thanks to the Euler equation. We
tested two sets of parameters:

1. the optimal parameter for the ADMM (Algorithm 3) τ = 4/
√

μ; the theoretical
rate is ω = 1/(

√
μ/4 + 1) ≈ 0.9267;

2. the optimal parameters for the relaxed ADMM (Algorithm 4) τ = (
√
1 + 32/μ+

1)/2 and τ ′ = (
√
1 + 32/μ − 1)/2; the theoretical rate is ω = (

√
1 + 32/μ −

1)/(
√
1 + 32/μ + 1) ≈ 0.8943.

For comparison, we also applied OPDHG with the optimal parameters τ = (1 +√
1 + 32/μ)/16, σ = μτ , and θ = (

√
1 + 32/μ − 1)/(

√
1 + 32/μ + 1) (as given

in Theorem 3.2) and FISTA [15], which solves Problem (62) thanks to an accelerated
forward-backward splitting algorithm (with an explicit gradient step for h(∇·) and
a proximal step for the quadratic fidelity term g). The optimal parameter for FISTA
are chosen according to [20,23], namely the stepsize is 1/8 and the overrelaxation
parameter is (1 − √

μ/(8 + μ))2(1 + μ/8) . Note that for OPDHG and FISTA, an
initialization of x has to be given, from which x1 is computed thanks to a gradient
descent-like step. This is not the case for the (relaxed) ADMM, where x1 is defined as
a minimizer which depends on (y0, z0). Thus, for a fair comparison of the methods,
x0 in OPDHG and FISTA is set to be x1 generated by the relaxed ADMM, while all
the other variables are initialized by zeros.

To compare the methods, we compute the solution error (see Fig. 1). This quantity
depends on the knowledge of the solution x∗ of Problem (62), which is obviously not
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available. However, since the OPDHG method has been shown to linearly converge
to the solution, we use it to compute an approximation of x∗ by computing a large
number of iterations. Note that, even not proved theoretically, the same convergence
rates are observed for both the ergodic sequence (Xn) and the iterate sequence (xn) in
the case of the (relaxed) ADMM. The empirical rates, computed by linear regression
between iteration 60 and iteration 200, are, respectively, 0.8478 for the ADMM and
0.7826 for the relaxed ADMM. Note that, empirically, we observe that the theoretical
rate becomes tight, compared to the observed rate, as the condition number grows to
infinity.

Moreover, though the parameters were chosen so that the theoretical rates ω are the
same for the relaxed ADMM and OPDHG (see Theorems 3.2(ii) and 4.2), the solution
error bound for the (relaxed) ADMM has a multiplicative factor (see Remark 4.4)
which has an influence on the observed decay. Indeed, if one compares for instance
the slope for the ADMM (for which the rate ω given in 3.2(i) is greater than that of the
OPDHG) and for OPDHG at the 500 first iterations, they look similar, while the slope
for the ADMMbecomes smaller, as the number of iterations grows. This explains why
the ADMM and the relaxed ADMM present a better error decay, at least for the first
iterations in the case of the ADMM.

Besides, one should keep in mind that both the ADMM and its relaxed variant
require an operator inversion, unlike the OPDHG method and FISTA. Hence, even
if comparable numbers of iterations are needed to achieve convergence, the (relaxed)
ADMM iterations are more time consuming than the other methods and should be
used only when the operator inversion can be implemented efficiently.

5.2 Local Oscillation Behavior

In this section, we consider a simple quadratic problem which reveals oscillating
behaviors for OPDHG and FISTA. The ADMM and the relaxed ADMM, as we will
see it, are not affected by these artifacts. Let N be a integer. We consider the following
constrained problem:

min
x=(xi )∈IRN :x0=1

{
f (x) := M − m

2
‖KN x‖22 + m

2
‖x‖22

}
, (64)

where KN : IRN → IRN−1 is defined by (KN x)i = (xi+1 − xi )/2. The condition
number of this problem is κ f = (M − m)/m. Hence, the problem is ill-conditioned
when m is negligible compared to M . Note that the minimizer of problem (64) can be
explicitly computed. We chose N = 15, m = 0.1 and M = 10, so that κ f = 99.

In Fig. 2, we observe oscillations for both the OPDHGmethod and strongly convex
FISTA. Rippling for FISTA has been already observed for quadratic problems of this
kind [24]. This phenomena occurs, when the overrelaxation parameter θ is chosen too
large compared to the eigenvalues ofm IN +(M−m)K ∗

N KN . For theOPDHGmethod,
the reason remains unclear. An investigation of the oscillation behavior for polyhedra
objectives can be found in [25]. Note that we do not observe such oscillations for
ADMM-like schemes.
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Fig. 2 Empirical convergence of the solution error for the toy example. The y-scale is logarithmic. The
x-axis corresponds to the iteration number

6 Conclusions

In this work, we studied the convergence of the OPDHG scheme, in the case where the
composite problem is strongly convex with a differentiable with Lipschitz continuous
gradient part. Using the equivalence between this algorithm and the ADMM, we
provided a new convergence analysis of the latter. This analysis allowed us to design an
accelerated variant of the ADMM, by changing the augmented Lagrangian parameter,
which is proved to have same convergence rate as the OPDHG method. Hence, we
showed that in the smooth case, the choice of the ADMM parameter(s) can be crucial
in terms of convergence rate. Experimental results confirmed this theoretical analysis.
It has also been observed that the accelerated ADMM does not introduce oscillations
in some cases, unlike the OPDHG algorithm and FISTA.

Appendix A: Proof of Theorem 3.1 and of Corollary 3.1

We proceed analogously to [7, Section 5.2], but we do not specify any parameter
unless needed. This proof is also inspired by the one found in [9], which does not
allow θ �= 1. For now, we only assume that 0 < θ ≤ 1.

We suppose that L satisfy Assumption (S2). Let (yn, ξn, ξ̄n)n a sequence generated
by Algorithm 1. For any N ≥ 1, points ξn+1 and yn+1 can be seen as minimiz-
ers of convex problem, thus, the first-order optimality condition yields, respectively,
−(ξn+1 − ξn)/τ − K ∗yn+1 ∈ ∂G(ξn+1) and −(yn+1 − yn)/σ + K ξ̄n ∈ ∂H∗(yn+1).
Using the definition of strong convexity, we get for any (ξ, y) ∈ Z×Y (after expanding
the scalar products and summing the two inequalities for G and H∗)

G(ξn+1, ξ ; y, yn+1) ≤ ‖ξ − ξn‖2
2τ

− (1 + τ γ̃ )
‖ξ − ξn+1‖2

2τ
− ‖ξn − ξn+1‖2

2τ

+ ‖y − yn‖2
2σ

− (1 + σ δ̃)
‖y − yn+1‖2

2σ
− ‖yn − yn+1‖2

2σ
+〈K (ξn+1−ξ), yn+1−yn〉−〈K (ξn+1−ξ̄n), yn+1−y〉. (65)
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For any N ≥ 1 and (ξ, y) ∈ Z × Y , we set �n = ‖ξ − ξn‖2/(2τ) + ‖y − yn‖2/(2σ).
Let us first prove the following lemma:

Lemma A.1 Let L satisfy Assumption (S2) and (yn, ξn, ξ̄n)n a sequence generated
by Algorithm 1. Then, for any integer N ≥ 1, τ, σ > 0 and 0 < ω ≤ θ , we have for
any (ξ, y) ∈ Z × Y

G(ξn, ξ ; y, yn) ≤ �n − �n+1

ω
+ ω

‖ξn−1 − ξn‖2
2τ

+ ‖ξn − ξn+1‖2
2τ

(66)

+ω 〈K (ξn−1 − ξn), y − yn〉 − 〈K (ξn − ξn+1), y − yn+1〉.

Proof Replacing ξ̄n by ξn + θ (ξn − ξn−1) in (65), we get after simplification

G(ξn+1, ξ ; y, yn+1) ≤ ‖ξ − ξn‖2
2τ

− (1 + τ γ̃ )
‖ξ − ξn+1‖2

2τ
− ‖ξn − ξn+1‖2

2τ

+‖y − yn‖2
2σ

− (1 + σ δ̃)
‖y − yn+1‖2

2σ
− ‖yn − yn+1‖2

2σ
+θ 〈K (ξn−1 − ξn), y − yn+1〉 − 〈K (ξn − ξn+1), y − yn+1〉.

(67)

Now, we define τ γ̃ = μ > 0 and σ δ̃ = μ′ > 0. Let us bound the scalar products
in (67). Introducing 0 < ω ≤ θ , we have

θ 〈K (ξn−1 − ξn), y − yn+1〉 = ω 〈K (ξn−1 − ξn), y − yn〉
+ω 〈K (ξn−1 − ξn), yn − yn+1〉 (68)

Let us have a closer look at the last two terms. Let α > 0. Since 〈K�,Y 〉 ≤
LK (α‖�‖2 + ‖Y‖2/α)/2, the majoration (67) becomes, after simplification,

G(ξn+1, ξ ; y, yn+1) ≤ �n − (1 + μ) �n+1 +
(

ωLK σ

α
− 1

) ‖yn − yn+1‖2
2σ

+
(
(θ − ω)LK σ

α
+ μ − μ′

)‖y − yn+1‖2
2σ

+ θLK ατ
‖ξn−1 − ξn‖2

2τ
− ‖ξn − ξn+1‖2

2τ

+ω 〈K (ξn−1 − ξn), y − yn〉 − 〈K (ξn − ξn+1), y − yn+1〉. (69)

Choose α = ωLKσ . Hence, ωLK /α = 1/σ , so that the ‖yn − yn+1‖2 term cancels.
Since 1 + μ = 1/ω + 1 + μ − 1/ω, one gets

G(ξn+1, ξ ; y, yn+1) ≤ �n − �n+1

ω
+ ωθL2

K τσ
‖ξn − ξn−1‖2

2τ
− ‖ξn − ξn+1‖2

2τ

+
(
1

ω
− μ − 1

) ‖ξ − ξn+1‖2
2τ

+
(

θ − ω

ω
+ 1

ω
− μ′ − 1

)‖y − yn+1‖2
2σ

+ω 〈K (ξn−1 − ξn), y − yn〉 − 〈K (ξn − ξn+1), y − yn+1〉. (70)

We can now set conditions onω, θ , τ and σ . First, choose θ , τ and σ so that θL2
K τσ ≤

1. Then, choose θ so that both the parentheses are nonpositive, which implies that
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1/(μ + 1) ≤ ω and (θ + 1)/(μ′ + 2) ≤ ω. Since ω ≤ θ , we get the wanted
inequality. ��

Let us now prove Corollary 3.1 and then Theorem 3.1. Set ξ−1 = ξ0. Multiplying
(15) by 1/ωn and summing between n = 0 and n = N − 1 yield

N∑
n=1

1

ωn−1 G(ξn, ξ ; y, yn) ≤ �0 − �N

ωN
− 1

ωN−1

‖ξN−1 − ξN‖2
2τ

− 1

ωN−1 〈K (ξN−1 − ξN ), y − yN 〉. (71)

One has, for any β > 0,

− 〈K (ξN−1 − ξN ), y − yN 〉 ≤ LK

(
β

2
‖ξN−1 − ξN‖2 + 1

2β
‖y − yN‖2

)
(72)

and thus the right-hand side of (71) is bounded from above by

�0 − 1

ωN
�N + 1

ωN−1 (LKβτ − 1)
‖ξN−1 − ξN‖2

2τ
+ LK

ωN−1

1

2β
‖yN − y‖2. (73)

Choosing β = 1/(LK τ), which cancels the ‖ξN−1 − ξN‖2 term, we have,
since ωL2

K τσ ≤ θL2
K τσ ≤ 1 and G(ξn, ξ

∗; y∗, yn) ≥ 0 for any N ≥ 1,

0 ≤ ‖ξ∗ − ξN‖2
2τ

+ (1 − ωL2
K τσ )

‖y∗ − yN‖2
2σ

+
N∑

n=1

ωN

ωn−1 G(ξn, ξ
∗; y∗, yn)

≤ ωN
(‖ξ∗ − ξ0‖2

2τ
+ ‖y∗ − y0‖2

2σ

)
. (74)

This inequality proves the linear convergence of the iterates (Corollary 3.1). We can
now complete the proof of Theorem 3.1. Now, dividing (74) by ωN TN and using
convexity gives Theorem 3.1. ��

Appendix B: Equivalence Between Algorithm 4 and Algorithm 2

Let us prove that the iterations of Algorithm 4 are equivalent to (41). Let n ≥ 0. By
optimality in (37), one has for any x ∈ X

g(xn+1) + 〈Axn+1, yn〉 + ‖Axn+1 − zn‖2
2τ

≤ g(x) + 〈Ax, yn〉 + ‖Ax − zn‖2
2τ

(75)

For any ξ ∈ Y , we define

gA(ξ) :=
{
inf{g(x) : Ax = ξ}, if {x ∈ X : Ax = ξ} �= ∅,

+∞, otherwise.
(76)
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Let ξ ∈ Y . Suppose that {x ∈ X : Ax = ξ} �= ∅. Then, taking the infimum over
{x ∈ X : Ax = ξ}, we have

g(xn+1) + 〈Axn+1, yn〉 + ‖Axn+1 − zn‖2
2τ

≤ gA(ξ) + 〈ξ, yn〉 + ‖ξ − zn‖2
2τ

. (77)

Let us define ξn+1 := Axn+1. Since gA(ξn+1) ≤ g(xn+1), one has

gA(ξn+1) + 〈ξn+1, yn〉 + ‖ξn+1 − zn‖2
2τ

≤ gA(ξ) + 〈ξ, yn〉 + ‖ξ − zn‖2
2τ

(78)

for any ξ ∈ Y , including those such that {x ∈ X : Ax = ξ} is empty. Thus

gA(ξn+1) + 〈ξn+1, yn〉 + ‖ξn+1 − zn‖2
2τ

= min
ξ∈Y

{
gA(ξ) + 〈ξ, yn〉 + ‖ξ − zn‖2

2τ

}
.

(79)
In particular, one can check that ξn+1 = proxτgA (zn − τ yn). Let us write the y-update
(39). We have

yn+1 = yn + ξn+1 − zn+1

τ ′ ⇐⇒ zn+1 = ξn+1 − τ ′ (yn+1 − yn) (80)

⇐⇒ zn+1 + τ ′ yn+1 = ξn+1 + τ ′ yn . (81)

Let us define ȳn+1 as in (30). Equation (80) implies that, for any n ≥ 1, one has
zn − τ yn = ξn − τ ′ (yn − yn−1)− τ yn = ξn − τ (yn + (τ ′/τ) (yn − yn−1)). Injecting
the latter equality in the expression of ξn+1 yields (28). The z-update (38) can be
rewritten as a proximal step

zn+1 = proxτ ′h(ξn+1 + τ ′ yn) = proxτ ′h(zn+1 + τ ′ yn+1). (82)

Using Moreau’s decomposition [18], we eventually obtain (29).
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