
J Optim Theory Appl (2018) 176:252–267
https://doi.org/10.1007/s10957-017-1208-y

Dynamic Harvesting Under Imperfect Catch Control

Domenico De Giovanni1 · Fabio Lamantia1,2

Received: 22 June 2017 / Accepted: 6 December 2017 / Published online: 13 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Weanalyze the optimal harvesting rule of amonopolist in amanaged single-
species fishery environment where we allow the fishery control to be imperfect. The
monopolist’s control action consists of legal and illegal actions. Illegal actions might
be detected at random times, in which case the monopolist is subject to a deterrence
scheme in line with the Common Fishery Policy implemented by the European Union.
We show that the introduction of the management policy, together with the inability
of the regulator to perfectly monitor fishing activities, creates an incentive to harvest
not only beyond the allowed quota, but also beyond the harvest in an unregulated but
otherwise equal situation. This effect is particularly pronounced at lower levels of
the legal quota. We also show that, if the monopolist is sufficiently impatient, over-
harvesting with severe depletion of the resource might even occur under a reinforced
deterrence scheme that considers the permanent withdrawal of the fishing license.

Keywords Fisheries · Optimal harvesting · Dynamic deterrence · Multi-mode
systems

Mathematics Subject Classification 91B76 · 90C90

1 Introduction

Real-world fisheries management practices draw on the principles and results of bioe-
conomics (see [1] for an extensive overview on the subject). Harvesting management
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is based on so-called harvest control rules (HCRs), typically defined by fixing targets
or thresholds. Targets are levels of the stock size and/or of the fishing mortality rate,
which includes harvesting, the regulator aims to obtain and maintain.1 Thresholds are
limit level of the stock size under which the resource is in danger of extinction.2

Based on HCRs, control activities are all the set of rules for adjusting the harvesting
rate over time on the basis of the (estimated) quantity of resource. Typically, harvesting
control is given in terms of fishing effort, Total Allowable Catch (TAC) or quotas.

The enforcement of control rules has become necessary for the huge impact on
the survival of fisheries of harmful harvesting activities such as the use of prohib-
ited gears, the landing of undersized fish and, in general, what is referred to as Illegal,
Unreported orUnregulated (IUU) fishing, see [3] for further discussions on the point.3

For this purpose, from January 2010 the EU implemented new rules to fight IUU fish-
ing, enforcing penalties proportionate to the values of illegal catch. EU Regulation
No 404/2011 imposes that “EU countries must include in their legislation effective,
proportionate and dissuasive sanctions, and ensure that the rules are respected.”4

According to this regulation, EU countries introduced a point system for serious fish-
eries infringements.5 This system imposes to suspend the vessel’s license for a given
period if given infringements are detected.

From an economic perspective, a general framework for dealing with law enforce-
ment and crime has been developed in the seminal work by [4]: individual agents
decide whether or not to commit felonies and are assumed to disregard social and
moral norms and to maximize their expected utility. On top of them, control authori-
ties choose enforcement measures and punishment levels in order to maximize some
measure of welfare. Becker’s approach has started a stream of economic research on
crime, which has been quite extensively applied to real-world problems such as corpo-
rate crimes [5,6], determination of fines and deterrents [7–10], and illegal harvesting.
In the last vein, [11] analyzes harvesters’ behavior and optimal regulatory enforce-
ment, [12] proposes a similar setup, where harvesters allot their time to either legal or

1 The most common kind of target is theMaximum Sustainable Yield (MSY), defined as the largest average
catch that can be continuously taken from a stock under existing environmental conditions. In 2002, during
the Earth Summit, the EUmember States committed themselves to “maintain or restore stocks to levels that
produce the MSY with the aim of achieving these goals for depleted stocks on an urgent basis and where
possible not later than 2015.” The European Common Fishery Policy (CFP) is based on achieving the MSY
in most fisheries, as stated in the Green paper on the reform of the CFP, see http://ec.europa.eu/fisheries/
reform/index_en.htm, last accessed on 29/11/2017.
2 One important example is the so-called management by reference points, which is commonly applied in
manyNorth American fisheries. For example, the 40–10 harvest control rule of thePacific Coast Groundfish
FisheryManagement Plan (PCGFMP) imposes constant harvestingwhen biomass is above 40%of the virgin
stock size, a progressive reduction in fishing effort when the biomass is between 10 and 40% and the closure
of the fisherywhen biomass is below 10%, see [2] for an overview onHCRs and related real-world examples.
3 In 2013, it was estimated that illegal fishing represents between $10 billion to $23 billion in global
losses each year, see: http://www.huffingtonpost.com/2013/05/08/illegal-fishing-fish-piracy-seafood_n_
3234434.html, last accessed on 29/11/2017.
4 See the implementation of Council Regulation (EC) No 1224/2009 establishing a Community control
system for ensuring compliance with the rules of the Common Fisheries Policy, available at http://eur-lex.
europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1224, last accessed on 29/11/2017.
5 See http://ec.europa.eu/fisheries/cfp/control/infringements_sanctions/index_en.htm, last accessed on
29/11/2017.
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illegal fishing, and employs it for an empirical study on Quebec landings. Relatedly,
[13] considers both legal and illegal fishermen, who harvest at differentiated costs
and sell the resource at the same price. For an extensive review on law enforcement
literature applied to fisheries, we refer the interested reader to [14].

In our model, the fishery belongs to an owner, referred to as the Social Planner,
who grants rights to accessing and harvesting a single resource to an authorized user,
referred to as the Monopolist. The Social Planner, being in charge of protecting the
resource, fixes the rules for harvesting (the HCRs) and imposes a set of penalties
and sanctions to punish illegal catch. Following Becker’s viewpoint, the Monopo-
list’s action space consists of both legal and illegal catches. Illegal harvesting might
be detected by the monitoring system implemented to inspect the fishing area. The
Monopolist’s decision problem can be formulated as a piecewise optimal control
problem where the different modes of the system describe situations in which the
Monopolist’s illegalities have been detected a given number of times. Switches from
one mode of the system to the other arrive at random times, depending on the Monop-
olist’s behavior and on the Social Planner’s effort in monitoring the fishery.

We analyze the optimal harvesting rules under two different deterrence schemes.
The first one is a simplified representation of the sanctions imposed to illegalities under
the European Common Fishery Policy. Every detected illegality under the policy is
registered and, after a certain number of illegalities has been detected, the Monopolist
is subject to a mandatory temporary withdrawal of the fishing license. In the second
scheme, we impose that after a certain number of illegalities detected, the Monopo-
list loses permanently the right to harvest in the area. This second deterrence scheme
implements a moratorium on exploitation, as imposed in 1992 by the CanadianMinis-
ter of Fisheries and Oceans to the Atlantic northwestern Cod fishery after the dramatic
collapse of its biomass, see [15] for details.

We detect insights of practical relevance. We show that the introduction of these
deterrence schemes makes the Monopolist willing to harvest beyond the level she
would have chosen under an unregulated but otherwise equal fishery. In this case, over-
harvesting compensates the Monopolist for the risk of the penalties imposed if illegal
behavior is detected. Over-harvesting is even aggravated if the Social Planner sets a
low catch level and does not enforce it properly. The second scheme might alleviate
this distortion, but could be insufficient to prevent the collapse of the resource if the
Monopolist is sufficiently aggressive.

The plan of the paper is as follows. The basicmodelwith the twodifferent deterrence
schemes is introduced in Sect. 2. Section 3 discusses in details the numerical procedure
we employed to approximate value functions. Section 4 explores the impact of the
different deterrence schemes in a baseline fishery model. Section 5 evidences that the
main results of the paper are still valid assuming that the probability of being convicted
depends on the amount of illegal harvesting. Finally, Sect. 6 concludes.

2 The Model

Let us denote by x = x(t) the size of resource stock at time t and assume it follows
the logistic model:
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x ′(t) := dx(t)

dt
= r x(t)

(
1 − x(t)

K

)
− q(t), (1)

where q = q(t) denotes the quantity harvested. The parameter K measures the
maximum potential population density (carrying capacity), while parameter r is the
intrinsic growth rate of the population. The resource’s market price is determined
through the following inverse demand function:

p(q) = A − q, (2)

while marginal costs of harvesting depend on the current resource stock, through the
following cost function:

C = c(x, q) = c(x)q. (3)

Two agents are present in the market. The Social Planner, or he, is in charge of the
long-run preservation of the resource and is endowed with the discount rate ρ. The
Monopolist, or she, has the exclusive right to harvest the resource, subject to limitation
imposed by the Social Planner. She is endowed with the discount rate ω, and her
maximum harvesting potential capacity is qmax. We assume ω > ρ to highlight that
the Monopolist is more interested in immediate profits and less interested in the long-
run preservation of the resource than the Social Planner, as pointed out in [1]. The
Social Planner’s goal is to stabilize the long-run amount of biomass to the equilibrium
level that arises from the following optimal control problem:

Maximizeq(t)

∫ ∞

0
e−ρt [U (q(t)) − c (x(t), q(t))] dt , (4)

subject to (1) and q(t) ≤ qmax, where U (q) = ∫ q
0 p(s)ds is the consumer surplus,

which measures social utility [1]. The solution of (4), characterized in [1,16], can
be expressed in terms of the optimal equilibrium biomass xe, obtained through the
so-called Modified Golden Rule as solution of the following equation:

f ′(xe) − c′(xe) f (xe)
U ′(qe) − c(xe)

= ρ, (5)

with corresponding harvest rateqe = f (xe), andqe ≤ qmax. Clark andMunro [16] and
Clark [1] show that the optimal long-run pair (xe, qe) is a saddle point and the optimal
path to (xe, qe) follows its stable manifold. The gradual approach to equilibrium along
this manifold defines the feedback control q = q(x) the Social Planner employs to
maximize the discounted stream of social utility over an infinite horizon.

The Social Planner distributes a fishing license to theMonopolist, giving permission
to harvest the resource, and determines a Harvesting Control Rule (HCR) based on his
bioeconomic target xe. In this paper, we focus on the simplest HCR, namely the Total
Allowable Catches (TAC), which is the maximum amount of stock the Monopolist
is allowed to harvest at any time, corresponding to the Social Planner’s equilibrium
harvesting rate qe. Any harvest beyond qe is considered illegal, and any detected
illegality is convicted.
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We introduce a discrete set I = {0, 1, 2, . . . ,m}; each element i ∈ I is a mode
of the system and represents a situation where the Monopolist has been detected in
committing illegalities and is allowed a specific action. We denote by π i (x, q) the
instantaneous profit of the Monopolist in mode i and express the action allowed in
mode i ∈ I as q(t)g(i), thus interpreting g(i) as the impact of the mode on the
evolution of the resource.

Switches between modes of the system are driven by a Markov chain ξ(t), with
values in I , which generates the information flow given by the family of σ−algebras
F(t). Such process is deterministic at any time, except at the random times τ1, τ2, . . .

where illegalities are detected. Randomness of ξ(t) reflects the inability of the Social
Planner to detect all the illegalities. The driving force of this process is the instanta-
neous probability that any illegality will be detected. We assume that ξ(t) switches
from one mode to another at the same intensity λ(x, q, qe), referred to as the hazard
rate. This assumption means that the probability of being convicted does not depend
on the mode of the system, although generalizations in this direction are straightfor-
ward. Thus, the Monopolist maximizes the following objective functionals, one for
each i ∈ I :

J (x, q(·), i) = E

{∫ ∞

0
e−ωtπξ(t) (x(t), q(t)) dt

∣∣∣∣ x(0) = x; ξ(0) = i

}
, (6)

subject to the following dynamic constraints:

x ′(t) = f (x(t)) − g (ξ(t)) q(t), x(0) = x0, ξ(0) = i , (7)

λ(x, q, qe) = lim
	→0

1

	
P [ξ(t + 	) = i |ξ(t) = j] , (8)

where the set of admissible control paths and states are given by all F(t)-adapted
random processes q(t) and x(t) such that x(·) is the unique solution of (7) and
P [0 ≤ q(t) ≤ qmax] = 1 for all t . Throughout the paper, we will look for station-
ary Markovian control policies. Using techniques in [17], it can be shown that the
value functions, V (x, i) = sup

q(·)
J (x, q(·), i), are the unique viscosity solution of the

following system of Hamilton–Jacobi–Bellman (HJB) equations:

ωV (x, i) = max
q

{
π i (x, q) + Dx

(
V (x, i)

)
G(x, q, i)

+
∑
j �=i

λ(x, q, qe)
(
V (x, j) − V (x, i)

)}
, i ∈ I . (9)

Next, we present the deterrence schemes considered in our analysis.

Temporary Punishment
Here we consider a deterrence scheme in the spirit of the dynamic deterrence theory

developed in [8]. Every detected illegality is charged with a monetary fine θ . In addi-
tion, at the random time T where the illegality is detected, the Monopolist must stop
harvesting for a period τ . At time T +τ , theMonopolist will restart harvesting, subject
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to the same regulatory control. This deterrence scheme can be easily represented with
a system consisting of only twomodes, that is I = {0, 1}: mode 0means “illegality not
detected,” whereas mode 1 means “illegality detected.” The value function in mode 1
can be written in terms of the value function in mode 0:

V (x, 1) = e−ωτV

(
Kx

x + (K − x)e−rτ
, 0

)
− θ . (10)

To see this point, suppose that at the time of conviction T the resource stock is at level
x . Then, the resource evolves without harvesting for a period of time τ , following
the logistic growth function, and thus at time T + τ the new resource level is xτ =

Kx
x+(K−x)e−rτ . At the end of the period of conviction, the Monopolist faces the same
problem starting at xτ . Under this scheme, the HJB equation (9) specializes to:

ωV (x) = max
q

{
π(x, q) + Dx

(
V (x)

)
( f (x) − q)

+ λ(x, q, qe)
(
e−ωτV (xτ ) − θ − V (x)

)}
. (11)

Permanent Punishment
Every illegality detected is subject to a monetary fine and a period of forced stop

from resource extraction.However, the Social Planner also fixes amaximumnumber of
illegalities detected, after which the Monopolist loses the fishing license permanently.
For the sake of simplicity, we restrict the mathematical formulation to the case where
themaximumnumber of illegalities detected is two. Extension to L illegalities allowed
is obvious and does not add anything different to the model. Consider the discrete set
I = {0, 1, 2} and the function g defined by:

g(l) =

⎧⎪⎨
⎪⎩
1 if l = 0,

II{t>τ } if l = 1,

0 if l = 2,

where IIA stands for the indicator function of the set A. Elements of I describe the
number of times theMonopolist has been detected in illegal behavior. Actions allowed
to theMonopolist in each mode of the system are described by g(i)q(t). In mode 0, no
illegality has been detected and the Monopolist appears irreproachable to the Social
Planner. In mode 1, however, exactly 1 illegality has been detected and, after the fine
has been paid and the period of conviction expired, she is candidate for a permanent
withdrawal of the fishing license, a situation that will occur in mode 2 at the next
illegality detected. The system of HJB equations solved by the value functions of the
Monopolist now reads:
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ωV (x, 0) = max
q

{
π(x, q) + Dx

(
V (x, 0)

)
( f (x) − q)

+ λ(x, q, qe)
(
e−ωτV (xτ , 1) − θ − V (x, 0)

)}
,

ωV (x, 1)=max
q

{
π(x, q) + Dx

(
V (x, 1)

)
( f (x) − q) + λ(x, q, qe)

(−θ − V (x, 1)
)}
.

In the first equation of the system, the rationale of the previous deterrence scheme
applies. However, now the value function in mode 1 does not coincide with that in
mode 0, due to the different jumping condition specified by the deterrence scheme.
The second equation, which characterizes the value function after the first conviction,
takes into account that the next conviction will be punished not only with the monetary
fine but also with the permanent withdrawal of the license, and thus, the successive
value function will be identically zero.

3 Approximation of the Value Functions

We use a semi-Lagrangian approximation scheme to solve the system of HJB equa-
tions arising from our problem.6 We split the time interval [0,∞) in a sequence of
equidistant time steps, tn , n ∈ IN and call h the constant time lag h = tn+1 − tn .
At each time of jump τl of the continuous time Markov chain ξ(t) introduced in the
previous section, we define Nl as the first time step after the lth jump. Accordingly,
we approximate the flow x(t) by means of a discrete time recurrence xhn , which is
the solution of the following difference equation, with initial condition xh0 = x (to
simplify notation we suppress the dependence of xh on the pair (x, q)):

xhn+1 = xhn + hG(xhn , q, ξ(Nl)), Nl ≤ n < Nl+1, l = 0, 1, . . . . (12)

Next, we approximate the conditional distribution of jump times as:

Ph
x,i (q) = e−h

∑
j �=i λi, j (x,q), (13)

where Ph
x,i (q) ≡ P

[
Nl+1 − Nl ≥ 1|N1, . . . , Nl−1; ξ(Nl) = i, xhn = x

]
. Equation

(13) approximates the conditional probability of not observing a jump in a time step
of length h. We will also make use of the conditional probability that the process will
jump from mode i to mode j in an analogous time step, which we approximate as:

Ph
x,i, j (q) = 1 − e−hλi, j (x,q). (14)

6 Application of semi-Lagrangian scheme to deterministic optimal control problem can be found in [18,19].
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Using (13), (14) and the previous definition of the flow xhn , we can compute the discrete
time version of the usual backward operator:

E

{
V (xh1 , i) − V (xh0 , i)

∣∣∣∣x(0) = x; ξ(0) = i

}

h
= Ph

x,i (q)

V (x + hG(x, q, i), i) − V (x, i)

h
+

∑
j �=i

Ph
x,i, j (q) (V (x, j)−V (x, i)) .

(15)

The continuous time optimal control is thus replaced by the following first-order
discrete time approximation

V h(x, i) = max
q1,q2,...

E

⎧⎨
⎩

∞∑
l=0

Nl+1−1∑
n=Nl

hβnπξl (xhn , qn−Nl )

∣∣∣∣x(0) = x; ξ(0) = i

⎫⎬
⎭ , (16)

for i ∈ I , where we set the discount factor β = e−ωh . Camilli [20] shows that
V h(x, i) satisfies the following dynamic programming equation:

V h(x, i) = max
q

E

{
hπ i (x, q) + βV h(xh1 , i)

∣∣∣∣ x(0) = x; ξ(0) = i

}
. (17)

Finally, inserting (15) into (17) gives the discrete time infinite dimensional system of

equations satisfied by the value functions V h(x)
def= {

V h(x, i) : i ∈ I
}

V h(x, i) = Ni
(
V h(x)

)
i ∈ I , (18)

where the dynamic programming operators Ni (·) are defined by:

Ni
(
V h(x)

) def= max
q

{
hπ i (x, q) + βPh

x,i (q)V h(x + hG(x, q, i), i)

+
∑
j �=i

Ph
x,i, j (q)V h(x, j)

⎫⎬
⎭ . (19)

In the second step of the semi-Lagrangian approximation scheme, we convert
the infinite dimensional problem (18) into a set of finite dimensional equations.
We partition the interval [0, K ] where the state variable lies by introducing a grid
� = {xk : k = 1, . . . , M} and solve (18) only for x ∈ �. Denoting with V h

� (i) the
matrix defined by

(
V h(xk, i)

) : xk ∈ �, i ∈ I , we now look for the solution of the
following system:

V h
� (i) = Ni (V

h
� (i)), i ∈ I . (20)

However, in order to make the scheme operative, we need a reconstruction procedure
to approximate the values V h(xk + hG(xk, α, i), i), since, in general, the points xk +
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hG(xk, α, i) do not coincide with points of �. We use piecewise linear interpolation to
reconstruct those values.While higher-order reconstruction techniques might improve
accuracy of the numerical scheme, the choice of linear interpolation is motivated by
the possibility, in fact the reality, that the value function is not sufficiently smooth to
guarantee oscillation-free approximations.

4 Analysis

In what follows, we perform a set of numerical experiments to highlight our findings.
We set the time step h to 0.2. Throughout the analysis, we use the following cost
function of harvesting (see [21] for details):

c(x, q) = cE
x−αq

b
, (21)

where b is the catchability parameter related to the adopted harvesting technology
and α ∈ (0, 1] measures the economies of scale. We use, as base case, the parameter
values in Table 1. This setup is purposely constructed to make harvesting profitable,
especially at high levels of fish stock. Our main objective is to show the consequences
of the introduction of newdeterrence schemes, and this is best highlightedwhenfishing
is economically remunerative. Also, we have chosen high values of the marginal cost
for effort CE and low values of the interest rate ω. The former choice is to show that
our results do not rely on low marginal costs. The latter choice is to show that the
effect highlighted in the paper is present even when the Monopolist is sufficiently
forward-looking. Finally, with this setup the constraint q(t) ≤ qmax never binds. This
implies overcapacity of our Monopolist, a phenomenon often observed in the fishery
industry (see [22] for details).

By (5) under the interest rate ρ, the Social Planner assesses an optimal equilibrium
biomass xe = 5.51 with corresponding equilibrium harvesting rate qe = 0.62. This
value represents the TAC that should guarantee the convergence to xe under the stock
dynamics (1). As for the parameters of the deterrence scheme, the period of conviction
is set to τ = 5 months. To the detection of the illegality, it is associated a constant
fine equal to θ = 0.1. The fine includes the administrative expenses and the cost of
the period of inactivity (for instance, harbor charges during the period of conviction)
and is paid as a lump sum right at the moment of detection of the illegality. Finally,
we specify the functional form of the hazard rate as λIIq>qe , and we interpret λ as
the Social Planner’s pressure on the Monopolist. This functional form implies that
the probability of being convicted only depends on whether the Monopolist harvests
legally or illegally. In other words, looking at theMonopolist’s risk of being convicted,
it only matters to behave legally or illegally, whereas the extent of the illegality is

Table 1 Parameter values used
in the analysis

K r A b cE α qmax ρ ω

10 0.25 7 0.1 0.5 0.1 1.75 0.005 0.05
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Fig. 1 Optimal Markovian
control. Blue (dash-dotted)
curve: unregulated fishery; black
(solid) curve: regulated fishery
with qe = 0.62 and λ = 0.9;
green (dotted) curve: natural
growth. Monopolist’s
continuously compounded
interest rate is ω = 0.05. xeM is
the unique stable optimal
equilibrium biomass in the
unregulated market and xe the
optimal resource level for the
Social Planner. The purple bullet
identifies x∗, the boundary of
the basin of attraction of xeM

irrelevant. We use this specification of the hazard rate mainly for expository purposes.
The issue of robustness of our results with respect to different hazard rates is postponed
in Sect. 5.

We start our analysis by looking at a typical optimal strategyundermanagedharvest-
ing and imperfect fishery control. InFig. 1, togetherwith the optimal control of problem
(6), we plot the optimal control in the unregulatedmarket, with the corresponding equi-
librium level xeM = 4.75. In the regulated market, we identify a discontinuity in the
policy function that we call legal threshold and denote by xd(qe, λ). When stock lev-
els are below this legal threshold, the Monopolist finds optimal to harvest below the
imposed TAC qe. However, any stock value above xd(qe, λ) creates an incentive to
harvest not only beyond the TAC, but also beyond the optimal harvest in an unregulated
but otherwise equal situation. We call this behavior the over-harvesting effect: under
imperfect monitoring, the Monopolist may exploit situations of high profitability of
fishing, due to high levels of stock, by increasing harvesting to compensate for the
potential loss of incurring in sanctions. The economic intuition behind this effect is
best highlighted by looking at the discrete time approximation (17). The optimization
problem involves comparison of two alternatives. The first corresponds to following
the rules, thus restricting the Monopolist’s reward opportunity by that possible with
the legal catch. The second alternative is to break the rules by harvesting q > qe, thus
making a riskless profit hπ(x, q) and engaging in the risky affair consisting of not
being detected with some probability and incurring in the sanction with the comple-
mentary probability. For levels of the stock above the legal threshold, the risk involved
is evidently compensated by the larger instantaneous profit the Monopolist makes
by choosing the harvesting well above the TAC. The additional harvesting beyond
the optimal level in an unregulated market has also a significant economic intuition.
Under managed fishery, the continuation value is actually an expected continuation
value lower than the continuation value in an unregulated market. This pushes the
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Monopolist to seek for an extra reward. The additional harvesting reflects the pre-
mium she requires to compensate the risk of the potential loss of incurring in the
sanctions.

We continue our analysis by looking at how the presence of the legal threshold
impacts on the controlled dynamical system (1). The simplicity of the model allows
us to analyze the dynamics by a simple comparison on the same Cartesian plane of
the optimal feedback harvesting rule and the natural growth function. According to
the fixed TAC, the Social Planner would expect the convergence to the biomass equi-
librium level xe. However, this convergence does not occur because the Monopolist
finds convenient to harvest illegally for higher levels of the resource stock. This is
clearly visible in Fig. 1, where two distinct attractors are shown: the Monopolist’s
optimal equilibrium biomass xeM and the legal threshold xd(qe, λ). The equilibrium
x∗, (lower) intersection between the TAC qe and the natural growth function, acts,
indeed, as the boundary of the basins of attraction of the two attractors. The long-run
convergence to the equilibrium xeM , occurring when the initial resource level is suffi-
ciently low, is brought about by the Monopolist’s feedback control when illegalities
are not committed. However, we also find a phenomenon known as sliding motion
for initial states beyond the boundary, [23,24]. To gain intuition, suppose the initial
state is at the right of the legal threshold xd(qe, λ). At this level, the Monopolist finds
profitable to fish illegally and this causes a rapid decline of the resource level. As the
resource decreases, so does the incentive to fish above the TAC, until fishing illegally
is not profitable anymore and the Monopolist will harvest exactly at the TAC. In this
new situation, however, the natural growth function is above the harvesting, and the
resource level increases again, until over-harvesting is again profitable. The sliding
motion is then this cyclic behavior characterized by legal–illegal harvesting switches
at high frequency. This induces a so fast oscillatory behavior that the density of the
exploited population remains practically constant at the threshold value, a property
denoted as Zeno, [25,26].7

Sensitivity Analysis
In this section, we investigate how the Social Planner’s choice of both the TAC and

the hazard rate affects: (i) the position of the legal threshold; (ii) the incentive to over-
harvest and (iii) the global dynamics of the system. We find that a higher λ implies a
higher legal threshold, thus over-harvesting only at higher levels of the state variable.
This is clearly understood: the Social Planner, by increasing the effort in enforcing the
rules, weakens the incentive to harvest beyond the TAC, since the risk to be detected
increaseswith λ. The reduction in qe has counter-intuitive consequences. A lower TAC
enlarges the region of over-harvesting. This is highlighted in Fig. 2a where we plot
the legal threshold xd(qe, λ) as function of the TAC for different levels of the Social
Planner’s monitoring effort. The figure shows an increasing and convex relationship
between the TAC qe and the legal threshold xd(qe, λ), implying over-harvesting at
lower stock levels.We identify this phenomenon as the impatience effect. A lower TAC

7 In other words, an infinity of legal–illegal decisions takes place in a finite amount of time. As it is difficult
for this to happen in reality, our model could be generalized following [27]. This involves considering the
harvesting rate as a state variable and penalizing changes in effort in the objective function by introducing
adjustment costs. We acknowledge an anonymous reviewer for pointing out such an extension.
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(a) (b)
Fig. 2 a Legal threshold as a function of qe for various levels the intensity monitoring effort of λ. b Legal
threshold elasticity φ(qe; λ) as a function of the legal quota qe for various levels of λ with ε = 0.1

decreases the profits theMonopolist can attain under legality, while a higher λ reduces
the incentive to over-harvest by decreasing the expected illegal profits. In other words,
at lower TACs the Social Planner creates a disincentive to harvest legally, since at those
levels the Monopolist is losing too much. This makes the Monopolist more impatient
to over-harvest with a consequent shift of the legal threshold toward left. The first
immediate consequence of the impatience effect is in terms of dynamics. The legal
threshold shows an increasing relationship with the TAC, implying that the lower the
TAC, the lower the long-run level of the resource. This shows that incautious choices
of the TAC, if not accompanied by proper sustain to legal harvest or by adequate
reinforcement of the control, might not only miss the desired benefits, but also deplete
the resource in the long run.

The second consequence of the impatience effect is in terms of the regulatory
effort a lower TAC requires. Our analysis shows that the incentive to over-harvest
may exist, but it can be in principle completely removed by a sufficiently high Social
Planner’s effort in enforcing the rules. In other words, there exists a level of λ beyond
which theMonopolist always finds convenient to harvest legally. However, we want to
emphasize that such a level of effort strongly depends on the TAC. More specifically,
while it is true that a higher monitoring effort reduces the over-harvesting incentive
by increasing the risk for the Monopolist to be detected, the magnitude of this reduc-
tion (measured in terms of increase of the legal threshold) is lower at lower levels of
qe. To highlight this phenomenon, we plot in Fig. 2b the legal threshold sensitivities

φ(qe; λ) = xd (qe,λ+ε)−xd (qe,λ)
ε

, whichmeasure the absolute change in the legal thresh-
old with respect to a small increment of the monitoring effort. Again, the relationship
between the sensitivities and the TAC is increasing and convex, reflecting the fact that
higher levels of TAC are more easily enforced.
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4.1 The Modified Deterrence Scheme

Under the modified deterrence scheme, the Monopolist faces a different problem for
each mode of the system. Mode 2 is the situation in which the Monopolist has lost
permanently the license and is thus forced to stop harvesting. Mode 1 describes the
situation in which she harvests by knowing that at the next illegality detected she will
permanently lose the license. Mode 0 describes an intermediate situation where the
Monopolist knows that punishment for the next illegality detected will be mode 1.

The optimal catch rule of the Monopolist in mode 0 possesses the same qualitative
features of the optimal harvesting under the baseline scheme. The dynamical implica-
tions are however different, since, not surprisingly, mode 1 optimal harvesting policy
requires the Monopolist to catch legally. The overall result is the convergence of the
resource level toward the highest equilibrium level at which the TAC intersects the
natural growth function in the state-control space, which is the Social Planner’s target
xe already depicted in Fig. 1.

While themodified deterrence schememay actually alleviate the damages due to the
combination of over-harvesting with the impatience effect, we now show that this new
scheme is far to be the panacea. For this purpose, we fix theMonopolist’s continuously
compounded interest rate to ω = 0.2, keeping equal all the other parameters. Here,
our purpose is to show that the system of sanctions should be tailored on the specific
situation at hands. In the proposed example, the Monopolist is very aggressive, due
to the fact that she does not care that much about future revenues. Absent regulatory
frictions, or under the baseline deterrence scheme of the previous section, this scenario
leads to the long-run equilibrium level xeM depicted in Fig. 3a. The long-run outcome
of the system under the modified deterrence scheme displays two possible outcomes:
either convergence to equilibrium xeM of Fig. 3a or to the Social Planner’s target xe

(a) (b)
Fig. 3 Resource dynamics under the modified deterrence scheme with an aggressive Monopolist. Here we
set qe = 0.62, λ = 0.9 and Monopolist’s continuously compounded interest rate ω = 0.2. a Feedback
control in mode 0. b Two different trajectories of the whole system starting at x0 = 5
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of Fig. 1. This depends on whether the starting value of the resource in mode 1 is
below or above the point x∗, which constitutes the boundary of the basins of attraction
of the two attractors. The starting value in mode 1, however, depends on the random
time of conviction in mode 0. To highlight the implications, we plot in Fig. 3b two
trajectories of the dynamical system starting at x0 = 5. In the first, the switch from
mode 0 to mode 1 arrives at a time when the resource level is below x∗. However,
the 5-month period of conviction is sufficient for the resource to recover at a level
above x∗, just enough to avoid convergence to the very low equilibrium level xeM . In
the second trajectory, the first time of detection of the illegality arrives at a time when
the resource level is below x∗, and the period of conviction is not sufficiently long to
let the resource recover to a level required to reach the highest equilibrium xe.

5 Robustness Check

In this section, we cope with the issue of assessing the robustness of our results with
respect to the specification of the functional form of the hazard rate. Consider a hazard
rate of the following form:

λ(q, qe) = (
λ + κv(q − qe)ν

)
II{q>qe}. (22)

This specification embraces different situations. The parameter ν controls the sign of
convexity of λ(q, qe). Loosely speaking, ν < 1 (ν > 1) refers to a situation in which
the increase of the detection rate is more pronounced at low (high) levels of illegal har-
vesting; in the case ν = 1, the marginal hazard rate is constant with respect to κ . Obvi-
ously, when κ = 0 the previously considered case of constant hazard rate is retrieved.
Our main concern is to show that the discontinuity of the Monopolist’s optimal catch
rule as well as its consequences in terms of resource dynamics still hold for different
specification of the hazard rate. In this respect, we found that the legal threshold exists
as far as λ > 0. When λ = 0, we recover a continuous optimal policy function.

We present a selected sample of results of our experiments, based on the same
bioeconomic setup of Sect. 4, with an associated interest rate ω = 0.05.8 First, let us
fix the detection parameters to λ = 1, ν = 1, and κ = 1. Figure 4a depicts the optimal
harvesting rules for three different levels of the TAC. The optimal control rules are
discontinuous, confirming that over-harvesting is still profitable, despite the increased
risk of detection of illegalities, especially at higher levels of catch. This also confirms
the impatience effect, which makes over-harvesting stronger at lower TACs, due to
the larger loss in profits a lower TAC implies. Figure 4a sheds light on the economic
mechanism behind over-harvesting. In fact, the incentive to harvest illegally arises
from the joint effect of the imperfect monitoring system and the loss in profits due
to a low TAC. In this sense, enforcing the catch limits through a deterrence scheme
might be not enough to achieve the desired outcome. Rather, it might be necessary
to introduce a system of incentives to catch legally, for instance through economic
subsidies in periods when lower TACs are fixed, to limit the losses in profits.

8 We have performed a series of robustness check on various bioeconomic setups, all confirming our main
findings, but we do not report the results in the paper for the sake of brevity.
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(a) (b)
Fig. 4 aMonopolist’s optimal catch rules for different level of the TAC. Black (solid) line: qe = 0.62; blue
(dotted) line: qe = 0.4; red (dash-dotted) line: qe = 0.3. The deterrence parameters are: λ = 1, ν = 1 and
κ = 1. The bioeconomic parameters are those in Table 1. b Legal threshold as function of κ for different
values of the concavity parameter ν, λ = 1 and TAC set to qe = 0.62. The bioeconomic parameters are
those in Table 1

Second, we assess the influence of parameters κ and ν on the legal threshold,
which we now denote by xd(qe, λ, κ, ν). Here the aim is to show that the optimal
policy rules are still discontinuous for a wide range of parameters. Figure 4b plots the
legal threshold as function of κ for different levels of the concavity parameters ν. The
figure also shows how the sign of convexity of the hazard rate affects the position of
the discontinuity threshold. Not surprisingly, the legal threshold is more easily pushed
forward when the hazard rate is concave.

6 Conclusions

In a greatly simplified world, this paper shows that a not-so-well-designed manage-
ment scheme might create incentives for illegal behavior that would greatly harm the
resource. Our analysis highlights the need to go a step further in harvesting manage-
ment, including into the policy design also the economic effects of the deterrence
scheme. In this respect, we view this paper as a first step in this direction, showing that
a good policy design needs a proper balance between deterrence, incentive to legal
behavior and effort in enforcing the law.
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