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Abstract In this paper, we study quadratic complementarity problems, which form a
subclass of nonlinear complementarity problems with the nonlinear functions being
quadratic polynomial mappings. Quadratic complementarity problems serve as an
important bridge linking linear complementarity problems and nonlinear complemen-
tarity problems. Various properties on the solution set for a quadratic complementarity
problem, including existence, compactness and uniqueness, are studied. Several results
are established from assumptions given in terms of the comprising matrices of the
underlying tensor, henceforth easily checkable. Examples are given to demonstrate
that the results improve or generalize the corresponding quadratic complementarity
problem counterparts of the well-known nonlinear complementarity problem theory
and broaden the boundary knowledge of nonlinear complementarity problems as well.
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1 Introduction

The classical linear complementarity problems (LCPs) have wide range of applica-
tions in applied science and technology [1], such as operations research, economics,
engineering, to just name a few. The nonlinear complementarity problems (NCPs) are
generalizations of LCPs by considering general nonlinear mappings [2]. Likewise, the
so-dubbed quadratic complementarity problems (QCPs) that will be studied in this
article are generalizations of LCPs by considering quadratic polynomial mappings on
the one hand and more concrete realizations of NCPs on the other hand.

One motivation for studying QCPs is the three-person noncooperative game [3,4];
another is a generalized Markowitz portfolio problem whose first-order optimality
condition is a QCP [5]. The generalizedMarkowitz portfolio problem is in general NP-
hard, and therefore properties on its KKT points are helpful and would be guidelines
to design-efficient algorithms to solve it.

Though QCPs form a subclass of NCPs [2], they deserve particular investigations
with at least twofold reasons: (i) they would serve as a bridge between the LCPs and
the general NCPs, a very first step toward the nonlinear cases, and of which a concrete
case; and (ii) they give a unified model for several classes of optimization problems
(e.g., the cubic polynomialminimizations over the nonnegative orthant, the generalized
Markowitz portfolio problems and three-person noncooperative games), which should
have their own specifically developed theory and numerical methodologies. Actually,
our research will show that the study on QCPs can even broaden the boundary of the
knowledge for NCPs (cf. Sects. 3.2, 4).

This study also comes from the recent trend on tensor complementarity problems
(TCPs). QCPs encompass the third-order TCPs in which the nonlinear mappings are
the sum of quadratic forms and constant vectors [6]. In this field, Song and Qi showed
the existence of solutions for TCPs under (strict) semi-positivity [6] and presented
some relations among several classes of tensors [7]. Che et al. [8] studied properties
of TCPs with positive-definite tensors. Song and Yu [9] further studied S tensors and
properties of the solution sets of the corresponding TCPs. Bai et al. [10] showed that
solution sets of TCPs with P tensors are nonempty and compact. Huang and Qi [3]
reformulated a class of multilinear games as TCPs, providing examples for TCPs and
establishing a bridge between these two classes of problems. For more research in this
field and related, please refer to [6–8,11,12] and references therein.

This article will give a study on solution sets of QCPs using various tools from
classical NCPs, tensor analysis, as well as some particularly designed techniques. We
will organize the rest of this article as follows.

Basic notation and concepts will be presented in Sect. 2. A generalized Frank–
Wolfe theorem for cubic polynomial optimization problems will be given in Sect. 3.1,
which involves R0 tensors. With this, existence of solutions to QCPs is given under
mild assumptions. The compactness of the solution sets will be discussed in Sect. 3.2.
C-strict copositivity of a tensor and K -positive semidefinite plus of a matrix will be
introduced there, based on which a compactness result will be given. The result gener-
alizes, actually broadens, the well-known ones in the literature [2, Proposition 2.2.12],
and it is proven under a regularity condition (i.e., (15)), which is formulated geomet-
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rically. This regularity condition combines information on all of the tensor, the matrix
and the vector. Examples will be presented to show these promised novelties.

Uniqueness of the solution set will be investigated in Sect. 4 in terms of the null
spaces of a collection of matrices. The uniqueness theorem involves the above reg-
ularity condition. The result generalizes and broadens the literature—it can handle a
tensor which is not strictly copositive. An example is given there. Final remarks are
given in the last section to conclude this article.

2 Preliminaries

In this article, Rn denotes the Euclidean space of n-vectors of real numbers with
standard inner product 〈·, ·〉 and its induced Euclidean norm ‖ · ‖. The nonnegative
orthant of Rn is denoted by R

n+, whose interior is denoted by R
n++. Rn− and R

n−−
are defined similarly with respect to the nonpositive orthant. The symbol 0 denotes
the zero vector in R

n . Lowercase bold letters (such as x, y) represent vectors, capital
letters (such as A, B) for matrices, and calligraphic letters (such as A, B) for tensors.

A (real) third-order n-dimensional tensor (a.k.a. hypermatrix [13]), written asA =
[ai1i2i3 ]ni1,i2,i3=1 ∈ R

n×n×n , is a third-way array, where i j ∈ {1, . . . , n} and j ∈
{1, 2, 3}. The set of all third-order n-dimensional tensors is denoted by T(Rn, 3),
and the set of all n × n (symmetric) matrices is denoted by (S(Rn, 2)) T(Rn, 2).
The inner product on T(Rn, 3), denoted also as 〈·, ·〉, is defined as follows: for any
A = [ai jk]ni, j,k=1,B = [bi jk]ni, j,k=1 ∈ T(Rn, 3)

〈A,B〉 :=
n∑

i=1

n∑

j=1

n∑

k=1

ai jkbi jk .

The inner product on T(Rn, 2) can be defined similarly. A tensor A ∈ T(Rn, 3) can
be viewed as a concatenation of n matrices of size n × n. More precisely, for all
i ∈ {1, . . . , n}, the i th slice Ai,·,· of A refers to the matrix [ai jk]nj,k=1.

Given vectors x, y and z ∈ R
n , x⊗y⊗z refers to a rank-one tensor whose (i, j, k)th

component is xi y j zk . x⊗3 simplifies the symmetric rank-one tensor x⊗ x⊗ x. x⊗2 is
defined similarly.

Let A ∈ T(Rn, 3) and x ∈ R
n , Ax2 is a vector with its i th component as

(Ax2)i :=
n∑

i2,i3=1

aii2i3xi2xi3 , for all i ∈ {1, . . . , n}.

A tensor A ∈ T(Rn, 3) is copositive, if Ax3 := xT(Ax2) ≥ 0 for all x ∈ R
n+. It is

called strictly copositive, if Ax3 > 0 for all x ∈ R
n+\{0}.

The QCP refers to finding a vector x ∈ R
n such that

(QCP) x ≥ 0, Ax2 + Bx + c ≥ 0 and xT(Ax2 + Bx + c) = 0, (1)
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in which A ∈ T(Rn, 3) a given third-order tensor, B ∈ R
n×n a given matrix, and

c ∈ R
n a given vector; x ≥ 0 means xi ≥ 0 for all i ∈ {1, . . . , n}.

For QCP (1), sometimes it is without loss of any generality to consider tensors in
the subspaceRn ⊗S(Rn, 2) of T(Rn, 3). It is the set of tensors, which have symmetric
elementswith respect to the second and the third indices, i.e.,A ∈ R

n⊗S(Rn, 2)means
Ai,·,· ∈ S(Rn, 2) for all i ∈ {1, . . . , n}. Denote by Ai := Ai,·,· for all i ∈ {1, . . . , n}.
Then, with F(x) := Ax2 + Bx + c, we have

∇(xTF(x)) = (xTA1x, . . . , xTAnx)T + 2
n∑

i=1

xi Aix + (B + BT)x + c. (2)

Given a tensor A ∈ T(Rn, 3), we define its transpose AT as the tensor in T(Rn, 3)
with entries

(AT)i jk = a jik for all i, j, k ∈ {1, . . . , n}.

Denote by Di := (AT
)
i,·,· ∈ R

n×n for all i ∈ {1, . . . , n}, and define

ATx :=
n∑

i=1

xi Di for all x ∈ R
n .

3 Nonemptiness and Compactness

In the following, we will denote the solution set of QCP (1) by sol(A, B, c).

3.1 Nonemptiness via a Frank–Wolfe-Type Theorem

A tensor A ∈ T(Rn, 3) is called an R0 tensor [7], if the system

xTAix ≥ 0, if xi = 0, and xTAix = 0, if xi > 0 for all i ∈ {1, . . . , n}

does not have a solution in R
n+\{0}.

Proposition 3.1 Let A ∈ T(Rn, 3) be an R0 tensor. Then, whenever QCP (1) is
feasible, the minimization problem

inf xTF(x) s.t. x ≥ 0, F(x) ≥ 0 (3)

has an optimal solution.

Proof Let the feasible solution set be S := {x : x ≥ 0, F(x) ≥ 0}. By assumption,
S 	= ∅. Denote by v∗ = inf{xTF(x) : x ∈ S}. Let

Bρ := {x ∈ R
n : ‖x‖ ≤ ρ}
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be the ball centered at zero with radius ρ. Thus, there exists κ > 0 such that S∩ Bρ 	=
∅ for all ρ ≥ κ. Let

vρ := min{xTF(x) : x ∈ S ∩ Bρ} for all ρ ≥ κ. (4)

The optimal solution set sρ of (4) is obvious compact. Thus, we define

xρ ∈ argmin{‖x‖ : x ∈ sρ} for all ρ ≥ κ

as a minimum norm optimal solution. We claim that there exists γ > κ such that

‖xρ‖ < ρ for all ρ ≥ γ. (5)

Suppose, on the contrary, that there exists a sequence {ρk} such that

‖xρk‖ = ρk with ρk → ∞.

Taking subsequence if necessary,wemay assumewithout loss of generality that
xρk
ρk

→
x. Obviously, the feasibility and the normalization imply that

x ≥ 0 and x 	= 0. (6)

Dividing each defining polynomial of F by ρ2
k , we get with the feasibility that

xTAix ≥ 0 for all i ∈ {1, . . . , n}. (7)

By the nonemptiness of S, we conclude that vρ ↓ v∗. Thus,

vρk = xTρk F(xρk ) =
n∑

i=1

(xρk )ix
T
ρk
Aixρk + xTρk Bxρk + cTxρk

should be bounded. Dividing the equation by ρ3
k , we get thatAx3 = 0. This, together

with (6) and (7), violates the hypothesis that A is an R0 tensor. Therefore, the claim
(5) is proved.

In the next, we claim that there exists τ > γ such that

vρ = v∗ for all ρ ≥ τ. (8)

Suppose, on the contrary, that vρ > v∗ for all ρ ≥ κ. As vρ ↓ v∗, we can find
γ < ρ1 < ρ2 such that vρ1 > vρ2 . By the claim (5), we have that ‖xρ2‖ < ρ2. Since
vρ1 > vρ2 , we have ‖xρ2‖ > ρ1. Let ρ3 = ‖xρ2‖. Then, γ < ρ1 < ρ3 < ρ2 and
‖xρ3‖ < ρ3 = ‖xρ2‖. ρ3 < ρ2 implies that vρ2 ≤ vρ3 .

If vρ2 = vρ3 , then xρ3 is an optimal solution to vρ2 with a strictly smaller norm
than xρ2 , which is a contradiction to the definition. If vρ2 < vρ3 , then it, together with
ρ3 = ‖xρ2‖, gives a contradiction to xρ3 being an optimal solution. As a consequence,
the claim (8) is proved. Thus, the proposition follows immediately. ��
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Proposition 3.1 is a generalization of the classical Frank–Wolfe theorem [14].

Definition 3.1 (Co-semidefinite pair) A tensor A ∈ T(Rn, 3) and a matrix B ∈
T(Rn, 2) is called a co-semidefinite pair, if the matrix pencil ATx + B is positive
semidefinite for all x ∈ R

n+.

Obviously, A and B form a co-semidefinite pair if and only if B, D1, . . . , Dn

are all positive semidefinite matrices. Actually, the sufficiency is immediate. For the
necessity, the matrix B should be positive semidefinite is apparent. For the positive
semidefiniteness of the matrices Di s, we can drive a proof by contradiction. Suppose
D1 is not positive semidefinite, then with sufficiently large t , the matrixAT(te1) + B
would not be positive semidefinite.

Proposition 3.2 Let x∗ be an optimal solution of (3) with A ∈ R
n ⊗ S(Rn, 2). If a

constraint qualification is satisfied at x∗ to ensure at which the Karush–Kuhn–Tucker
condition holds, and A and B form a co-semidefinite pair, then x∗ ∈ sol(A, B, c).

Proof It follows from the Karush-Kuhn-Tucker condition hypothesis that there exists
u∗ ≥ 0 such that (cf. (2) for gradients)

⎡

⎢⎣
xT∗ A1x∗

...

xT∗ Anx∗

⎤

⎥⎦ + 2
n∑

i=1

(x∗)i Aix∗ + (B + BT)x∗ + c − 2
n∑

i=1

(u∗)i Aix∗ − BTu∗ ≥ 0,

(9)

xT∗

⎛

⎜⎝

⎡

⎢⎣
xT∗ A1x∗

...

xT∗ Anx∗

⎤

⎥⎦ + 2
n∑

i=1

(x∗)i Aix∗ + (B + BT)x∗

+ c − 2
n∑

i=1

(u∗)i Aix∗ − BTu∗

)
= 0, (10)

uT∗ F(x∗) = 0, x∗ ≥ 0, u∗ ≥ 0. F(x∗) ≥ 0. (11)

Thus, multiplying (9) by u∗ and using the complementarity of u∗ (cf. (11)), we have

uT∗

(
−2

n∑

i=1

(x∗)i Aix∗ − BTx∗ + 2
n∑

i=1

(u∗)i Aix∗ + BTu∗

)
≤ 0,

and, using the feasibility of x∗, we have from (10) that

xT∗

(
2

n∑

i=1

(x∗)i Aix∗ + BTx∗ − 2
n∑

i=1

(u∗)i Aix∗ − BTu∗

)
≤ 0. (12)

Therefore,

2〈A,u∗ ⊗ u∗ ⊗ x∗ − x∗ ⊗ u∗ ⊗ x∗+x⊗3∗ − u∗ ⊗ x∗ ⊗ x∗〉+〈B, (u∗ − x∗)⊗2〉 ≤ 0,
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which is equivalent to

2〈ATx∗, (x∗ − u∗)⊗2〉 + 〈B, (u∗ − x∗)⊗2〉 ≤ 0.

Since A and B form a co-semidefinite pair, we have

2〈ATx∗, (x∗ − u∗)⊗2〉 + 〈B, (u∗ − x∗)⊗2〉 = 0.

Thus, (12) should be an equality, which together with (10), further implies that
xT∗ F(x∗) = 0. Thus, x∗ ∈ sol(A, B, c). ��

Whenever the optimal value of (3) is zero, we have complementarity of x∗ and
F(x∗). Recall that ∇F(x) = 2[A1x, . . . , Anx]T + B. Therefore, the linear indepen-
dence constraint qualification (LICQ) holds generically. Actually, the LICQ holds
generically, if we can find a concrete example such that the matrix ∇F(x) is of full
rank by Hilbert’s Nullstellensatz. This is easy to see, withA = 0 being the zero tensor,
B an arbitrary matrix of full rank, and c ≥ 0. Then, 0 is an optimizer to problem (3),
while ∇F(0) = B, which is of full rank.

If A ∈ R
n ⊗ S(Rn, 2) is an R0 tensor, then Proposition 3.1 guarantees an opti-

mal solution for (3) whenever (1) is feasible. The following example comes from
Propositions 3.1 and 3.2.

Example 3.1 Let tensor A ∈ R
2 ⊗ S(R2, 2) with a111 = a222 = 1 and all other

entries ai1i2i3 = 0, and matrix B =
[
0 0
0 1

]
. It is easy to verify that A is an R0 tensor,

D1 =
[
1 0
0 0

]
, D2 =

[
0 0
0 1

]
and B =

[
0 0
0 1

]
are all positive semidefinite matrices, and

henceA and B form a co-semidefinite pair. It is also easy to see that the corresponding
QCP (1) is feasible for any c ∈ R

2. The LICQ holds at any optimal solution in this
case. By Proposition 3.1, the solution set is nonempty.

For this example, the nonemptiness can also be checked by direct calculation.
Actually, if c1 ≥ 0, then we can take x1 = 0; otherwise, x1 = √−c1 > 0. If c2 ≥ 0,

then we can take x2 = 0 as well; otherwise, x2 =
√
1−4c2−1

2 > 0.

3.2 Compact Solution Sets

In this section, we will study the compactness/existence of the solution set
sol(A, B, c). Obviously, the set sol(A, B, c) is closed by continuity.

Definition 3.2 (C-strict copositivity) Let C ⊆ R
n+ be a nonempty closed cone. A

tensor A ∈ T(Rn, 3) is called C-strictly copositive, if A is copositive and strictly
copositive on the cone C , i.e.,

Ax3 ≥ 0 for all x ∈ R
n+, and Ax3 > 0 for all x ∈ C\{0}.
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Obviously, {0}-strict copositivity is the copositivity and R
n+-strict copositivity is

the strict copositivity in the usual sense, respectively. There are plenty of examples of
C-strictly copositive tensors with C being a face of Rn+, i.e.,

C = {x ∈ R
n+ : xi = 0 for all i ∈ I }

for some subset I ⊆ {1, . . . , n}. In the following, we give an example with C being
not a face of Rn+.

Example 3.2 Let A = (ai1i2i3) ∈ T(R2, 3) and a111 = 1, a112 = −1, a211 = 1 and
ai1i2i3 = 0 for all the other i1, i2, i3 ∈ {1, 2}. Let

C := R
2≥ = {x ∈ R

2+ : x1 ≥ x2}

be the cone of vectors with nonincreasing components. Then, A is C-strictly coposi-
tive. Actually, Ax3 = x31 . Clearly, A is copositive and strictly copositive on the cone
C , while A is not strictly copositive.

We remark that checking C-strict copositivity shall be an NP-hard problem in the
general setting, since it includes the usual strict copositivity problem. While, when C
is a polyhedral or more general a semi-algebraic set defined by explicit polynomial
equalities/inequalities, standard SDP hierarchy relaxation techniques in polynomial
optimization can be applied. This shall be studied in the next research to keep the main
scope of this article on solution sets of QCPs.

Definition 3.3 (K-positive semidefinite plus) Let K ⊆ R
n be a nonempty closed cone.

Amatrix B ∈ R
n×n is called K-positive semidefinite plus, if B is positive semidefinite

plus on K , i.e.,

xTBx ≥ 0, for all x ∈ K , and

whenever xTBx = 0 for x ∈ K , it follows Bx = 0. (13)

In Definition 3.3, the subset K can be a linear subspace. If K = R
n , we call B simply

positive semidefinite plus. Given a point x ∈ R
n , R+x is the cone {αx : α ∈ R+}, and

(R+x)� :=
{

(R+x)∗, if x 	= 0,
{0}, otherwise,

(14)

where K ∗ means the dual cone of a given cone K . K � := R
n\K is the complement

of K in Rn .

Proposition 3.3 (Compact solution set) Let A ∈ T(Rn, 3) be C-strictly copositive
for a nonempty closed cone C ⊆ R

n+, B ∈ R
n×n a K -positive semidefinite plus matrix

for a nonempty closed cone K ⊆ R
n, and c ∈ R

n a vector. Let the intersection of the
kernel of B and the linear subspace lin(K ) generated by K be L ⊆ R

n. Suppose that
K � ∩ R

n+ ⊆ C, and
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L ∩ R
n+ ⊆ C ∪

[
int

(
(R+c)�

) ∩ R
n+
]
. (15)

Then, the QCP (1) has a nonempty and bounded solution set.

Proof It is sufficient to show that the set

L≤ := {x ∈ R
n+ : xT(c + Bx + Ax2) ≤ 0}

is bounded, by [2, Proposition 2.2.3]. In the following, we assume, on the contrary,
that the set L≤ is unbounded and from which we will derive a contradiction.

Suppose that {xk} ⊆ L≤ is an unbounded sequence. Without loss of generality, we
assume that

lim
k→∞ ‖xk‖ = ∞, lim

k→∞
xk

‖xk‖ = d ∈ R
n+.

Obviously, 0 	= d ≥ 0. Further taking subsequence if necessary, we can assume that
either

{xk} ⊂ K , or {xk} ⊂ K �.

Since C is closed, it follows from K � ∩ R
n+ ⊆ C that if {xk} ⊂ K �, then d ∈ C .

On the other hand, it follows from

(xk)T(c + Bxk + A(xk)2) ≤ 0, (16)

and the copositivity of A that Ad3 = 0. Thus,

d /∈ C (17)

by the C-strict copositivity of A. Consequently,

{xk} ⊂ K , (18)

and henceforth
d ∈ K ∩ R

n+. (19)

It follows from (16) and the copositivity of A that

(xk)T(c + Bxk) ≤ 0, for all k. (20)

Therefore, by dividing the inequality by ‖xk‖2 and taking limitation, we conclude that
dTBd ≤ 0, which, together with (19) and the fact that B is K -positive semidefinite
plus, implies that

Bd = 0, or equivalently d ∈ L .

123



J Optim Theory Appl (2018) 176:120–136 129

Thus,
d ∈ L ∩ R

n+. (21)

By (18) and (20), as well as the K -positive semidefiniteness plus of B, we have
that cTd ≤ 0, which implies that d /∈ int

(
(R+c)�

)
.

This, together with (17) and (21), gives a contradiction to (15). ��
Condition (15) is called a regularity for QCP (1).
For a linear subspace L ⊆ R

n , L⊥ is the orthogonally complementary subspace of
L in Rn .

Proposition 3.4 Let B ∈ R
n×n be a positive semidefinite plus matrix with the kernel

being L ⊆ R
n, and c ∈ R

n be a vector. Then, the following statements are equivalent:

(a) There exists a y ∈ R
n such that

c + By ∈ R
n++. (22)

(b) The following regularity holds

L ∩ R
n+ ⊆ {0} ∪ [

int
(
(R+c)�

) ∩ R
n+
]
. (23)

Proof Suppose that there exists a y ∈ R
n such that c + By ∈ R

n++. Then,

c ∈ L⊥ + R
n++,

since the range space of B is L⊥. Thus, from [15] we have

c ∈ int((L ∩ R
n+)∗) = int(L⊥ + R

n++) = L⊥ + R
n++,

which implies

〈c,d〉 > 0 for all d ∈ L ∩ R
n+\{0}.

Therefore, either L ∩ R
n+ = {0} or

L ∩ R
n+\{0} ⊆ [

int
(
(R+c)�

) ∩ R
n+
]
,

while both cases are covered by (23).
If L ∩ R

n+ = {0}, then we have from [15] that

R
n = (L ∩ R

n+)∗ = L⊥ + R
n+.

We must have a point z ∈ R
n such that Bz ∈ R

n−−. For any c ∈ R
n , we can find a

y ∈ R
n such that c + By ∈ R

n+. Therefore,

c + B(y − z) ∈ R
n++.

So, (22) follows.
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In the following, suppose that L∩R
n+ has dimension being strictly larger than zero.

The condition (23) is equivalent to

〈c,d〉 > 0 for all d ∈ L ∩ R
n+\{0}.

Therefore,

c ∈ int((L ∩ R
n+)∗) = int(L⊥ + R

n++) = L⊥ + R
n++.

Consequently, we have that there exists a y ∈ R
n such that c + By ∈ R

n++. ��
We know from Proposition 3.4 that (22) is equivalent to a special case (23) of (15).

Thus, Proposition 3.3 generalizes [2, Proposition 2.2.12] and [8, Theorem 4.5(b)] for
TCPs with third-order tensors:

(i) TakingC = {0} in Proposition 3.3, togetherwith Proposition 3.4, Proposition 3.3
generalizes [2, Proposition 2.2.12(a)].

(ii) Taking C = R
n+ in Proposition 3.3, A is then strictly copositive, which implies

that the coercivity condition in [2, Proposition 2.2.12(b)] is satisfied, then Propo-
sition 3.3 generalizes [2, Proposition 2.2.12(b)].

(iii) Taking C = R
n+ and B = 0 in Proposition 3.3, we recover [8, Theorem 4.5(b)]

for TCPs with third-order tensors, since (15) is satisfied for any given c.

Whenever C is a nontrivial proper subcone in Rn+, the standard NCP and TCP theory
is helpless, while Proposition 3.3 may provide a solution.

Example 3.3 Let A = (ai1i2i3) ∈ T(R2, 3) and a122 = −1, a221 = 1, a222 = 1 and

ai1i2i3 = 0 for all the other i1, i2, i3 ∈ {1, 2}, B =
[
2 0
0 0

]
. Let

C = {x ∈ R
n+ : x1 ≤ x2}

and K = R
2+. It can be checked that A is C-strictly copositive, but fails to be strictly

copositive; and B is K -positive semidefinite plus. With the notation as in Proposi-
tion 3.3, L = {x ∈ R

2 : x1 = 0}, and L ∩ R
2+ ⊂ C . Thus, for any c ∈ R

2,
sol(A, B, c) is nonempty and compact.

We shall show the nonemptiness and compactness through direct calculation. If
c2 ≥ 0, then x2 = 0, and hence 2x21 + c1x1 = 0. Thus, the solution set is nonempty
(x1 = 0 is a solution) and always compact. If c2 < 0, there is a solution with x1 = 0
and x2 > 0 for any c1. On the other hand, in this case, solutions must be with x2 > 0.
So, x22 + x1x2 + c2 = 0. Since x1 ≥ 0, x2 cannot go to infinity. Thus, x2 is always
bounded. If x1 goes to infinity, then x2 should go to zero to maintain the equality
x22 + x1x2 + c2 = 0, while −x22 + 2x1 + c1 = 0 as x1 > 0, which is a contradiction
for any fixed c1.

Next example is a modification of Example 3.3 in which c plays a role.
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Example 3.4 Let A = (ai1i2i3) ∈ T(R2, 3) and a122 = −1, a221 = 1, and ai1i2i3 = 0
for all the other i1, i2, i3 ∈ {1, 2}, thematrix B is as the previous one, and c = (c1, c2)T

with some c2 > 0. Let C = {0}, K = R
2+.

In this case, L ∩ R
2+ = {x ∈ R

2 : x1 = 0, x2 ≥ 0} as well, while it is easy to see
pictorially that L ∩ R

n+ ⊂ int
(
(R+c)�

) ∩ R
2+. Thus, the regularity (15) holds as well

and hence the solution set is nonempty and compact by Proposition 3.3. It can also
be checked by direct calculation that the corresponding solution set is nonempty and
compact in this case as Example 3.3.

Besides the above two illustrative examples for Proposition 3.3, we remark an
application to the generalized Markowitz portfolio problem [5], whose details will be
carried out in a next research. A forecast is that the tensor A is either copositive or
C-strictly copositive for a cone of the form

R
n−4+ × {0} × {0} × {0} × {0} ⊂ R

n+.

In the following, we note a connection between the regularity (15) and the existence
for solutions of QCP (1) via a generalized Frank–Wolfe theorem by Andronov et al.
[16]. A tensor is symmetric, if the entries are invariant when permuting their indices.

The existence for solutions of QCP (1) with symmetric A and B satisfying (15)
follows from this generalized Frank–Wolfe theorem for cubic polynomial objective
under linear constraints. In this case, we consider the optimization problem

min

{
1

3
Ax3 + 1

2
xTBx + cTx : x ≥ 0

}
. (24)

It is proved in [16] that whenever the objective function is bounded below over the
feasible set, there is an optimal solution. Obviously, the LICQ holds at any optimal
solution, which further implies the existence of a KKT point. It is straightforward to
write down the KKT system for (24) and it is the same as QCP (1). Whenever the
regularity (15) is satisfied, an almost the same proof as that for Proposition 3.3 will
show that the objective function is indeed bounded from below.

4 Uniqueness

If A ∈ R
n×n is positive semidefinite, we define the null null(A) of A as the set of

vectors in Rn such that xTAx = 0, i.e.,

null(A) := {x ∈ R
n : xTAx = 0}.

It is easy to see that null(A) is a linear subspace. If furthermore A ∈ S(Rn, 2), i.e., A
is symmetric, then null(A) is the kernel of A, i.e.,

null(A) = {x ∈ R
n : Ax = 0},

while in general this is not true.
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Let {D1, . . . , Dn} ⊂ R
n×n be a collection of n matrices. If each Di is positive

semidefinite, then the nulls of the matrix pencils

x1D1 + · · · + xnDn for x ∈ R
n+

form a partially ordered finite set W(D1, . . . , Dn). Actually, whenever each Di is
positive semidefinite, the null of the matrix x1D1 + · · · + xnDn for x ∈ R

n+ is equal
to the null of the matrix

sign(x1)D1 + · · · + sign(xn)Dn,

where

sign(α) = 1 if α > 0; or sign(α) = 0 if α = 0; or sign(α) = −1 if α < 0.

In fact, the null of sign(x1)D1 + · · · + sign(xn)Dn is equal to

n⋂

i=1

null
(
sign(xi )Di

)
.

Therefore, with respect to the set inclusion, W(D1, . . . , Dn) is a set with the maximal
elements being {null(Di ) : i ∈ {1, . . . , n}}, and the unique minimum element being
n⋂

i=1
null(Di ). A pseudo-maximal element in W(D1, . . . , Dn) is defined as an element

of the form

null(Di ) ∩ null(Dj ) for some 1 ≤ i < j ≤ n.

Given a tensor A ∈ T(Rn, 3), recall AT is the tensor by transposing the first and
the second indices. Recall that Di := (AT

)
i,·,· for i ∈ {1, . . . , n} are the slices ofAT.

Lemma 4.1 Let A ∈ T(Rn, 3) and B ∈ R
n×n. Under either of the following condi-

tions, the mapping F(x) = Ax2 + Bx+ c is strictly monotone onRn+ for an arbitrary
c ∈ R

n:

(a) A is C-strictly copositive for a nonempty closed cone C ⊆ R
n+, B ∈ R

n×n a
positive semidefinite matrix which is positive definite on a nonempty cone P ⊆ R

n

such that Rn+ ⊆ P ∪ C, and the matrices D1, . . . , Dn are positive semidefinite
with

null(B) ∩ W = {0}

for every pseudo-maximal element W ∈ W(D1, . . . , Dn);
(b) the matrices D1, . . . , Dn and B are positive semidefinite with
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null(B) ∩ W = {0}

for every maximal element W ∈ W(D1, . . . , Dn).

Proof We have for any x, y ∈ R
n+

〈F(x) − F(y), x − y〉 = 〈Ax2 − Ay2, x − y〉 + 〈B(x − y), x − y〉
= 〈AT(x + y) + B, (x − y)(x − y)T〉. (25)

It is easy to see that under either hypothesis, the tensor A is copositive.
Suppose, without loss of generality, that y = 0 at first. Then, (25) becomes

〈ATx + B, xxT〉. (26)

If the hypothesis (a) is satisfied, then (26) is nonnegative since A is copositive and
B is positive semidefinite. If xTBx = 0, then x /∈ P , and hence x ∈ C , which
further implies 〈ATx, xxT〉 > 0. If the other hypothesis (b) is satisfied and xTBx = 0,
then x ∈ null(B). Since x 	= 0 and null(B) ∩ W = {0} for every maximal element
W ∈ W(D1, . . . , Dn), it follows that 〈ATx, xxT〉 > 0.

In the following, we suppose that both x 	= 0 and y 	= 0, and at least two elements
of x + y are nonzero, since the case when x + y has only one nonzero component
can be proved similarly as the previous argument. Then, at least two matrices Di s
are involved in AT(x + y). Thus, the null of the matrix AT(x + y) is contained in a
pseudo-maximal element W ∈ W(D1, . . . , Dn). Since x 	= y and null(B) ∩W = {0}
for every pseudo-maximal element W ∈ W(D1, . . . , Dn) under either hypothesis,
(25) is positive. ��

The following proposition can be derived from [2, Theorem 2.3.3].

Proposition 4.1 If F(x) = Ax2+Bx+c is strictly monotone onRn+, then the solution
set sol(A, B, c) of QCP (1) has at most one element.

The next theorem on the uniqueness follows from Propositions 3.3 and 4.1 and
Lemma 4.1.

Theorem 4.1 Let A ∈ T(Rn, 3) and B ∈ R
n×n. Suppose that A is C-strictly copos-

itive for a nonempty closed cone C ⊆ R
n+, B a K -positive semidefinite plus matrix

for a nonempty closed cone K ⊆ R
n. Let the intersection of the kernel of B and the

linear subspace lin(K ) generated by K be L ⊆ R
n. Suppose that K � ∩R

n+ ⊆ C and

L ∩ R
n+ ⊆ C ∪

[
int

(
(R+c)�

) ∩ R
n+
]
.

Then, under either of the following conditions:
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(a) B ∈ R
n×n a positive semidefinite matrix which is positive definite on a cone

P ⊆ R
n such that Rn+ ⊆ P ∪ C, and the matrices D1, . . . , Dn are positive

semidefinite with

null(B) ∩ W = {0}

for every pseudo-maximal element W ∈ W(D1, . . . , Dn);
(b) the matrices D1, . . . , Dn and B are positive semidefinite with

null(B) ∩ W = {0}

for every maximal element W ∈ W(D1, . . . , Dn);

the QCP (1) has a unique solution.

The next example utilizes the second hypothesis in Theorem 4.1.

Example 4.1 Let A ∈ T(R2, 3) and a111 = a121 = 1 and ai1i2i3 = 0 for all the other

i1, i2, i3 ∈ {1, 2}, B =
[
0 0
0 1

]
. From the given data, D1 = D2 =

[
1 0
0 0

]
.

It is easy to verify that D1, D2, B are positive semidefinite. Let

C = {x ∈ R
2+ : x1 ≥ x2}.

Then,A is C-strictly copositive and B is K = R
2+-positive semidefinite plus. Similar

as Example 3.3, the regularity condition holds for any c ∈ R
2. It is easy to see that

any maximal element of W(D1, D2) is {x ∈ R
2 : x1 = 0}, which intersects null(B)

trivially. Therefore, the corresponding QCP has a unique solution.
We shall show the uniqueness by direct calculation. The system is

0 ≤ x21 + x1x2 + c1 ⊥ x1 ≥ 0 and 0 ≤ x2 + c2 ⊥ x2 ≥ 0.

If c2 ≥ 0, then x2 = 0. Consequently, x1 = 0 when c1 ≥ 0; and x1 = √−c1
when c1 < 0. If c2 < 0, then x2 = −c2. Consequently, x1 = 0 when c1 ≥ 0; and

x1 = c2+
√
c22−4c1
2 otherwise. Thus, we have uniqueness for each case.

The next example is a modification of Example 4.1 in which the first hypothesis in
Theorem 4.1 is conducted.

Example 4.2 Let A ∈ T(R2, 3) and a111 = 1 and ai1i2i3 = 0 for all the other

i1, i2, i3 ∈ {1, 2}. Then, D1 =
[
1 0
0 0

]
and D2 = 0. Let B =

[
0 0
0 1

]
. We can take

P = {x ∈ R
2 : x2 	= 0}. All the other settings are similar to the previous example.

The unique pseudo-maximal element in W(D1, D2) is

{x ∈ R
2 : x1 = 0}.

All the hypotheses in Theorem 4.1 are satisfied then. Likewise, the uniqueness follows.
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5 Conclusions

In this article, we studied existence, compactness and uniqueness of the solution sets
of QCPs. Assumptions to guarantee these results are mostly presented in terms of
matrices, which should be more tractable. Interestingly, the results in this article
generalize the well-known ones in the literature and even broaden the boundary of
known knowledge (e.g., Sects. 3.2, 4). These demonstrate that research on QCPs
shall be interesting and meaningful for both QCPs and general NCPs. In par-
ticular, the study on QCPs would provide fruitful insights on investigations for
NCPs.

We conclude this article with remarks that the proposed C-strictly copositivity
of a tensor and K -positive semidefiniteness plus of a matrix can be applied to the
generalized Markowitz portfolio problem. Actually, the matrix in the QCP reformu-
lation of its optimality condition is K -positive semidefinite plus over the kernel K of
that matrix; and the tensor is C-strictly copositive for a proper subcone of the non-
negative orthant. Details and further investigations will be carried out in the coming
study.
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