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Abstract In this paper, we study quasi approximate solutions for a convex semidefi-
nite programming problem in the face of data uncertainty. Using the robust optimiza-
tion approach (worst-case approach), approximate optimality conditions and approx-
imate duality theorems for quasi approximate solutions in robust convex semidefinite
programming problems are explored under the robust characteristic cone constraint
qualification. Moreover, some examples are given to illustrate the obtained results.
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1 Introduction

A convex semidefinite optimization problem has been recognized as a valuable mod-
eling tool for control theory analysis and design and for many optimization problems
based on human activities [1–4]. In particular, a semidefinite linear programming
problem in the absence of data uncertainty also has attracted attention of a great num-
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ber of researchers in the past years. Moreover, recently the importance of solving
semidefinite programs under data uncertainty has attracted a great deal of attention
on identifying and obtaining (uncertainty-immunized) robust solutions of uncertain
semidefinite programs [1,5–8].

Aswe know, there aremainly two approaches, i.e., the robust optimization approach
and the stochastic optimization approach, dealing with mathematical programming
problems under data uncertainty. The stochastic optimization approach to optimization
problems under data uncertainty starts by assuming that the uncertain data have a
probabilistic description that constraints are required to be satisfied up to prescribed
level of probability [9], while the robust optimization approach examines a solution
which simultaneously satisfies all possible realizations of the constraints. It is worth
mentioning that the robust optimization approach to examining semidefinite linear
programming problems under data uncertainty developed by Jeyakumar and Li [10],
is to treat uncertain data as deterministic via uncertain sets which are closed and
convex.

On the other hand, the fact that it may not be always possible to find the point
of minimizer in optimization programming problems leads to the notion of approx-
imate solutions (such as approximate solution, quasi approximate solution, regular
approximate solution, and so on), which play an important role in algorithmic study
of optimization problems. It is worth mentioning that among them, the notion of
quasi approximate solutions first introduced by Loridan [11] is motivated by the
well-known Ekeland’s variational principle [12]. Many researchers have studied the
approximate solutions in convex/nonconvex optimization programming problems and
have established approximate necessary conditions under different suitable constraint
qualifications, see [13–18] and the references therein, for example. In particular, in
[13] the authors introduced a notion, i.e., the modified approximate KKT point, which
is also motivated by Ekeland’s variational principle [12]; moreover, they pointed out
that the proposed KKT-proximity measure could be used as a termination condition to
optimization algorithms. Besides, Lee and Lee [15] and Lee and Jiao [16] studied the
robust convex programming problem for approximate solutions and quasi approximate
solutions in the face of data uncertainty, respectively, and the latter paper analyzed the
differences between approximate solutions and quasi approximate solutions in robust
convex programs with the help of some simple examples.

However, as far as we know, until now it seems that no results focus on the quasi
approximate solution for robust convex semidefinite optimization problems in spite of
the fact that Lee and Jiao [16] obtained some results on quasi approximate solutions for
convex optimization problems under data uncertainty. Therefore, it is worth explor-
ing some properties of quasi approximate solutions for robust convex semidefinite
optimization problems based on the special structure of semidefinite programs. This
research paper focuses on studying quasi approximate solutions in convex semidefinite
programming problems under data uncertainty.

The organization of this paper is as follows. Section 2 states some preliminaries.
In Sect. 3, the robust version of Farkas’s lemma for the convex semidefinite program-
ming is given, and then, two approximate optimality conditions for quasi approximate
solutions in robust convex semidefinite optimization problems are presented under
the robust characteristic cone constraint qualification and the weakened constraint
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qualification, respectively. In Sect. 4, we propose the dual problem for the primal one,
whereafter weak duality and strong duality are explored. Moreover, several examples
are given throughout this article to illustrate the obtained results.

2 Preliminaries

This section gives some notations and preliminary results which will be used through-
out the paper. Let R

n denote the n-dimensional Euclidean space with standard
Euclidean norm, that is, ‖ · ‖ := √〈·, ·〉. The nonnegative orthant of Rn is defined
by R

n+ := {(x1, . . . , xn) ∈ R
n : xi � 0}. The inner product in R

n is denoted by
〈x, y〉 := ∑n

i=1 xi yi for all x, y ∈ R
n . We say that a set A in R

n is convex when-
ever ta1 + (1 − t)a2 ∈ A for all t ∈ [0, 1], a1, a2 ∈ A. Let f be a function from
R
n to R, where R := [−∞,+∞]. Here, f is said to be proper if for all x ∈ R

n,

f (x) > −∞, and there exists x0 ∈ R
n such that f (x0) ∈ R. The domain and the

epigraph of f are, respectively, defined by dom f := {x ∈ R
n : f (x) < +∞} and

epi f := {(x, r) ∈ R
n × R : f (x) � r}. A proper function f is said to be convex if

for all t ∈ [0, 1],
f ((1 − t)x + t y) � (1 − t) f (x) + t f (y)

for all x, y ∈ R
n . For a proper convex function f : Rn → R, the (convex) subdiffer-

ential of f at x ∈ R
n is defined by

∂ f (x) :=
{ {x∗ ∈ R

n : 〈x∗, y − x〉 � f (y) − f (x), ∀y ∈ R
n}, if x ∈ dom f,

∅, otherwise.

In addition, for any ε � 0, the ε-subdifferential of f at x ∈ R
n is defined by

∂ε f (x) :=
{ {x∗ ∈ R

n : 〈x∗, y − x〉 � f (y) − f (x) + ε,∀y ∈ R
n}, if x ∈ dom f,

∅, otherwise.

A function f is said to be lower semicontinuous if lim inf y→x f (y) � f (x) for all
x ∈ R

n . As usual, for any proper convex function f on R
n, its conjugate function

f ∗ : Rn → R∪ {+∞} is defined by f ∗(x∗) = sup
{〈x∗, x〉 − f (x) : x ∈ R

n
}
for all

x∗ ∈ R
n . For a given set A ⊂ R

n,we denote the closure and the convex hull generated
by A by cl A and conv A, respectively. The indicator function δA of a subset A of Rn

is defined by δA(x) :=
{
0, if x ∈ A,

+∞, otherwise.
Let Sn be the set of n× n symmetric matrices. For X ∈ Sn, X is said to be positive

semidefinite (denoted by X � 0) if vT Xv � 0 for any v ∈ R
n, and X is said to be

positive definite (denoted by X � 0) if vT Xv > 0 for any v( �= 0) ∈ R
n . The set of

n× n positive semidefinite and positive definite matrices are denoted by Sn+ and Sn++,

respectively. For X,Y ∈ Sn, the inner product in Sn is defined by 〈X,Y 〉 := tr [XY ],
where tr [·] is the trace operation.

The following proposition, which describes the relationship between the epigraph
of a conjugate function and the ε-subdifferential and plays a key role in deriving the
main results, is given in [19].
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Proposition 2.1 [19] If f : R
n → R ∪ {+∞} is a proper lower semicontinuous

convex function and if a ∈ dom f, then

epi f ∗ =
⋃

ε�0

{(v, 〈v, a〉 + ε − f (a)) : v ∈ ∂ε f (a)}.

The following two propositions will also be used in our later analysis.

Proposition 2.2 [20] Let f, g : Rn → R ∪ {+∞} be proper lower semicontinuous
convex functions. If dom f ∩ dom g �= ∅, then

epi ( f + g)∗ = cl (epi f ∗ + epi g∗).

Moreover, if one of the functions f and g is continuous, then

epi ( f + g)∗ = epi f ∗ + epi g∗.

Proposition 2.3 [21,22] Let gi : Rn → R ∪ {+∞}, i ∈ I (where I is an arbitrary
index set), be proper lower semicontinuous convex functions. Suppose that there exists
x0 ∈ R

n such that supi∈I gi (x0) < +∞. Then,

epi (sup
i∈I

gi )
∗ = cl

(

conv
⋃

i∈I
epi g∗

i

)

.

3 Approximate Optimality Theorems

Consider the standard form of a convex semidefinite programming problem [4]:

(SDP) min f (x) s.t. A0 +
m∑

i=1

xi Ai � 0,

where f : Rm → R is a convex function, and Ai , i = 0, 1, . . . ,m, are n×n symmetric
matrices.

The convex semidefinite programming problem in the face of data uncertainty in
the constraints can be captured by the problem

(USDP) min f (x) s.t. A0 +
m∑

i=1

xi Ai � 0,

where for each i = 0, 1, . . . ,m, Ai is uncertain and belongs to an uncertain set Vi

which is defined by Vi := {A0
i + ∑l

j=1 u
j
i A

j
i : (u1i , . . . , u

l
i ) ∈ Ui }, where for each

i = 0, 1, . . . ,m, Ui is a compact convex set in Rl , and A j
i , j = 0, 1, . . . , l, are n× n
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symmetric matrices. For the worst case of (USDP), the robust counterpart of (USDP)

is given as follows [23,24]:

(RSDP) min f (x) s.t. A0 +
m∑

i=1

xi Ai � 0, ∀Ai ∈ Vi , i ∈ I,

where the index set I := {0, 1, 2, . . . ,m}. Let F be the feasible set of (RSDP), where

F :=
{

x ∈ R
m : A0 +

m∑

i=1

xi Ai � 0, ∀Ai ∈ Vi , i ∈ I

}

.

Also, we use D to denote the robust characteristic cone as follows:

D :=
⋃

Ai∈Vi ,i∈I
Z�0,δ∈R+

{
(−tr [Z A1], . . . ,−tr [Z Am], tr [Z A0] + δ)

}
.

Indeed, D is a cone in Rm+1 [10]; moreover, applying Proposition 2.3, we can easily
see that

epi δ∗
F = cl conv D

whenever Vi ⊂ Sn is compact, and F �= ∅.

Now, we give the following lemma which is the robust version of Farkas’s lemma
for the convex semidefinite programming. It can be straightforwardly obtained from
Theorem 6.5 in [25] (see also [26]).

Lemma 3.1 Let f : Rm → R be a convex function, and Ai ∈ Sn, i ∈ I. Assume that
for each i ∈ I, Vi ⊂ Sn is compact, and the feasible set F �= ∅. Then, the following
statements are equivalent:
(i) the robust characteristic cone D is closed and convex;
(ii) F ⊂ {x ∈ R

m : f (x) � 0} ⇔ (0, 0) ∈ epi f ∗ + D.

Remark 3.1 Under the same assumptions as in Lemma 3.1, we can also easily see that

F ⊂ {x ∈ R
m : f (x) � 0} ⇔ (0, 0) ∈ epi f ∗ + cl conv D.

For the convex semidefinite programming problem (SDP) in the absence of data
uncertainty, the characteristic cone D is convex whenever Ai ∈ Sn, i ∈ I. However,
in general, the robust characteristic cone D is not convex. Jeyakumar and Li [10]
provided a sufficient condition for the convexity of the robust characteristic cone D
under some suitable assumptions (see Proposition 3.1).

Proposition 3.1 [10] For each i ∈ I, let Ai ∈ Vi := {A0
i + ∑l

j=1 u
j
i A

j
i : (u1i ,

. . . , uli ) ∈ Ui }, where Ui is a compact convex set in R
l , A j

0 ∈ Sn and A j
i ∈ Sn+,

i = 1, . . . ,m, j = 1, . . . , l. Then, the robust characteristic cone D is a convex subset
of Rm+1.
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Jeyakumar and Li [10] showed the closedness of the robust characteristic cone D
under the robust Slater condition, we state this result in the following for convenience.

Proposition 3.2 [20] Let Vi ⊆ Sn, i ∈ I, be compact and convex. Assume that the
robust Slater condition holds, that is, {x ∈ R

m : A0+∑m
i=1 xi Ai � 0, ∀Ai ∈ Vi , i ∈

I } �= ∅. Then, the robust characteristic cone D is closed.

Remark 3.2 We say a robust characteristic cone constraint qualification holds if the
robust characteristic cone D is closed and convex.

Definition 3.1 Let ε � 0 be given, then x̄ is said to be

(i) an ε-solution of (RSDP) if f (x̄) � f (x) + ε for all x ∈ F;
(ii) a quasi ε-solution of (RSDP) if f (x̄) � f (x) + √

ε‖x − x̄‖ for all x ∈ F;
(iii) a regular ε-solution of (RSDP) if x̄ is an ε-solution as well as a quasi ε-solution

of (RSDP).

Remark 3.3 For the differences of ε-solution, quasi ε-solution, and regular ε-solution,
one can see [16]. If ε = 0, then both ε-solution and quasi ε-solution x̄ deduce to be an
exact optimal solution (if exists) of (RSDP). This paper mainly focuses on studying
the characterizations of quasi ε-solutions of (RSDP).

Now, we give the following approximate optimality theorem under the robust char-
acteristic cone constraint qualification.

Theorem 3.1 (Approximate Optimality Theorem) Let x̄ ∈ F, and let ε � 0 be

given. Let f : Rm → R be a convex function, and let A j
i ∈ Sn, i ∈ I, j = 0, 1, . . . , l.

Let Ui be a compact set in R
l for each i ∈ I. Suppose that the robust characteristic

cone D is closed and convex. Then, the following statements are equivalent:
(i) x̄ is a quasi ε-solution of (RSDP);
(ii) there exist Z̄ ∈ Sn+, (ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I, and δ̄ ∈ R+ such that

(0,−√
ε‖x̄‖ − f (x̄))

∈ epi f ∗ + (−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄
)+ √

εB × R+;

(iii) there exist Z̄ ∈ Sn+ and (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I such that

0 ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εB and

tr

[

Z̄

(

Ā0 +
m∑

i=1

x̄i Āi

)]

= 0,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I, and B is the unit ball in Rm .

Proof Assume that x̄ is a quasi ε-solutionof (RSDP), that is, f (x)+√
ε‖x−x̄‖ � f (x̄)

for any x ∈ F. It means that F ⊆ {x ∈ R
m : f (x) + √

ε‖x − x̄‖ − f (x̄) � 0}. Let
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φ(x) := f (x) + √
ε‖x − x̄‖ − f (x̄). It follows from the assumptions for D and

Lemma 3.1 that

(0, 0) ∈ epiφ∗ +
⋃

Ai∈Vi ,i∈I
Z�0,δ∈R+

{
(−tr [Z A1], . . . ,−tr [Z Am], tr [Z A0] + δ)

}
,

which implies that there exist Z̄ ∈ Sn+, (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I, and δ̄ ∈ R+ such

that
(0, 0) ∈ epiφ∗ + (−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄

)
, (1)

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I.

Now, we claim that epiφ∗ = epi f ∗ + √
εB × [√ε‖x̄‖ + f (x̄),+∞). By Propo-

sition 2.2,

epiφ∗ = epi ( f + √
ε‖ · −x̄‖ − f (x̄))∗ = epi f ∗ + epi (

√
ε‖ · −x̄‖ − f (x̄))∗. (2)

Since

(
√

ε‖ · −x̄‖ − f (x̄))∗(a) =
{√

ε‖x̄‖ + f (x̄), if ‖a‖ � √
ε,

+∞, otherwise,

along with (2), we have,

epiφ∗ = epi f ∗ + √
εB × [√ε‖x̄‖ + f (x̄),+∞).

It follows from (1) that there exist Z̄ ∈ Sn+, (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I, and δ̄ ∈ R+

such that

(0,−√
ε‖x̄‖ − f (x̄))

∈ epi f ∗ + (−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄
)+ √

εB × R+,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I. Thus, (i) implies (ii).

Now, we assume that (ii) holds. Then, there exist Z̄ ∈ Sn+, (ū1i , . . . , ū
l
i ) ∈ Ui ,

i ∈ I, and δ̄ ∈ R+ such that

(0,−√
ε‖x̄‖ − f (x̄))

∈ epi f ∗ + (−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄
)+ √

εB × R+,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I. So, by Proposition 2.1,

(0,−√
ε‖x̄‖ − f (x̄)) ∈

⋃

ε0�0

{(ξ0, 〈ξ0, x̄〉 + ε0 − f (x̄)) : ξ0 ∈ ∂ε0 f (x̄)} +
(−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄

)+ √
εB × R+,
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which means that there exist ξ̄0 ∈ ∂ε̄0 f (x̄), ε̄0 � 0, b̄ ∈ B, and r̄ ∈ R+ such that

0 = ξ̄0 − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εb̄ and

−√
ε‖x̄‖ = 〈ξ̄0, x̄〉 + ε̄0 + tr [Z̄ Ā0] + δ̄ + r̄ .

So, there exist ξ̄0 ∈ ∂ε̄0 f (x̄), ε̄0 � 0, b̄ ∈ B, and r̄ ∈ R+ such that

ξ̄0 = (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])− √

εb̄ and

0 � ε̄0 �
√

ε‖x̄‖ − √
ε〈b̄, x̄〉 + ε̄0 + δ̄ + r̄ = −tr

[

Z̄

(

Ā0 +
m∑

i=1

x̄i Āi

)]

� 0,

i.e., ε̄0 = 0. Hence, there exist Z̄ ∈ Sn+ and (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I such that

0 ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εB and tr

[

Z̄

(

Ā0 +
m∑

i=1

x̄i Āi

)]

= 0,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I. Thus, (ii) implies (iii).

Finally, we will prove that (iii) implies (i). Assume that there exist Z̄ ∈ Sn+ and
(ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I such that

0 ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εB and tr

[

Z̄

(

Ā0 +
m∑

i=1

x̄i Āi

)]

= 0.

Then, there exist ξ0 ∈ ∂ f (x̄), Z̄ ∈ Sn+, (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I, and b ∈ B such that

ξ0 = (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])− √

εb and tr

[

Z̄( Ā0 +
m∑

i=1

x̄i Āi )

]

= 0. (3)

By the definition of the subdifferential of f at x̄, we have, for any x ∈ R
m,

f (x) − f (x̄) � 〈ξ0, x − x̄〉. (4)

Combining (3) and (4), it follows that, for any x ∈ R
m,

f (x) − f (x̄) � 〈(tr [Z̄ Ā1], . . . , tr [Z̄ Ām]) , x − x̄〉 − √
ε〈b, x − x̄〉

� tr

[

Z̄

(
m∑

i=1

xi Āi

)]

− tr

[

Z̄

(
m∑

i=1

x̄i Āi

)]

− √
ε‖b‖ · ‖x − x̄‖

= tr

[

Ā0 + Z̄

(
m∑

i=1

xi Āi

)]

− √
ε‖b‖ · ‖x − x̄‖.
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Since for any x ∈ F, tr [ Ā0 + Z̄(
∑m

i=1 xi Āi )] � 0 and ‖b‖ � 1, the above inequality
yields

f (x) − f (x̄) � −√
ε‖x − x̄‖, ∀x ∈ F.

Thus, x̄ is a quasi ε-solution of (RSDP). ��
Corollary 3.1 Let x̄ ∈ F, and let ε � 0 be given. Let f : Rm → R be a convex

function, and let A j
i ∈ Sn, i ∈ I, j = 0, 1, . . . , l. Let Ui be a compact set in R

l for
each i ∈ I. Suppose that the robust characteristic cone D is convex and the robust
Slater condition holds. Then, the following statements are equivalent:
(i) x̄ is a quasi ε-solution of (RSDP);
(ii) there exist Z̄ ∈ Sn+, (ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I, and δ̄ ∈ R+ such that

(0,−√
ε‖x̄‖ − f (x̄))

∈ epi f ∗ + (−tr [Z̄ Ā1], . . . ,−tr [Z̄ Ām], tr [Z̄ Ā0] + δ̄
)+ √

εB × R+;

(iii) there exist Z̄ ∈ Sn+ and (ū1i , . . . , ū
l
i ) ∈ Ui , i ∈ I, such that

0 ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εB and

tr

[

Z̄( Ā0 +
m∑

i=1

x̄i Āi )

]

= 0,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I.

Proof By Proposition 3.2, the robust characteristic cone D is closed, and the proof is
completed immediately with the aid of Theorem 3.1. ��

Note that the result of Theorem 3.1 holds under the robust Slater condition and the
convexity of D. However, the robust Slater condition is not necessary. The following
example illustrates that Theorem 3.1 holds, while the robust characteristic cone D is
closed and convex, whereas the robust Slater condition fails.

Example 3.1 Consider the following robust convex semidefinite program:

(RSDP)1 min |x1| + x22
s.t. A0 + x1A1 + x2A2 � 0, ∀Ai ∈ Vi , i = 0, 1, 2,

whereV0 =
⎧
⎨

⎩

⎛

⎝
u10 0 0
0 0 0
0 0 0

⎞

⎠ : u10 ∈ [0, 1]
⎫
⎬

⎭
,V1 =

⎧
⎨

⎩

⎛

⎝
0 0 0
0 u11 0
0 0 −u11

⎞

⎠ : u11 ∈ [−1, 1]
⎫
⎬

⎭
,

and V2 =
⎧
⎨

⎩

⎛

⎝
1 0 0
0 1 1
0 1 1

⎞

⎠

⎫
⎬

⎭
. Then, we have, for any Ai ∈ Vi , i = 0, 1, 2,

A0 + x1A1 + x2A2 =
⎛

⎝
u10 + x2 0 0

0 u11x1 + x2 x2
0 x2 −u11x1 + x2

⎞

⎠ .
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Indeed, we can easily see that F1 := {(x1, x2) : x1 = 0, x2 � 0}, which is the
set of all robust feasible solutions of (RSDP)1. Let ε � 0 be given. Then, SF1 :=
{(x1, x2) ∈ F1 : x1 = 0, x2 ∈ [0,

√
ε

2 ]} is the set of all quasi ε-solutions of (RSDP)1.

Taking u10 = 0 ∈ [0, 1] and u11 ∈ [−1, 1], we can easily see that A0 + x1A1 + x2A2
is not positive definite, that is, the robust Slater condition fails. However, the robust
characteristic cone

D =
⋃

Ai∈Vi ,i=0,1,2
Z�0,δ∈R+

{
(−tr [Z A1],−tr [Z A2], tr [Z A0] + δ)

}

= { (
u11(z4 − z6), z1 + z4 + 2z5 + z6, u

1
0z1 + δ

)
: u10 ∈ [0, 1], u11 ∈ [−1, 1],

⎛

⎝
z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ � 0, δ � 0
}

= R × R × R+

is closed and convex.
Let (x̄1, x̄2) := (0,

√
ε

2 ) ∈ SF1 . Taking ū10 = 0 ∈ [0, 1], ū11 ∈ [−1, 1], (b̄1, b̄2) =

(0,−1) ∈ B, and Z̄ =
⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ � 0, we can see that tr [Z̄( Ā0 + x̄1 Ā1 +

x̄2 Ā2)] = 0 and

(0, 0) ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], tr [Z̄ Ā2]

)+ √
ε(0,−1) = [−1, 1] × {0},

where Ā0 =
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ , Ā0 =
⎛

⎝
0 0 0
0 ū1 0
0 0 −ū1

⎞

⎠ , and Ā0 =
⎛

⎝
1 0 0
0 1 1
0 1 1

⎞

⎠ .

Thus, Theorem 3.1 holds.

Now, we give an approximate optimality theorem under a weakened constraint
qualification, that is, the robust characteristic cone D is convex but not necessarily
closed.

Theorem 3.2 Let x̄ ∈ F, and let ε � 0 be given. Let f : R
m → R be a convex

function, and let A j
i ∈ Sn, i ∈ I, j = 0, 1, . . . , l. Let Ui be a compact set in R

l

for each i ∈ I. Suppose that the robust characteristic cone D is convex. Then, the
following statements are equivalent:

(i) x̄ is a quasi ε-solution of (RSDP);
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(ii) there exist {Zk} ⊂ Sn+, {((u1i )k, . . . , (uli )k)} ⊂ Ui , i ∈ I, and {δk} ⊂ R+ such
that

0 ∈ ∂ f (x̄) − lim
k→∞ ((tr [Zk(A1)k], . . . , tr [Zk(Am)k])) + √

εB and

lim
k→∞

(
tr [Zk((A0)k +

m∑

i=1

xi (Ai )k)] + δk
) = 0,

where (Ai )k = A0
i +∑l

j=1(u
j
i )k A

j
i ∈ Vi , i ∈ I.

Proof Assume that x̄ is a quasi ε-solution of (RSDP). Then, from the assumption for
D and Remark 3.1, we can easily see that

(0,−√
ε‖x̄‖ − f (x̄))

∈ epi f ∗ + cl

⎛

⎜
⎜
⎝

⋃

Ai∈Vi ,i∈I
Z�0,δ∈R+

{
(−tr [Z A1], . . . ,−tr [Z Am], tr [Z A0] + δ)

}

⎞

⎟
⎟
⎠

+√
εB × R+.

By Proposition 2.1,

(0,−√
ε‖x̄‖ − f (x̄))

∈
⋃

ε0�0

{(ξ0, 〈ξ0, x̄〉 + ε0 − f (x̄)) : ξ0 ∈ ∂ε0 f (x̄)} + √
εB × R+

+cl

⎛

⎜
⎜
⎝

⋃

Ai∈Vi ,i∈I
Z�0,δ∈R+

{
(−tr [Z A1], . . . ,−tr [Z Am], tr [Z A0] + δ)

}

⎞

⎟
⎟
⎠ .

By the definition of the closure, there exist ξ̄0 ∈ ∂ε̄0 f (x̄), ε̄0 � 0, b̄ ∈ B, r̄ ∈ R+,

{Zk} ⊂ Sn+, {((u1i )k, . . . , (uli )k)} ⊂ Ui , i ∈ I, and {δk} ⊂ R+ such that

0 = ξ̄0 + lim
k→∞

(
(−tr [Zk(A1)k], . . . ,−tr [Zk(Am)k])

)+ √
εb̄, (5)

−√
ε‖x̄‖ = 〈ξ̄0, x̄〉 + ε̄0 + lim

k→∞(tr [Zk(A0)k] + δk) + r̄ , (6)
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where (Ai )k = A0
i +∑l

j=1(u
j
i )k A

j
i ∈ Vi , i ∈ I. Combining (5) and (6), we have,

0 � −ε̄0

= 〈ξ̄0, x̄〉 + lim
k→∞

(
tr [Zk((A0)k)] + δk

)+ √
ε‖x̄‖ + r̄

= 〈 lim
k→∞

(
(tr [Zk(A1)k], . . . , tr [Zk(Am)k])

)− √
εb̄, x̄〉

+ lim
k→∞

(
tr [Zk(A0)k] + δk

)+ √
ε‖x̄‖ + r̄

= lim
k→∞

(

tr

[

Zk((A0)k +
m∑

i=1

x̄i (Ai )k)

]

+ δk

)

− √
ε〈b̄, x̄〉 + √

ε‖x̄‖ + r̄

� lim
k→∞

(

tr

[

Zk((A0)k +
m∑

i=1

x̄i (Ai )k)

]

+ δk

)

� 0,

i.e., ε̄0 = 0. It means that there exist ξ̄0 ∈ ∂ f (x̄), b̄ ∈ B, {Zk} ⊂ Sn+,

{((u1i )k, . . . , (uli )k)} ⊂ Ui , i ∈ I, and {δk} ⊂ R+ such that

0 ∈ ∂ f (x̄) − lim
k→∞

(
(tr [Zk(A1)k], . . . , tr [Zk(Am)k])

)+ √
εB and

lim
k→∞

(

tr [Zk((A0)k +
m∑

i=1

x̄i (Ai )k)] + δk

)

= 0,

where (Ai )k = A0
i +∑l

j=1(u
j
i )k A

j
i ∈ Vi , i ∈ I.

Conversely, assume that (ii) holds. Then, there exist ξ0 ∈ ∂ f (x̄), {Zk} ⊂ Sn+,

{((u1i )k, . . . , (uli )k)} ⊂ Ui , i ∈ I, {δk} ⊂ R+, and b ∈ B such that

ξ0 = lim
k→∞ ((tr [Zk(A1)k], . . . , tr [Zk(Am)k])) − √

εb, (7)

lim
k→∞

(
tr [Zk((A0)k +

m∑

i=1

xi (Ai )k)] + δk
) = 0. (8)

By the definition of the subdifferential of f at x̄, we have, for any x ∈ R
m,

f (x) − f (x̄) � 〈ξ0, x − x̄〉. (9)

Combining (7), (8), and (9), it follows that for any x ∈ R
m,

f (x) − f (x̄) � 〈 lim
k→∞

(
tr [Zk(A1)k], . . . , tr [Zk(Am)k]

)
, x − x̄〉 − √

ε〈b, x − x̄〉

� lim
k→∞ tr

[

Zk(

m∑

i=1

xi (Ai )k)

]

− lim
k→∞ tr

[

Zk(

m∑

i=1

x̄i (Ai )k)

]

−√
ε‖b‖ · ‖x − x̄‖
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= lim
k→∞

(

tr

[

Zk((A0)k +
m∑

i=1

xi (Ai )k)

]

+ δk

)

− √
ε‖b‖ · ‖x − x̄‖

� lim
k→∞ tr [Zk((A0)k +

m∑

i=1

xi (Ai )k)] − √
ε‖x − x̄‖,

where the last inequality follows from the fact that b ∈ B and {δk} ⊂ R+. Since for
each i ∈ I, (Ai )k ∈ Vi and Vi is compact, for any x ∈ F,

lim
k→∞ tr

[

Zk((A0)k +
m∑

i=1

xi (Ai )k)

]

� 0.

So, the above inequality yields

f (x) − f (x̄) � −√
ε‖x − x̄‖, ∀x ∈ F.

Thus, x̄ is a quasi ε-solution of (RSDP). ��
We now give the following example to illustrate Theorem 3.2.

Example 3.2 Consider the following robust convex semidefinite program:

(RSDP)2 min |x1| + x22 s.t. A0 + x1A1 + x2A2 � 0, ∀Ai ∈ Vi , i = 0, 1, 2,

where V0 =
{(

0 0
0 u10

)

: u10 ∈ [−1, 1]
}

,V1 =
{(

0 − u11
2

− u11
2 0

)

: u11 ∈ [−1, 1]
}

,

and V2 =
{(

0 0
0 1

)}

. Then, we have, for any Ai ∈ Vi , i = 0, 1, 2,

A0 + x1A1 + x2A2 =
(

0 − 1
2u

1
1x1

− 1
2u

1
1x1 x2 + u10

)

.

Indeed, we can easily see that F2 := {(x1, x2) : x1 = 0, x2 � 1}, which is the set of
all robust feasible solutions of (RSDP)2.Let ε � 0 be given. Then, SF2 := {(x1, x2) ∈
F2 : x1 = 0, x2 ∈ [1,max{1,

√
ε

2 }]} is the set of all quasi ε-solutions of (RSDP)2.

Moreover, the robust characteristic cone

D =
⋃

Ai∈Vi ,i=0,1,2
Z�0,δ∈R+

{
(−tr [Z A1],−tr [Z A2], tr [Z A0] + δ)

}

= { (
u11z2,−z3, u

1
0z3 + δ

)
: z1, z3 � 0, z1z3 − z22 � 0, u10, u

1
1 ∈ [−1, 1], δ � 0

}

= {
(0, 0, δ) : δ � 0

} ∪ {
(a, b, r) : a ∈ R, b < 0, r ∈ R

}

is clearly not closed.
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Let ε � 4 be any given, and let (x̄1, x̄2) = (0,
√

ε

2 ) ∈ SF2 . For each k ∈ N,

let (u10)k = 1
k ∈ [−1, 1], (u11)k = 0 ∈ [−1, 1], and let Zk =

(
k 1
1 1

k

)

∈
S2+. Let δk = 1

k . Notice that ∂ f (x̄1, x̄2) = [−1, 1] × {√ε} and limk→∞
( −

tr [Zk(A1)k],−tr [Zk(A2)k]
) = (0, 0). Let (b̄1, b̄2) = (0,−1) ∈ B. Then, we have

(0, 0) ∈ [−1, 1] × {√ε} + √
ε(0,−1)

= [−1, 1] × {0}
⊂ ∂ f (x̄1, x̄2) − lim

k→∞
(
(−tr [Zk(A1)k],−tr [Zk(A2)k])

)+ √
εB.

Moreover, limk→∞
(
tr [Zk((A0)k+ x̄1(A1)k+ x̄2(A2)k)]+δk

) = limk→∞
(√

ε

2k + 1
k

) =
0. Thus, Theorem 3.2 holds.

4 Approximate Duality Theorems

Let U := U0 × U1 × · · · × Um = ∏m
i=0 Ui ⊂ R

l×(m+1), and u ∈ U means that for
each i ∈ I, ui := (u1i , . . . , u

l
i ) ∈ Ui .

Now, we formulate the dual problem of (RSDP) as follows:

(RSDD) max f (y) − tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

s.t. 0 ∈ ∂ f (y) − (tr [Z A1], . . . , tr [Z Am]) + √
εB,

Ai = A0
i +

l∑

j=1

u j
i A

j
i , A j

i ∈ Sn, (u1i , . . . , u
l
i ) ∈ Ui ,

i ∈ I, j = 1, . . . , l, Z ∈ Sn+, ε � 0.

Let FD := {(y, u, Z) ∈ R
m × U × Sn+ : 0 ∈ ∂ f (y) − (tr [Z A1], . . . , tr [Z Am]) +√

εB, Z ∈ Sn+, u ∈ U , ε � 0} be the feasible set of (RSDD).

Definition 4.1 Let ε � 0 be given, then (ȳ, ū, Z̄) is said to be a quasi ε-solution of
(RSDD) if for any (y, u, Z) ∈ FD,

f (ȳ) − tr

[

Z̄( Ā0 +
m∑

i=1

ȳi Āi )

]

� f (y) − tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

− √
ε‖ȳ − y‖,

where Āi = A0
i +∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I.

Remark 4.1 The notion of a quasi ε-solution of (RSDP) is motivated by Ekeland’s
variational principle [12] aswe havementioned, and for the notion of a quasi ε-solution
of (RSDD) which is motivated by [27] where the author introduced the notion of the
quasi ε-saddle point. It is worth noting here that we consider the notion of a quasi
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ε-solution over the feasible set, and it is not necessary to mention how explicitly the
feasible set is defined by.

Now, we establish the approximate weak duality theorem, which holds between
(RSDP) and (RSDD).

Theorem 4.1 (Approximate Weak Duality) For any feasible solution x of (RSDP)

and any feasible solution (y, u, Z) of (RSDD),

f (x) � f (y) − tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

− √
ε‖x − y‖. (10)

Proof Let x and (y, u, Z) be feasible solutions of (RSDP) and (RSDD), respectively.
Then, tr [Z(A0 + ∑m

i=1 xi Ai )] � 0, and there exist ξ ∈ ∂ f (y) and b ∈ B such that
ξ = (tr [Z A1], . . . , tr [Z Am]) − √

εb. By the definition of the subdifferential of f,
we have

f (x) − ( f (y) − tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

)

� 〈ξ, x − y〉 + tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

= 〈(tr [Z A1], . . . , tr [Z Am]) − √
εb, x − y〉

+tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

= tr

[

Z(A0 +
m∑

i=1

xi Ai )

]

− √
ε〈b, x − y〉

� −√
ε‖b‖ · ‖x − y‖

� −√
ε‖x − y‖,

which implies that (10) holds. ��
Now, under the robust characteristic cone constraint qualification, we give the

approximate strong duality theorem, which holds between (RSDP) and (RSDD).

Theorem 4.2 (Approximate Strong Duality) Suppose that the robust characteristic
cone D is closed and convex. If x̄ is a quasi ε-solution of (RSDP), then there exist
Z̄ ∈ Sn+, (ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I such that (x̄, ū, Z̄) is a quasi ε-solution of (RSDD).

Proof Let x̄ be a quasi ε-solution of (RSDP). Then, by Theorem 3.1, there exist
Z̄ ∈ Sn+ and (ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I such that

0 ∈ ∂ f (x̄) − (
tr [Z̄ Ā1], . . . , tr [Z̄ Ām])+ √

εB and tr

[

Z̄( Ā0 +
m∑

i=1

x̄i Āi )

]

= 0,
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where Āi = A0
i + ∑l

j=1 ū
j
i A

j
i ∈ Vi , i ∈ I. Therefore, (x̄, ū, Z̄) is feasible for

(RSDD). Hence, by Theorem 4.1, for any feasible solution (y, u, Z) of (RSDD),

f (x̄) − tr

[

Z̄( Ā0 +
m∑

i=1

x̄i Āi )

]

= f (x̄)

� f (y) − tr

[

Z(A0 +
m∑

i=1

yi Ai )

]

− √
ε‖x − y‖.

Thus, (x̄, ū, Z̄) is a quasi ε-solution of (RSDD). ��
Corollary 4.1 Suppose that the robust characteristic cone D is convex and the robust
Slater condition holds. If x̄ is a quasi ε-solution of (RSDP), then, there exist Z̄ ∈ Sn+
and (ū1i , . . . , ū

l
i ) ∈ Ui , i ∈ I, such that (x̄, ū, Z̄) is a quasi ε-solution of (RSDD).

Proof By Proposition 3.2, the robust characteristic cone D is closed, and the proof is
completed immediately with the aid of Theorem 4.2. ��

Note that the result of Theorem 4.2 holds under the robust Slater condition and
the convexity of the robust characteristic cone D. However, the robust characteristic
cone D may also be closed even though the robust Slater condition does not hold.
The following exam illustrates that the approximate strong duality holds, whereas the
robust Slater condition fails.

Example 4.1 Consider the following robust convex semidefinite program:

(RSDP)1 min |x1| + x22
s.t. A0 + x1A1 + x2A2 � 0, ∀Ai ∈ Vi , i = 0, 1, 2,

where V0=
⎧
⎨

⎩

⎛

⎝
u10 0 0
0 0 0
0 0 0

⎞

⎠ : u10 ∈ [0, 1]
⎫
⎬

⎭
,V1=

⎧
⎨

⎩

⎛

⎝
0 0 0
0 u11 0
0 0 −u11

⎞

⎠ : u11 ∈ [−1, 1]
⎫
⎬

⎭
,

and V2=
⎧
⎨

⎩

⎛

⎝
1 0 0
0 1 1
0 1 1

⎞

⎠

⎫
⎬

⎭
. Let ε � 0 be given. Let f (x1, x2) and A0+ x1A1+ x2A2

be same as in Example 3.1. Recall that the feasible set and the set of quasi ε-solutions
for (RSDP)1 are F1 := {(x1, x2) : x1 = 0, x2 � 0} and SF1 := {(x1, x2) ∈ F1 :
x1 = 0, x2 ∈ [0,

√
ε

2 ]}, respectively. We already have shown in Example 3.1 that for
any u10 ∈ [0, 1], u11 ∈ [−1, 1], A0 + x1A1 + x2A2 is not positive definite; however,
the robust characteristic cone

D :=
⋃

Ai∈Vi ,i=0,1,2
Z�0,δ∈R+

{
(−tr [Z A1],−tr [Z A2], tr [Z A0] + δ)

} = R × R × R+

is closed and convex.
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Now, we formulate the dual problem of (RSDP)1 as follows:

(RSDD)1 max |y1| + y22 − tr [Z(A0 + y1A1 + y2A2)]
s.t. 0 ∈ ∂ f (y) − (tr [Z A1], tr [Z A2]) + √

εB,

Ai ∈ Vi , i = 0, 1, 2, u10 ∈ [0, 1], u11 ∈ [−1, 1],

Z =
⎛

⎝
z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ � 0, ε � 0.

Let U := [0, 1] × [−1, 1]. Then, the feasible solution set of (RSDD)1 is F1
D :=

Fa
D ∪ Fb

D ∪ Fc
D, where

Fa
D = {((0, y2), (u10, u11), Z) ∈ R

2 × U × S3+ :
(0, 0) ∈ ∂ f (0, y2) − (tr [Z A1], tr [Z A2]) + √

εB, ε � 0}
= {((0, y2), (u10, u11), Z) ∈ R

2 × U × S3+ : |(−z4 + z6)u
1
1 + √

εb1| � 1,

y2 = (z1 + z4 + 2z5 + z6)
1
2 −

√
ε

2 b2, b21 + b22 � 1, ε � 0},

Fb
D = {((y1, y2), (u10, u11), Z) ∈ R

2 × U × S3+ :
y1 > 0, (0, 0) ∈ ∂ f (y1, y2) − (tr [Z A1], tr [Z A2]) + √

εB, ε � 0}
= {((y1, y2), (u10, u11), Z) ∈ R

2 × U × S3+ : √
εb1 = −1 + (z4 − z6)u

1
1,

y1 > 0, y2 = (z1 + z4 + 2z5 + z6)
1
2 −

√
ε

2 b2, b21 + b22 � 1, ε � 0},

and

Fc
D = {((y1, y2), (u10, u11), Z) ∈ R

2 × U × S3+ :
y1 < 0, (0, 0) ∈ ∂ f (y1, y2) − (tr [Z A1], tr [Z A2]) + √

εB, ε � 0}
= {((y1, y2), (u10, u11), Z) ∈ R

2 × U × S3+ : √
εb1 = (z4 − z6)u

1
1 + 1,

y1 < 0, y2 = (z1 + z4 + 2z5 + z6)
1
2 −

√
ε

2 b2, b21 + b22 � 1, ε � 0}.

Then, for any (x1, x2) ∈ F1 and any (y1, y2, u10, u
1
1, Z) ∈ Fa

D,

f (x1, x2) − [ f (y1, y2) − tr [Z(A0 + y1A1 + y2A2)]]
= x22 − y22 + z1u10 + (z1 + z4 + 2z5 + z6)y2
� 2y2(x2 − y2) + z1u10 + (z1 + z4 + 2z5 + z6)y2
= z1u10 + (z1 + z4 + 2z5 + z6)x2 − √

εb2(x2 − y2)

� tr [Z(A0 + 0 · A1 + x2A2)] − √
ε|x2 − y2|

� −√
ε‖(x1, x2) − (y1, y2)‖.
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Moreover, for any (x1, x2) ∈ F1 and any (y1, y2, u10, u
1
1, Z) ∈ Fb

D,

f (x1, x2) − [ f (y1, y2) − tr [Z(A0 + y1A1 + y2A2)]]
= x22 − y1 − y22 + z1u10 + (z4 − z6)u11y1 + (z1 + z4 + 2z5 + z6)y2
� 2y2(x2 − y2) + z1u10 + (−1 + (z4 − z6)u11)y1 + (z1 + z4 + 2z5 + z6)y2
= z1u10 + (z1 + z4 + 2z5 + z6)x2 + √

εb1y1 − √
εb2(x2 − y2)

� tr [Z(A0 + 0 · A1 + x2A2)] − √
ε

√
b21 + b22

√
y21 + (x2 − y2)2

� −√
ε‖(x1, x2) − (y1, y2)‖.

Similarly, we can show that, for any (x1, x2) ∈ F1 and any ((y1, y2), (u10, u
1
1), Z)

∈ Fc
D,

f (x1, x2) � f (y1, y2) − tr [Z(A0 + y1A1 + y2A2)] − √
ε‖(x1, x2) − (y1, y2)‖.

The foregoing calculations imply that, for any feasible solution (x1, x2) of (RSDP)1

and any feasible solution ((y1, y2), (u10, u
1
1), Z) of (RSDD)1,

f (x1, x2) � f (y1, y2) − tr [Z(A0 + y1A1 + y2A2)] − √
ε‖(x1, x2) − (y1, y2)‖,

that is, Theorem 4.1 (approximate weak duality) holds.

Let (x̄1, x̄2) = (0,
√

ε

2 ) ∈ SF1 . Let ū10 = 0, ū11 ∈ [−1, 1], and let Z̄ =
⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ .Then,we can easily check that ((x̄1, x̄2), (ū10, ū
1
1), Z̄)∈ F1

D.Moreover,

for any ((y1, y2), (u10, u
1
1), Z) ∈ F1

D,

f (x̄1, x̄2) − tr [Z( Ā0 + x̄1 Ā1 + x̄2 Ā2)]
−[ f (y1, y2) − tr [Z(A0 + y1A1 + y2A2)]]
� −√

ε‖(x̄1, x̄2) − (y1, y2)‖ − tr [Z( Ā0 + x̄1 Ā1 + x̄2 Ā2)] (by Theorem 4.1)

= −√
ε‖(x̄1, x̄2) − (y1, y2)‖,

where Ā0 =
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ , Ā1 =
⎛

⎝
0 0 0
0 ū11 0
0 0 −ū11

⎞

⎠ , and Ā2 =
⎛

⎝
1 0 0
0 1 1
0 1 1

⎞

⎠ . Thus, Theo-

rem 4.2 (approximate strong duality) holds.

5 Conclusions

In this researchpaper,we studied quasi approximate solutions for a convex semidefinite
programming problem in the face of data uncertainty. By using the robust optimization
approach (worst-case approach), approximate optimality conditions and approximate
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duality theorems for quasi approximate solutions in robust convex semidefinite pro-
gramming problems were examined under the robust characteristic cone constraint
qualification (Theorem 3.2 was given under a weakened constraint qualification).
Throughout this article, some skillful and sightworthy examples were given to illus-
trate the obtained results.
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