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Abstract This paper establishes a bridge between set optimization problems and vec-
torKyFan inequality problems.We introduce ageneralmodel, called the bifunction-set
optimization problem, that provides a unifying framework for the above-mentioned
problems. An existence result in our model is obtained, with the help of KKM–Fan’s
lemma. As applications, we derive some new or sharper existence results for set opti-
mization problems and generalized vector Ky Fan inequalities with efficient solutions.
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1 Introduction

In optimization with set-valued maps, the vector criterion aims at finding an efficient
point of the image of an objective set-valued map, while the set criterion is based on
comparisons among its values. Optimization problems with the set criterion, called
set optimization problems, are first proposed by Kuroiwa [1,2]. The existence of
solutions is an important research direction in the development of set optimization.
In [3] (see also [2]), two existence results are proven for l-type optimal solutions
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under some l-type semicontinuity properties of the objective maps. In the first one
(Theorem 4.1 of [3]), the domain of the objective map is assumed to be a compact
set of a topological vector space, and in the second one (Theorem 4.2 of [3]), it is a
(not necessarily compact) complete metric space. In [3], two similar existence results
are also formulated for u-type optimal solutions in Theorems 4.3 and 4.4. In [4], the
existence of u-type optimal solutions is established in Proposition 22 and Theorem
26 under cone-regularity assumptions, and the existence of l-type optimal solutions
is obtained in Proposition 30 under cone-semicompactness assumptions. In [5], the
l-domination property, that is stronger than the existence of l-type optimal solutions, is
established in Theorem 5.8 and Corollary 5.6. They are improvements of Theorem 4.1
of [3] and Proposition 30 of [4]. In [6], Theorems 5.3 and 5.4 give existence of l-type
optimal solutions under assumptions that are different from the l-type semicontinuity
assumptions in Theorems 4.1 and 4.2 of [3], but the ordering cone is required to have
a nonempty interior. The approach of [6] is based on generalizations of nonlinear
scalarizing functions of Gerstewitz [7]. In [8], a similar approach is used in Theorems
5.8 and 5.9 to establish existence results in weak versions of l-type and u-type set
optimization problems.

The approaches to solution existence in the above papers do not use tools, such as
the KKM–Fan’s lemma (see Lemma 1 of [9]), the result on the existence of maximal
elements (see Theorem 5.1 of [10]), …that are very efficient in proving existence
results in vector Ky Fan inequalities (see, e.g., [11]) and related problems. So, it is
interesting to study solution existence in set optimization with the help of these new
tools and assumptions different from the earlier ones. The Ky Fan inequality problem
[12] (called also the equilibrium problem in [13] and in several other papers) provides
a unifying approach to optimization, complementarity, variational inequality, saddle
point and fixed point problems. The vector variational inequality, first introduced in
[14], can be regarded as one of important stimulations for studying vector versions of
the Ky Fan inequality. The solution existence in the theory of generalized vector Ky
Fan inequality problems is intensively developed. We restrict ourselves to reviewing
some results on existence of efficient solutions in generalized vector Ky Fan inequality
problems that are related directly to our main result. In [15], the existence of efficient
solutions in these problems is established in Theorem 3.2 under the assumption on
existence of continuous strongly cone-monotonic functions. In [16], such an existence
result is obtained in Theorem 3.2 for the case, where the ordering cone has a base,
and the objective is a continuous set-valued map with compact convex values. If the
ordering cone has a nonempty interior and the objective is single-valued, existence
results for efficient solutions can be found in [17] for vector variational inequalities
and in [18] for vector equilibrium problems. In [19], the existence of efficient solutions
is proven in Theorems 3.1 and 3.2 for problems stronger than those of [15,16], under
the assumption on existence of continuous strongly monotonic functions satisfying
certain conditions.

The existence of solutions is independently developed in set optimization prob-
lems in [2–6,8] and generalized vector Ky Fan inequality problems in [15–19]. This
paper establishes a bridge between these problems, showing that some traditional
tools and approaches in generalized vector Ky Fan inequalities may be useful also for
set optimization problems. We introduce a general model, called the bifunction-set
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optimization problem, that provides a unifying framework for the u-type/l-type set
optimization problems and the vector Ky Fan inequality problems with efficient solu-
tions. An existence result is obtained in our model, with the help of KKM–Fan lemma
(see Lemma 1 of [9]). As applications, we derive some new or sharper existence results
for the above-mentioned set optimization problems and vector Ky Fan inequalities.

2 Preliminaries

A nonempty set C of a vector space Y is called a cone, if and only if λc ∈ C for all
λ ≥ 0 and c ∈ C . A cone C is pointed, if and only if C ∩ (− C) = {0}, where 0
denotes the origin of Y .

For a set-valued map G : X ⇒ Y between topological spaces X and Y , we denote
by domG and imG the domain and image of G:

domG := {x ∈ X : G(x) �= ∅} ,

imG := G(X) := ∪x∈X G(x),

where ∅ stands for the empty set.
We say that G is compact-valued (resp. closed-valued; convex-valued) on X, if and

only if each value of G is a compact (resp. closed; convex) set in Y. We denote by
U (x0), U ′(x0), . . . , neighborhoods of x0 ∈ X . The following definition can be found
in [20].

Definition 2.1 Let G : X ⇒ Y be a set-valued map between a topological space X
and a topological vector space Y , and let C be a convex cone of Y .

(i) G is C-usc (resp. C-lsc) at x0 ∈ domG, if and only if we can associate with each
open set W of Y with G(x0) ⊂ W (resp. G(x0)∩ W �= ∅) a neighborhood U (x0)
such that G(x) ⊂ W + C (resp. G(x) ∩ [W − C] �= ∅) for all x ∈ U (x0);

(ii) G is C-usc (resp. C-lsc) on X, if and only if domG = X and G is C-usc (resp.
C-lsc) at each point of domG.

If C = {0}, then we say that G is usc (resp. lsc) instead of saying that G is C-usc
(resp. C-lsc).

Definition 2.2 Set-valued map G : K ⇒ X from a nonempty subset K of a vector
space X to X is called a KKM-map on K , if and only if, for any finite subset {xi , i =
1, 2, . . . , n} of K and any point x ∈ conv{xi , i = 1, 2, . . . , n}, there exists j ∈
{1, 2, . . . , n} such that x ∈ G(x j ), where “conv” stands for the convex hull.

Remark 2.1 If G is a KKM-map on K , then x ∈ G(x) for all x ∈ K .
The following KKM–Fan lemma can be found in [9].

Lemma 2.1 (The KKM–Fan lemma) Let K be a nonempty subset of a Hausdorff
topological vector space X, and G : K ⇒ X be a KKM-map such that G has closed
values and G(x) is compact for at least one x ∈ K . Then, ∩x∈K G(x) �= ∅.
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Given a convex set K and two points ηi ∈ K , i = 1, 2, we denote by [η1, η2] the
closed segment joining η1 and η2, that is, [η1, η2] := {αη1 + (1 − α)η2 : 0 ≤
α ≤ 1}. We set ]η1, η2] = [η1, η2]\{η1}, [η1, η2[= [η1, η2]\{η2} and ]η1, η2[=
[η1, η2]\{η1, η2}.

We will need the following definition, due to [21].

Definition 2.3 Let K be a nonempty convex set, C be a convex cone of a vector space
Y , and G : K ⇒ Y be a set-valued map with nonempty values.

(i) G is properly C-quasiconvex on K , if and only if, for all ηi ∈ K , i = 1, 2, and
η ∈ [η1, η2], there exists j ∈ {1, 2} such that G(η) ⊂ G(η j ) − C ;

(ii) G is properly C-quasiconcave on K , if and only if, for all ηi ∈ K , i = 1, 2,
η ∈ [η1, η2], and yi ∈ G(ηi ), i = 1, 2, there exists j ∈ {1, 2} such that y j ∈
G(η) − C.

Definition 2.4 Let K be a nonempty convex set, C be a convex cone of a vector space
Y, and G, H : K ⇒ Y be set-valued maps with nonempty values. The pair (G, H) is
properly C-quasiconcave–quasiconvex on K , if and only if, for all ηi ∈ K , i = 1, 2,
η ∈ [η1, η2], and yi ∈ G(ηi ), i = 1, 2, there exists j ∈ {1, 2} such that y j ∈ G(η)−C
and H(η) ⊂ H(η j ) − C.

Remark 2.2 (i) Obviously, the pair (G, H) is properlyC-quasiconcave–quasiconvex
on K , if, for all ηi ∈ K , i = 1, 2, and η ∈ [η1, η2], we have

either [G(η1) ⊂ G(η) − C, H(η) ⊂ H(η1) − C];
or [G(η2) ⊂ G(η) − C, H(η) ⊂ H(η2) − C].

(ii) Let H be a constant set-valued map (that is, H(η) = M,∀η ∈ K , where M is a
fixed nonempty subset of Y ). Then, the pair (G, H) is properly C-quasiconcave–
quasiconvex on K , if G is properly C-quasiconcave on K .

(iii) Let G be a constant set-valued map. Then, the pair (G, H) is properly C-
quasiconcave–quasiconvex on K , if H is properly C-quasiconvex on K .

3 Existence Result in the Bifunction-Set Optimization Problem

Let K be a nonempty subset of a Hausdorff topological vector space X , C be a pointed
closed convex cone of a topological vector space Y , and Fi : K × K ⇒ Y, i = 1, 2,
be set-valued-maps with nonempty values. In this paper, we are interested in the
following problem, called the set optimization problem with bifunction, or, shortly,
the bifunction-set optimization problem:

Problem (u-BSOP): Find a point x ∈ K such that F1(x, η) ≤u F2(x, η) with some
η ∈ K implies that F2(x, η) ≤u F1(x, η).

Here the binary ≤u is taken from [1–3], that is, for nonempty sets A1 ⊂ Y and
A2 ⊂ Y ,

A1 ≤u A2 ⇔ A1 ⊂ A2 − C.
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To convince the reader that Problem (u-BSOP) provides a bridge between set opti-
mization problems and vector Ky Fan inequality problems, we consider some special
cases of Problem (u-BSOP). First, we assume that F : K ×K ⇒ Y is a set-valuedmap
with nonempty values and consider the following u-type and l-type set optimization
problems (see [1–3]):

Problem (u-SOP): Find a point x ∈ K such that F(η) ≤u F(x) with some η ∈ K
implies that F(x) ≤u F(η).

Problem (l-SOP): Find a point x ∈ K such that F(η) ≤l F(x) with some η ∈ K
implies that F(x) ≤l F(η), where

A1 ≤l A2 ⇔ A2 ⊂ A1 + C.

Clearly, Problem (u-SOP) is a special case of Problem (u-BSOP) with F1(x, η) =
F(η) and F2(x, η) = F(x) for all (x, η) ∈ K × K . Problem (l-SOP) is a special
case of Problem (u-BSOP), where F1(x, η) = −F(x) and F2(x, η) = −F(η) for all
(x, η) ∈ K × K .

Consider now the generalized vector Ky Fan inequality Problem (P1) of finding
x ∈ K such that F1(x, η) �⊂ −C\{0} for all η ∈ K . Solutions of this problem are
usually called efficient solutions. As shown in Proposition 3.1 below, Problem (P1)

is exactly a special case of Problem (u-BSOP).

Proposition 3.1 Let F2 ≡ {0}. Then, Problem (u-BSOP) is exactly the generalized
vector Ky Fan inequality Problem (P1).

Proof Let x be a solution of Problem (u-BSOP) with F2 ≡ {0}. If it is not a solution
of Problem (P1), then F1(x, η) ⊂ −C\{0} ⊂ −C = F2(x, η) − C for some η ∈ K .

By the definition of x , F2(x, η) = 0 ∈ F1(x, η) − C , that is, y ∈ C for some
y ∈ F1(x, η). Together with the pointedness of C and the inclusion F1(x, η) ⊂ −C ,
this yields y = 0. Therefore, 0 ∈ F1(x, η), which is impossible.

Conversely, let x be a solution of Problem (P1) and let F2 ≡ {0}. Then, for each
η ∈ K such that F1(x, η) ⊂ F2(x, η) − C ⊂ −C , we have 0 ∈ F1(x, η), since
F1(x, η) �⊂ −C\{0}. Thus, F2(x, η) = 0 ∈ F1(x, η) ⊂ F1(x, η) − C, showing that x
is a solution of Problem (u-BSOP) with F2 ≡ {0}. ��

Consider nowanother generalized vectorKyFan inequality Problem (P2)of finding
x ∈ K such that F2(x, η) ∩ [C\{0}] = ∅ for all η ∈ K .

Proposition 3.2 Let F1 ≡ {0}. Then, the set of solutions of Problem (u-BSOP) is
contained in that of Problem (P2). The converse statement holds true, if F2 is single-
valued.

Proof The second conclusion of Proposition 3.2 is obvious. We need to prove only
the first one. Let x be a solution of Problem (u-BSOP) with F1 ≡ {0}. If it is not
a solution of Problem (P2), then there exist η ∈ K and y ∈ F2(x, η) such that
y ∈ C\{0}. Since 0 = F1(x, η) ∈ F2(x, η) − [C\{0}] ⊂ F2(x, η) − C, we get
F2(x, η) ⊂ F1(x, η) − C ⊂ 0 − C = −C, by the definition of x . It follows that
y ∈ −C. This is impossible, since C is pointed. ��
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This paper aims at giving an existence result for Problem (u-BSOP), which, as we
have seen above, is a unifying framework for several problems in set optimization and
vector Ky Fan inequalities. Our main result is established in Theorem 3.1, with the
help of the KKM–Fan lemma in [9].We show that this general result is useful to derive
some new or sharper existence results in Problems (l-SOP), (u-SOP), (P1) and (P2).

In the sequel, unless otherwise specified, we always assume that X is a Hausdorff
topological vector space, Y is a topological vector space, C ⊂ Y is a pointed closed
convex cone with a possibly empty interior, and Fi : K × K ⇒ Y, i = 1, 2, are
set-valued maps with nonempty values. To provide an existence result for Problem
(u-BSOP), we first define a set-valued map D12 : K ⇒ K as follows:

D12(x) := {
η ∈ K : F1(x, η) ≤u F2(x, η)

}
, x ∈ K .

To each nonempty subset K ′ ⊂ K , we associate a set-valued map D21 : K ′ ⇒ K ′ as
follows:

D21(η) := {x ∈ K ′ : F2(x, η) ≤u F1(x, η)}, η ∈ K ′.

We give some verifiable conditions, under which D21 is a KKM-map on K ′ (Propo-
sition 3.3) and D21 is closed-valued on K ′ (Proposition 3.4).

Proposition 3.3 Let K ′ be a convex set. Then, under each of the following conditions
(i)–(iii), D21 is a KKM-map on K ′:

(i) For all x ∈ K ′,

x /∈ conv
{
η ∈ K ′ : F2(x, η) �u F1(x, η)

} ;

(ii) For all x ∈ K ′, the set {η ∈ K ′ : F2(x, η) �u F1(x, η)} is convex, and

F2(x, x) ≤u F1(x, x); (1)

(iii) For all x ∈ K ′, the pair (F2(x, ·), F1(x, ·)) is properly C-quasiconcave–
quasiconvex on K ′, and condition (1) holds.

Proof It is easily verified that condition (i) implies that D21 is a KKM-map on K ′. It
remains to show that (iii) ⇒ (i i) ⇒ (i).

(ii) ⇒ (i). Assume to the contrary that (i) is violated. Then, there exists x ∈ K ′
such that x ∈ convG(x), where

G(x) := {η ∈ K ′ : F2(x, η) �u F1(x, η)}.

By (ii), G(x) is convex set. Therefore, x ∈ G(x), a contradiction to (1).
(iii) ⇒ (i i). It suffices to prove that, for all x ∈ K ′, the set G(x) is convex. Indeed,

let ηi ∈ G(x), i = 1, 2. We need to prove that each point η ∈ [η1, η2] belongs to
G(x). Indeed, since ηi ∈ G(x), i = 1, 2, there exist yi ∈ F2(x, ηi ), i = 1, 2, with
yi /∈ F1(x, ηi ) − C, i = 1, 2. Due to the proper C-quasiconcave–quasiconvexity of
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the pair (F2(x, ·), F1(x, ·)) on K ′, there exists j ∈ {1, 2} such that y j ∈ F2(x, η)− C
and F1(x, η) ⊂ F1(x, η j ) − C. If η /∈ G(x), then F2(x, η) ⊂ F1(x, η) − C. Making
use of the above conditions, we obtain that

y j ∈ F2(x, η) − C

⊂ F1(x, η) − C − C

⊂ F1(x, η j ) − C − C − C

⊂ F1(x, η j ) − C.

This contradicts the above assumption that y j /∈ F1(x, η j ) − C . The convexity of the
set G(x) is thus proven, as desired. ��

We give an example illustrating Proposition 3.3.

Example 3.1 Let X = IR (the real line), Y = IR2 (the plane), C = IR2+ (the non-
negative orthant) and K ′ = [0, 1]. For (x, η) ∈ K ′ × K ′, define

F1(x, η) = [0, 1] × [0, x(x − η)] ⊂ Y,

F2(x, η) = [0, xη] × [0, η − x] ⊂ Y.

It is a simple matter to verify that condition (iii) [and hence, each of conditions (ii)
and (i)] of Proposition 3.3 holds.

Proposition 3.4 Let K ′ be closed in X and let η ∈ K ′ be such that the restriction
of F2(·, η) to K ′ is (− C)-lsc, and the restriction of F1(·, η) to K ′ is (− C)-usc and
compact-valued. Then, D21(η) is closed in X.

Proof It is easy to prove that D21(η) is closed in K ′, and hence it is closed in X (since
K ′ is closed in X ). ��

The following theorem gives verifiable conditions for the existence of solutions of
Problem (u-BSOP).

Theorem 3.1 Let the following assumption be satisfied: if domD12 = K , then there
exists a convex set K ′ such that imD12 ⊂ K ′ ⊂ K and

(i) For all η ∈ K ′, either (i)1 or (i)2 holds, where
(i)1 {x ∈ K ′ : F2(x, η) ≤u F1(x, η)} is closed in X;
(i)2 K ′ is closed in X, the restriction of F2(·, η) to K ′ is (− C)-lsc on K ′,
and the restriction of F1(·, η) to K ′ is (− C)-usc and compact-valued on K ′;

(ii) At least one of the conditions (i)–(iii) of Proposition 3.3 holds;
(iii) (Coercivity condition) There exists a nonempty compact set A ⊂ K ′ such that,

for each finite set U of points ηi ∈ K ′, i = 1, 2, . . . , n, there exists a nonempty
compact convex set B ⊂ K ′ such that B ⊃ U and, for all x ∈ B\A, there exists
η ∈ B with F2(x, η) �u F1(x, η).

Then, there exists a solution of Problem (u-BSOP).
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Proof If domD12 �= K , then there exists x ∈ K with D12(x) = ∅, that is,

F1(x, η) �u F2(x, η),∀η ∈ K .

By definition, x is a solution of Problem (u-BSOP).
Now, let domD12 = K and let K ′ be the set mentioned in Theorem 3.1. If

∩η∈K ′ D21(η) �= ∅, (2)

then there exists a solution of Problem (u-BSOP). Indeed, (2) means that there exists
x ∈ K ′ such that

∀η ∈ K ′, F2(x, η) ≤u F1(x, η). (3)

Now, let η ∈ K and F1(x, η) ≤u F2(x, η). Clearly, the last condition proves that
η ∈ D12(x) ⊂ imD12. Combining with the assumption that imD12 ⊂ K ′, this yields
η ∈ K ′. By (3), F2(x, η) ≤u F1(x, η), proving that x is exactly a solution of Problem
(u-BSOP).

So, it remains to verify condition (2). By Proposition 3.4, (i)2 implies (i)1. Hence,
D21(η) is closed in X , for all η ∈ K ′. To prove (2), it suffices to show that A ∩
[∩η∈K ′ D21(η)] �= ∅, where A is the set mentioned in (iii). Since A is compact and each
member of the family of sets D21(η), η ∈ K ′, is closed, it is enough to show that the
intersection of A and an arbitrary finite subfamily of this family is nonempty. Indeed,
assume that D21(ηi ), i = 1, 2, . . . , n, is such a finite subfamily, where ηi ∈ K ′, i =
1, 2, . . . , n. Let B ⊂ K ′ be the compact convex set mentioned in (iii). Consider the
set-valued map Q(·) := B ∩ D21(·), defined on B. We claim that this is a KKM-map
on B. Indeed, let xi ∈ B ⊂ K ′, i = 1, 2, . . . , n, and let x ∈ conv{xi , i = 1, 2, . . . , n}.
Then, by the convexity of B, x ∈ B. By Proposition 3.3, D21 is a KKM-map on K ′.
So, there exists j ∈ {1, 2, . . . , n} with x ∈ D21(x j ). As a result, x ∈ Q(x j ), and
hence, Q(·) is a KKM-map on B. In particular, for each η ∈ B, Q(η) is nonempty,
since it is a value of a KKM-map. Furthermore, it is a compact set, since it is the
intersection of the compact B and the closed set D21(η). Applying the KKM–Fan
lemma (Lemma 2.1) to Q(·) yields ∩η∈B Q(η) �= ∅, that is, there exists x ∈ B with
F2(x, η) ≤u F1(x, η) for all η ∈ B. By (iii), x ∈ A. Furthermore, x ∈ Q(ηi ) for all
i = 1, 2, . . . , n. Thus, A ∩ [∩n

1Q(ηi )] �= ∅, and our proof is complete. ��
Remark 3.1 The coercivity condition (iii) is automatically satisfied, if K ′ is compact
and convex, since (iii) holds with A = B = K ′. The coercivity condition (iii) is
motivated by the corresponding one in [22]. A similar coercivity condition is also used
in [23]. Among several coercivity conditions in generalized vectorKy Fan inequalities,
wemention only the coercivity condition used in Theorem 1 of [24]. Amodification of
this condition, applied to Problem (u-BSOP), can be formulated as follows: there exist
a nonempty compact set A ⊂ K ′ and a compact convex set B ′ ⊂ K ′ such that, for each
x ∈ K ′\A, there exists η ∈ B ′ with F2(x, η) �u F1(x, η). This kind of coercivity
condition implies (iii), since for each finite set U of points ηi ∈ K ′, i = 1, 2, . . . , n,

we can take B to be the convex hull of B ′ ∪ {ηi , i = 1, 2, . . . , n}. The proof of (2) is
inspired by that of Theorem 1 of [24].
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Remark 3.2 From the formulation and the proof of Theorem 3.1, it is clear that, if
domD12 �= K , then there always exists a solution of Problem (u-BSOP). In other
words, if domD12 �= K , then, for the solution existence of Problem (u-BSOP), the
assumption on existence of a set K ′ satisfying the conditionsmentioned inTheorem3.1
becomes superfluous.

Remark 3.3 The smallest set K ′ ⊂ K , that can be taken as a candidate for K ′ in
checking conditions (i)–(iii) of Theorem 3.1, is equal to imD12. An advantage of using
a set K ′ ⊂ K , larger than imD12, is that sometimes finding imD12 is more difficult
than majorizing it by a set K ′ ⊂ K satisfying (i)–(iii). For example, if conditions
(i)–(iii) hold with K ′ = K , then we can obtain a solution existence, without finding
imD12.

Observe furthermore that, if K ′ is a strict subset of K , then all the requirements,
imposed on the data of our problem outside the set K ′, are not needed for our existence
result. Example 3.5 below shows that such a case may happen.

Remark 3.4 Let us give some remarks on the assumptions of Theorem 3.1. Condi-
tions, similar to assumptions (i)–(iii) of Theorem 3.1, are familiar and often used in
the theory of vector Ky Fan inequalities. The use of conditions (i)–(iii) allows us to
obtain existence results for vector Ky Fan inequalities (see Corollaries 3.3, 3.4 below)
under assumptions closely related to the earlier ones. On the other hand, up to now,
conditions of the kind of assumptions (ii) and (iii) did not appear in studies of solution
existence in set optimization problems. So, the existence results for these problems in
Corollaries 3.1 and 3.2 below are new and are different from the earlier ones in [2–6,8].
The proof of Theorem 3.1 shows that traditional tools and approaches in generalized
vector Ky Fan inequalities may be useful also for set optimization problems.

To apply Theorem 3.1, it is required to know the sets domD12 and imD12. However,
if K is convex, then we can use Theorem 3.1 without knowing these sets, since in this
case, it suffices to set K ′ = K and to verify conditions (i)–(iii) with K ′ = K . Since
the convexity of K is often encountered in practice, the above remark is useful for a
broad class of practical problems (as we have seen in Remarks 3.2, 3.3, we may deal
with superfluous conditions when using Theorem 3.1 with K ′ = K or domD12 �= K ).

Now, let us show some special versions of Theorem 3.1 with verifiable conditions
(i)–(iii). If the set K ′ in this theorem is compact, then, aswehave seen fromRemark 3.1,
we can ignore condition (iii). If we use the case (i)2 of condition (i) of Theorem 3.1,
then we can check it by using the known notions of cone-semicontinuities of the
original data Fi , i = 1, 2. Similarly, we can check condition (ii) of Theorem 3.1
with the help of the verifiable condition (iii) of Proposition 3.3, that is, to check the
proper C-quasiconcavity–quasiconvexity of the pair (F2(x, ·), F1(x, ·)) for each fixed
x ∈ K ′ ⊂ K . In set optimization problems, checking the just mentioned property
becomes easier. Indeed, if the objective in Problem (l-SOP) is described by the set-
valued map F : K ⇒ Y , then F1(x, η) = −F(x) and F2(x, η) = −F(η) for all
(x, η) ∈ K ×K . Therefore, for each fixed x ∈ K ′ ⊂ K , F1(x, ·) is a constant map, and
checking the proper C-quasiconcavity–quasiconvexity of the pair (F2(x, ·), F1(x, ·))
leads to checking the proper C- quasiconcavity of set-valued map −F(·) (see Remark
2.2(ii)), which is a familiar notion of [21]. Similarly, checking the mentioned property
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of the pair (F2(x, ·), F1(x, ·)) in Problem (u-SOP) leads to checking the proper C-
quasiconvexity of F(·). Checking the proper C-quasiconcavity–quasiconvexity of the
pair (F2(x, ·), F1(x, ·)) in the case of generalized vector Ky Fan inequalities becomes
easier, too (see condition (ii)3 of Corollaries 3.3, 3.4).

In the rest of this section, we will derive from Theorem 3.1 some important
consequences providing sufficient conditions for the existence of solutions in set opti-
mization problems and vector Ky Fan inequalities. We begin with the case of Problem
(l-SOP).

Corollary 3.1 Let K ⊂ X be a nonempty convex set and let F : K ⇒ Y have
nonempty values. Let the following conditions be satisfied:

(i) Either for all η ∈ K , {x ∈ K : F(x) ≤l F(η)} is closed in X; or K is closed in
X and F is C-usc and compact-valued on K ;

(ii) Either for all x ∈ K , {η ∈ K : F(x) �l F(η)} is convex; or F is properly
(− C)-quasiconcave on K ;

(iii) (Coercivity condition) There exists a nonempty compact set A ⊂ K such that,
for each finite set U of points ηi ∈ K , i = 1, 2, . . . , n, there exists a nonempty
compact convex set B ⊂ K such that B ⊃ U and, for all x ∈ B\A, there exists
η ∈ B with F(x) �l F(η).

Then, there exists a solution of Problem (l-SOP).

Proof This is a direct consequence of Theorem 3.1 with F1(x, η) = −F(x) and
F2(x, η) = −F(η) for all (x, η) ∈ K × K . Observe that, due to −F(x) ≤l

−F(x),∀x ∈ K , we obtain domD12 = K , imD12 = K , and (1) is automatically
satisfied. ��
Remark 3.5 The first existence result for Problem (l-SOP), in the case of non-
compactness of K , is given in Theorem 4.2 of [3], where K is a complete metric
space. For the more general case of K (that is, the case where K is not necessarily
a complete metric space), an existence result is established in Proposition 30 of [4]
under some cone-semicompactness assumption. This assumption is difficult to handle
(see Section 6 of [5]), and, in [4,5], we do not find sufficient conditions for cone-
semicompactness, except for the case of compactness of K (see Proposition 29 of [4]
and Theorem 5.3 of [5], where K is compact and F is upper C-semicontinuous). If
K is compact and F satisfies some C-semicontinuity assumption, existence results
are formulated in Theorems 5.8–5.9 and Corollaries 5.5–5.7 of [5]. We recall that the
first existence result for Problem (l-SOP), in the case of compactness of K , is given
in Theorem 4.1 of [3]. Under an extra assumption that C has a nonempty interior,
existence results for the general case of K can be found also in Theorems 5.3 and 5.4
of [6].

The assumptions (and the approach) we use in Corollary 3.1 are originated from
those in the theory of vector Ky Fan inequalities and are quite different from the
corresponding ones in the above-mentioned results of [3–6]. Example 3.2 below shows
that sometimes our Corollary 3.1 is useful, while Theorem 4.2 of [3] and Theorems
5.3 and 5.4 of [6] are not. Observe, furthermore, that all the existence results, obtained,
e.g., in Theorem 4.1 of [3], Theorems 5.8–5.9 and Corollaries 5.5–5.7 of [5], cannot
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be applied in this example, since the assumption on compactness of K in these results
is violated.

Example 3.2 In Problem (l-SOP), take X = IR, C = {0} × IR+ ⊂ Y = IR2, and
K = IR+ (the non-negative half-line). Furthermore, we set

F(x) =
{

]0, 1[×]x,∞[, if x ∈ K\{0},
]0, 1[×{0}, if x = 0.

Obviously, the first part of condition (i) of Corollary 3.1 is satisfied, since the set
{x ∈ K : F(x) ≤l F(η)} = [0, η] is closed for all η ∈ K . Furthermore, we can
see easily that F is properly (− C)-quasiconcave on K , that is, the second part of
condition (ii) holds. To apply Corollary 3.1, it remains to verify condition (iii). We
take A = [0, 1], and we set η′ = max{ηi , i = 1, 2, . . . , n}, where ηi , i = 1, 2, . . . , n,

are arbitrary points of K . Define

B =
{

A, if η′ ≤ 1,

[0, η′], if η′>1.

For x ∈ [B\A] =]1, η′], we take η = 1 ∈ B, and we have F(x) �l F(η). This shows
that condition (iii) of Corollary 3.2 holds, as required.

Observe that, in our example,C has an empty interior, and so, Theorems 5.3 and 5.4
of [6] are inapplicable. Furthermore, F(·) + C is not closed-valued on K , and hence,
Theorem 4.2 of [3] is not useful. Finally, as we said above, the non-compactness of K
in our example excludes the possibility of applying the existence results in Theorem
4.1 of [3], Theorems 5.8–5.9 and Corollaries 5.5–5.7 of [5].

Corollary 3.2 Let K ⊂ X be a nonempty convex set and let F : K ⇒ Y have
nonempty values. Let the following conditions be satisfied:

(i) Either for all η ∈ K , {x ∈ K : F(x) ≤u F(η)} is closed in X; or K is closed in
X and F is (− C)-lsc and compact-valued on K ;

(ii) Either for all x ∈ K , {η ∈ K : F(x) �u F(η)} is convex; or F is properly
C-quasiconvex on K ;

(iii) (Coercivity condition) There exists a nonempty compact set A ⊂ K such that,
for each finite set U of points ηi ∈ K , i = 1, 2, . . . , n, there exists a nonempty
compact convex set B ⊂ K such that B ⊃ U and, for all x ∈ B\A, there exists
η ∈ B with F(x) �u F(η).

Then, there exists a solution of Problem (u-SOP).

Proof This is immediate from Theorem 3.1 with F1(x, η) = F(η) and F2(x, η) =
F(x) for all (x, η) ∈ K × K . Observe that, due to F(x) ≤u F(x),∀x ∈ K , we obtain
domD12 = K , imD12 = K , and (1) is automatically satisfied. ��
Remark 3.6 Our discussion is similar to that in Remark 3.5. The first existence result
for Problem (u-SOP), in the case of non-compactness of K , is given in Theorem
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4.4 of [3], where K is a complete metric space. For normed spaces, it is established
under some cone-regularity assumptions in Proposition 22 of [4] (see also Theorem
2.6 of [4]). However, these cone-regularity assumptions are difficult to handle, and
in [4], we do not find sufficient conditions for cone-regularity, except for the case of
compactness of K (see Proposition 21 of [4], where K is compact and F is a lower C-
semicontinuous set-valued map such that F(·)−C is closed-valued). If K is compact,
existence results are given in Theorem 4.3 of [3] and Corollary 24 of [4].

Our Corollary 3.2 is useful as a new choice in verifying existence of solutions
in Problem (u-SOP), with assumptions originated in the theory of vector Ky Fan
inequalities and different from the known ones in set optimization. Example 3.3 below
shows that sometimes our Corollary 3.2 is applicable, while Theorem 4.4 of [3] is not.
Furthermore, since the set K in this example is non-compact, all the known results
for Problem (u-SOP), given in Theorem 4.3 of [3] and Corollary 24 of [4], cannot be
used here.

Example 3.3 In Problem (u-SOP), take X = IR, C = {0} × IR+ ⊂ Y = IR2, and
K = IR+. Furthermore, we set

F(x) =
{

]0, 1[×]0, x[, if x ∈ K\{0},
]0, 1[×{0}, if x = 0.

Obviously, the first part of condition (i) of Corollary 3.2 is satisfied, since the set
{x ∈ K : F(η) ≤l F(x)} = [0, η] is closed for all η ∈ K . Furthermore, we can see
easily that F is properly (− C)-quasiconvex on K , that is, the second part of condition
(ii) holds. To apply Corollary 3.2, it remains to verify condition (iii). Let A and B be
defined as in Example 3.2. For x ∈ [B\A] =]1, η′], we set η = 0 ∈ B, and we obtain
F(x) �u F(η), as desired.

In our example, F(·) − C is not closed-valued on K , and so, Theorem 4.4 of [3]
is not useful. Furthermore, as we said above, the non-compactness of K excludes the
possibility of applying Theorem 4.3 of [3] and Corollary 24 of [4] to our example.

Remark 3.7 The second part of both assumptions (i) and (ii) of Corollary 3.2 is veri-
fiable; see our discussion in Remark 3.4.

The following example illustrates Remark 3.7.

Example 3.4 Consider Problem (u-SOP), where X= IR, Y= IR2, C=IR2+ and F(x) =
{x2} × [0, x] ⊂ Y for all x ∈ K = IR+. Clearly, K is closed and convex, and F
is lsc and compact-valued on K . Furthermore, F is properly C-quasiconvex on K .
So, the second part of both assumptions (i) and (ii) of Corollary 3.2 is satisfied. To
apply this corollary, it remains to verify condition (iii). Let A = [0, 1], and, for all
ηi ∈ K , i = 1, 2, . . . , n, let B be defined as in Example 3.3. For x ∈ [B\A] =]1, η′],
we take η = 1 ∈ B, and we have F(x) �u F(η), proving that condition (iii) of
Corollary 3.2 holds, as required.

For F2 ≡ 0, we write D1 instead of D12. More precisely,

D1(x) := {η ∈ K : F1(x, η) ⊂ −C}, x ∈ K .
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Corollary 3.3 Let the following assumption be satisfied: if domD1 = K , then there
exists a convex set K ′ such that imD1 ⊂ K ′ ⊂ K and

(i) For all η ∈ K ′, either (i)1 or (i)2 holds, where
(i)1 {x ∈ K ′ : F1(x, η) ∩ C �= ∅} is closed in X;
(i)2 K ′ is closed in X, and the restriction of F1(·, η) to K ′ is (− C)-usc and
compact-valued on K ′;

(ii) At least one of the conditions (ii)1–(ii)3 holds, where
(ii)1 For all x ∈ K ′, x /∈ conv{η ∈ K ′ : F1(x, η) ∩ C = ∅};
(ii)2 For all x ∈ K ′, F1(x, x)∩C �= ∅, and the set {η ∈ K ′ : F1(x, η)∩C = ∅}
is convex;
(ii)3 For all x ∈ K ′, F1(x, x) ∩ C �= ∅, and the set-valued map F1(x, ·) is
properly C-quasiconvex on K ′;

(iii) (Coercivity condition) There exists a nonempty compact set A ⊂ K ′ such that,
for each finite set U of points ηi ∈ K ′, i = 1, 2, . . . , n, there exists a nonempty
compact convex set B ⊂ K ′ such that B ⊃ U and, for all x ∈ B\A, there exists
η ∈ B with F1(x, η) ∩ C = ∅.

Then, there exists a solution of Problem (P1).

This is immediate from Proposition 3.1 and Theorem 3.1.

Remark 3.8 Existence results in some problems more general than Problem (P1) can
be found, e.g., in Theorem 3.2 of [15] and Theorem 3.2 of [16]. The main differ-
ence between Theorem 3.2 of [15] and our Corollary 3.3 is that Theorem 3.2 of [15]
assumes the existence of some continuous strongly C-monotonic function, while our
Corollary 3.3 does not. Theorem 3.2 in [16], applied to Problem (P1), requires that C
has a base, and F1 is convex-valued and continuous in both variables (x, η) ∈ K × K .
All these requirements are not needed for our Corollary 3.3.

The following example shows that Corollary 3.3 may be applicable for K ′ smaller
than K , while it is inapplicable for K ′ = K .

Example 3.5 In Problem (P1), let X = IR, Y = IR2, C = IR2+ and K be the union of
K1 and K2, where K1 = [0, 2], K2 =]2, 3[∪]3, 4[. Furthermore, for (x, η) ∈ K × K ,
we set F1(x, η) = [− 1, 0] × [− 1, g(x, η)] ⊂ Y , where

g(x, η) =

⎧
⎪⎨

⎪⎩

x − η, if x ∈ K1, η ∈ K1,

η − x, if x ∈ K1, η ∈ K2,

η2 − x, if x ∈ K2, η ∈ K .

It is easy to verify that, in our example, domD1 = K and imD1 ⊂ [0, 2] ⊂ K . Taking
K ′ = [0, 2] = K1, we see that K ′ is a compact convex set satisfying all conditions
of Corollary 3.3, and hence Problem (P1) has a solution. A direct computation shows
that x = 2 is a solution of this problem. Observe that, if we take K ′ = K , then some
assumptions of Corollary 3.3 are violated: firstly, K ′ = K is nonconvex; and secondly,
condition (i) does not hold for η ∈ K2 (since {x ∈ K ′ = K : F1(x, η)∩C �= ∅} = K ,
and K is not closed).
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For F1 ≡ 0, we write D2 instead of D12. More precisely,

D2(x) := {η ∈ K : F2(x, η) ∩ C �= ∅} , x ∈ K .

Corollary 3.4 Let the following assumption be satisfied: if domD2 = K , then there
exists a convex set K ′ such that domD2 ⊂ K ′ ⊂ K and

(i) For all η ∈ K ′, either (i)1 or (i)2 holds, where
(i)1 {x ∈ K ′ : F2(x, η) ⊂ −C} is closed in X;
(i)2 K ′ is closed in X, and the restriction of F2(·, η) to K ′ is (− C)-lsc on K ′;

(ii) At least one of the conditions (ii)1–(ii)3 holds, where
(ii)1 For all x ∈ K ′, x /∈ conv{η ∈ K ′ : F2(x, η) �⊂ −C};
(ii)2 For all x ∈ K ′, F2(x, x) ⊂ −C, and the set {η ∈ K ′ : F2(x, η) �⊂ −C}
is convex;
(ii)3 For all x ∈ K ′, F2(x, x) ⊂ −C, and the set-valued map F2(x, ·) is
properly C-quasiconcave on K ′.

(iii) (Coercivity condition) There exists a nonempty compact set A ⊂ K ′ such that,
for each finite set U of points ηi ∈ K ′, i = 1, 2, . . . , n, there exists a nonempty
compact convex set B ⊂ K ′ such that B ⊃ U and, for all x ∈ B\A, there exists
η ∈ B with F2(x, η) �⊂ −C.

Then, there exists a solution of Problem (P2).

This is immediate from Proposition 3.2 and Theorem 3.1.

Remark 3.9 In Corollary 3.4, F2 is set-valued, and C may have a possibly empty
interior. If F2 is single-valued, and C has a nonempty interior, existence results for
Problem (P2) can be found in [17] for vector variational inequalities and in [18] for
vector equilibrium problems. Existence results in some problems more general than
Problem (P2) can be found in Theorems 3.1 and 3.2 of [19], under the assumption on
existence of a continuous strongly monotonic function satisfying certain conditions.
Such an assumption is not used in Corollary 3.4.

4 Conclusions

The existence of solutions is independently developed in set optimization problems and
generalized vector Ky Fan inequality problems. In this paper, we introduce a general
model, that establishes a bridge between these problems, and discuss the existence of
solutions of this model. Our main existence result (Theorem 3.1) is original and is the
first one indicating that some traditional tools and approaches in generalized vector
Ky Fan inequalities may be useful also for set optimization problems. More precisely,
Theorem 3.1, applied to both Problems (l-SOP) and (u-SOP) in set optimization,
yields some new results that, in some circumstances, can be useful, while some earlier
ones cannot (see our detailed discussion in Remarks 3.5, 3.6 and Examples 3.2, 3.3).
Moreover, with the help of Theorem 3.1, we can establish existence results in new
classes of vectorKyFan inequalities (seeCorollaries 3.3, 3.4) and discover superfluous
assumptions in some earlier results.
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Our approach is quite different from the corresponding ones to the solution existence
in set optimization. Themain tool of this paper is the KKM–Fan lemma ([9]) that plays
a crucial role in the theory of vector Ky Fan inequalities and, up to now, that is not
used in set optimization. Since there are other powerful tools in the theory of Ky Fan
inequalities, it is expected that their use in our model can lead to other significant
results on existence of solutions in both set optimization and vector Ky Fan inequality
theory. More general models and stability studies will be discussed in subsequent
papers.
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