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use these results to study vector equilibrium problems and von Neumann’s minimax
principle in ordered normed vector spaces.
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1 Introduction

Vector optimization problems have been extensively studied by many authors in the
past years; see Cesari and Suryanarayana [1–3], Yu [4], Wagner [5], Hartley [6], and
Corley [7,8], see also [9]. Semi-continuity plays important role in variational problems,
see [10,11] and the references therein. A definition of generalized semi-continuity,
which is called lower semi-continuous from above, was introduced by Chen et al. [12]
to study the minimum of a convex function in reflexive Banach spaces. Lower semi-
continuous from above functions have been used and generalized by many authors
to study variational problems, optimize problems, equilibrium problems and fixed
point problems, see [13–23]. This concept has also been generalized by Khanh and
Quy [24–26] to study variational problems for vector functions, see also Chen et al.
[27]. Until now, the study of a function to be lower semi-continuous from above is
few. In this paper, we first study the lower (respectively, upper) semi-continuity from
above (respectively, below) for vector functions in ordered normed vector spaces;
then, we study minimum problems and equilibrium problems for vector functions
under these semi-continuity conditions. We obtain some results on semi-continuity of
vector functions which generalize the corresponding results of Browder [10] in scalar
case. Results on the existence of minimal (respectively, maximal) points are also
obtained under lower (respectively, upper) semi-continuous from above (respectively,
below) conditions. Applications to equilibrium problems and von Newman’s minimax
principle are also given.

The rest part of this paper is organized as follows: In Sect. 2, we recall some
definitions and notations. In Sect. 3, we discuss the lower (respectively, upper) semi-
continuity from above (respectively, below) of some vector functions in ordered
normed spaces. In Sect. 4, we study the existence of minimal (respectively, maxi-
mal) points for lower (respectively, upper) semi-continuous from above (respectively,
below) functions; applications to vector equilibrium problems and von Newman’s
minimax principle are also given. Section 5 contains the concluding remarks.

2 Definitions of Semi-continuous Functions and Notations

In this section, we recall some definitions that will be used in the rest of this paper.
Let F be a topological vector space, C ⊂ F is said to be a closed cone iff C is closed
and convex, and λC ⊆ C for all λ > 0, and C ∩ (−C) = {0}. The partial order ≤
induced by C on F is defined by x ≤ y iff y − x ∈ C .

Definition 2.1 (see [4]) Let X, F be topological vector spaces, C ⊂ F a cone. ≤ is
the partial order induced by C on F .

(i) A vector-valued function φ : X → F is said to be cone convex iff φ(αx +
βy) ≤ αφ(x) + βφ(y), equivalently, αφ(x) + βφ(y) − φ(αx + βy) ∈ C for
all x, y ∈ D(φ), α > 0, β > 0 satisfying α + β = 1, where and after D(φ) is
always the domain of φ;

(ii) A vector-valued function φ : X → F is said to be cone concave iff αφ(x) +
βφ(y) ≤ φ(αx + βy), equivalently, φ(αx + βy) − αφ(x) − βφ(y) ∈ C for all
x, y ∈ D(φ), α > 0, β > 0 satisfying α + β = 1;
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(iii) A vector-valued function φ : X → F is said to be quasi cone convex iff
{x;φ(x) < α}, equivalently, {x;α −φ(x) ∈ C \ {0}}, is convex for each α ∈ F ;

(iv) A vector-valued function φ : X → F is said to be quasi cone concave iff
{x;α < φ(x)}, equivalently, {x;φ(x)−α ∈ C \ {0}}, is convex for each α ∈ F .

The following definition of a cone lower semi-continuous function was essentially
introduced by Corley [7].

Definition 2.2 Let X be a topological space, F a topological vector space, C ⊂ F a
cone. ≤ is the partial order induced by C on F .

(i) A vector-valued function f : X → F is said to be cone lower semi-continuous
iff f −1(y − C) is closed for all y ∈ F ;

(ii) A vector-valued function f : X → F is said to be cone upper semi-continuous
iff f −1(y + C) is closed for all y ∈ F .

Definition 2.3 (see [12]) Let X be a topological space. A function f : X → R is
said to be sequentially lower semi-continuous from above at x0 iff for any xn → x0,
f (xn+1) ≤ f (xn) implies that f (x0) ≤ limn→∞ f (xn). Similarly, f is said to be
sequentially upper semi-continuous from below at x0 iff for any xn → x0, f (xn+1) ≥
f (xn) implies that f (x0) ≥ limn→∞ f (xn).

One can easily see that a strictly increasing or decreasing function on R is both
sequentially lower semi-continuous form above and upper semi-continuous from
below. It was proved in [12] that a sequentially lower semi-continuous from above
convex function in a reflexive Banach space obtains it is minimum if it is also
coercive. Some well-known results such as Ekland’s variational principle, Caristi’s
fixed point theorem and von Neumann’s minimax principle are also true under lower
semi-continuous from above condition, see [12,14] for details. Recently, lower semi-
continuous from above functions has been used and generalized by many authors to
study variational problems, optimization problems, fixed point problems, equilibrium
problems and Ekland’s variational principle, see [13,15–23]. Khanh and Quy have
generalized this concept to study variational problem for vector functions; we recall
it as the following.

Definition 2.4 (see [24,27]) Let X be a topological space, F a topological vector
space, and C ⊂ F a cone. ≤ is the partial order induced by C on F .

(i) A function f : X → F is said to be sequentially cone lower semi-continuous from
above at x0 iff for any xn → x0, f (xn+1) ≤ f (xn) imply that f (x0) ≤ f (xn) for
n = 1, 2, . . .;

(ii) f is said to be sequentially cone upper semi-continuous from below at x0 iff
xn → x0, f (xn+1) ≥ f (xn) imply that f (x0) ≥ f (xn) for n = 1, 2, . . ..

Clearly, cone lower semi-continuous introduced by [7] implies that cone lower semi-
continuous from above, but the reverse is not true. See [12,24].

The following result follows directly from Definition 2.4.
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Proposition 2.1 Let X be a topological space, F a topological vector space, C ⊂ F
a closed cone.≤ is the partial order induced by C on F, and T : X → F, f : F → F
are two maps. We have the following conclusions:

(i) Suppose f (x) > f (y) if and only if x > y. Then f is both sequentially cone
lower semi-continuous from above and cone upper semi-continuous from below
on F.

(ii) If T is continuous and f is sequentially cone lower semi-continuous from above
(respectively, cone upper semi-continuous from below); then, f (T x) : X → F
is sequentially cone lower semi-continuous from above (respectively, cone upper
semi-continuous from below).

Definition 2.5 Let X be a topological space, F a topological vector space, C ⊂ F a
closed cone. ≤ is the partial order induced by C on F . Let φ(x) : D(φ) ⊆ X → F
be a function, and epiφ = {(x, α) ∈ X × F, φ(x) ≤ α}.
(i) epiφ is said to be sequentially closed from above iff (xn, αn) ∈ epiφ, n =

1, 2, . . ., (xn, αn) → (x0, α0), and φ(x1) ≥ φ(x2) ≥ · · · φ(xn) ≥ · · · , then
(x0, α0) ∈ epiφ;

(ii) epiφ is said to be sequentially closed from below iff (xn, αn) ∈ epiφ, n =
1, 2, . . ., (xn, αn) → (x0, α0), and φ(x1) ≤ φ(x2) ≤ · · · φ(xn) ≤ · · · , then
(x0, α0) ∈ epiφ.

Proposition 2.2 Let X be a topological space, F a topological vector space. C ⊂ F
a closed cone. ≤ is the partial order induced by C on F. Let φ(x) : D(φ) ⊆ X → F
be a function, then we have the following conclusions:

(i) φ is sequentially cone lower semi-continuous from above on X iff epiφ is sequen-
tially closed from above;

(ii) If the range of φ is well ordered, then epiφ is sequentially closed iff epiφ is both
sequentially closed from below and above.

Proof (i) Necessity, if (xn, αn) ∈ epiφ, n = 1, 2, . . ., (xn, αn) → (x0, α0), and
φ(x1) ≥ φ(x2) ≥ · · ·φ(xn) ≥ · · · , then by the cone lower semi-continuity from
above of φ, we have φ(x0) ≤ φ(xn), n = 1, 2, . . ..
In view of φ(xn) ≤ αn , n = 1, 2, . . ., we get φ(x0) ≤ α0, i.e. (x0, α0) ∈ epiφ,

epiφ is sequentially closed from above.
Sufficiency, if xn → x0, and φ(x1) ≥ φ(x2) ≥ · · · ≥ φ(xn) ≥ · · · , then for

each integer k, (xn, φ(xk)) ∈ epiφ for n ≥ k. It is obviously that (xn, φ(xk)) →
(x0, φ(xk)) as n → ∞, by sequentially closedness from above of φ, we have
(x0, φ(xk)) ∈ epiφ, thus φ(x0) ≤ φ(xk), k = 1, 2, . . ., i.e. φ is sequentially cone
lower semi-continuous from above.

(ii) Necessity is obvious; we only need to prove sufficiency. Assume that (xn, αn) ∈
epiφ such that (xn, αn) → (x0, α0). Since the range ofφ iswell ordered, by taking
a subsequence, we have either φ(xn1) ≥ φ(xn2) · · · , or φ(xn1) ≤ φ(xn2) ≤ · · · .
In the first case, by using that epiφ is sequentially closed from above, we get
(x0, α0) ∈ epiφ. In the second case, by using that epiφ is sequentially closed
from below, we get (x0, α0) ∈ epiφ. Thus, epiφ is sequentially closed. 
�
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Definition 2.6 Let F be a normed vector space, C ⊂ F a cone. ≤ is the partial order
induced by C on F . C is said to be a completely regular cone iff x1 ≤ x2 ≤ · · · ≤
xn · · · , and {xn, n = 1, 2, . . .} is norm bounded imply that (xn)∞n=1 is a convergent
sequence.

Note that the cone defined by C = {(x1, x2, . . . , xn), xi ≥ 0, i = 1, 2, . . . , n} ⊂
R
n , and C = { f (x) ∈ L p(�), f (x) ≥ 0, a.e.x ∈ �} ⊂ L p(�), where p > 1, and

� ⊂ R
n is a bounded measurable subset, are completely regular. One may see [28]

for more details on cone and partial orders.
Let E be a normed vector space; throughout this paper, we’ll use ⇀ to denote

the weak convergence and → to denote the norm convergence.

3 Weak Lower Semi-continuity

Let E, F be two normed vector spaces,C ⊂ F a cone, and let f : E → F be a vector-
valued function. We will study the lower semi-continuity from above of f under some
additional conditions. The vector-valued function that we study in this section is the
generalization of the scalar function studied in Browder [10].

Theorem 3.1 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, g(x, y) : E × E → F. Suppose that the following conditions are satisfied:

(i) g is a bounded mapping, i.e. g maps bounded subsets to bounded subsets;
(ii) For each bounded subset B, g(x, y) is uniformly weak continuous in y for x ∈ B;
(iii) For each y ∈ E, g(x, y) is cone convex and continuous in x.

Then, f (x) = g(x, x) is a sequentially cone lower semi-continuous from above func-
tion in the weak topology of E.

Proof Let xn ⇀ x0 in E , and f (x1) ≥ f (x2) ≥ · · · . By assumption (i), { f (xn)}∞n=1
is a bounded sequence. Since C is a completely regular closed cone, we know that
{ f (xn)}∞n=1 is a convergent sequence.We denote by y0 = limn→∞ f (xn), and we have
y0 ≤ f (xn) for all n.

By assumption (ii), we know that g(xn, xn) − g(xn, x0) → 0 as n → ∞, thus
g(xn, x0) → y0.

Since xn ⇀ x0, we have x0 ∈ cl(conv{xn : n ≥ k}), k = 1, 2, 3, . . .. If this is
not true, by using separation theorem of convex subsets, there exists h ∈ E∗ such
that h(x0) < infy∈cl(conv{xn :n≥k})h(y), and thus, we have h(x0) < infn≥kh(xn), k =
1, 2, . . ., which is a contradiction to xn ⇀ x0. Therefore, there exist zk = �αk

n xn ∈
conv{xn : n ≥ k}, k = 1, 2, . . ., such that zk → x0 in E , where αk

i ≥ 0 with finite
many αk

n > 0 satisfying �αk
n = 1.

By cone convexity of g, we have

g(zk, x0) ≤ �nα
k
ng(xn, x0).

By letting k → ∞, the continuity of g(x, x0) implies that g(x0, x0) ≤ y0. So we have
f (x0) ≤ f (xn) for n = 1, 2, . . .. This completes the proof. 
�

123



124 J Optim Theory Appl (2018) 178:119–130

Corollary 3.1 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, g(x, y) : E × E → F, and let M : E → E be a linear compact mapping.
Suppose that the following conditions are satisfied:

(i) g is a bounded mapping, i.e. g maps bounded subsets to bounded subsets;
(ii) For each bounded subset B, g(x, y) is uniformly weak continuous in y for x ∈ B;
(iii) For each y ∈ E, g(x, y) is cone convex and continuous in x.

Then, f (x) = g(x, Mx) is a sequentially cone lower semi-continuous from above
function in the weak topology of E.

Proof Note that M is a linear compact mapping, so T maps a weak convergent
sequence to a strong convergent sequence. Thus, g(x, Mx) satisfies all the assumptions
in Theorem 3.1, and the conclusion holds. 
�
Remark 3.1 If condition (i) is replaced by g maps bounded subsets to relatively com-
pact subsets, this is true if F is the real numbers, then the completely regularity ofC is
not required, and we can prove that f (x) is cone lower semi-continuous. In such case,
we get Theorems 1 and 2 of [10]. So Theorem 3.1 and Corollary 3.1 can be viewed as
general versions of Theorems 1 and 2 of [10] in vector spaces.

By using a similar proof to Theorem 3.1, we get the following

Theorem 3.2 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, g(x, y) : E × E → F. Suppose that the following conditions are satisfied:

(i) g is a bounded mapping, i.e. g maps bounded subsets to bounded subsets;
(ii) For each bounded subset B, g(x, y) is uniformly weak continuous in y for x ∈ B;
(iii) For each y ∈ E, g(x, y) is cone concave and continuous in x.

Then, f (x) = g(x, x) is a sequentially cone upper semi-continuous from below
function in the weak topology of E.

Theorem 3.3 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, gn(x, y) : E × E → F, n = 1, 2, . . .. Suppose that the following conditions
are satisfied:

(i) gn is a bounded mapping, i.e. g maps bounded subsets to bounded subsets,
n = 1, 2, . . .;

(ii) For each bounded subset B, gn(x, y) is uniformly weak continuous in y for
x ∈ B, n = 1, 2, . . .;

(iii) For each y ∈ E, gn(x, y) is cone convex and continuous in x, n = 1, 2, . . .;
(iv) g1(x, x) ≤ g2(x, x) ≤ · · · is bounded for each x ∈ E, f (x) =

limn→∞ gn(x, x), and f (x) ≤ f (y) implies that gm(x, x) ≤ gm(y, y) for all
m = 1, 2, . . ..

Then, f (x) is a sequentially cone lower semi-continuous from above function in
the weak topology of E.

Proof By Theorem 3.1, gn(x, x) is a sequentially cone lower semi-continuous from
above function in the weak topology of E for each n = 1, 2, . . ..
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By condition (iv), and C is complete regular, we know that
f (x) = limn→∞gn(x, x) is well defined, and gn(x, x) ≤ f (x) for all x ∈ E , n =
1, 2, . . ..

Suppose that xn ⇀ x0, and f (x1) ≥ f (x2) ≥ · · · . Again by (iv), we have
gn(x1, x1) ≥ gn(x2, x2) ≥ · · · , for all n = 1, 2, . . .. So we have
gn(x0, x0) ≤ gn(xk, xk), for all n, k = 1, 2, . . . .
By letting n → ∞, we get f (x0) ≤ f (xk), for all k = 1, 2, . . ., and the proof is

complete. 
�
Theorem 3.4 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, and let fn(x) : E → F be a cone lower semi-continuous function, n = 1, 2, . . ..
Suppose that f1(x) ≤ f2(x) ≤ · · · , and { fn(x)}∞n=1 is bounded for each x ∈ E. Then,
f (x) = limn→∞ fn(x) is cone lower semi-continuous.

Proof Since f1(x) ≤ f2(x) ≤ · · · , and { fn(x)}∞n=1 is bounded for each x ∈ E , and
C is completely regular, f (x) = limn→∞ fn(x) exists for each x ∈ E . It is obviously
that fn(x) ≤ f (x) for n = 1, 2, . . ..

For each y ∈ F , we prove that {x ∈ E : f (x) ≤ y} is closed.
Let xn → x0 in E , f (xn) ≤ y for n = 1, 2, . . .. Then fm(xn) ≤ f (xn) ≤ y for

n,m = 1, 2, . . .. By using the cone lower semi-continuity of fm , we get fm(x0) ≤ y.
Then by letting m → ∞, we get f (x0) ≤ y. This completes the proof. 
�
Theorem 3.5 Let E, F be two Banach spaces, C ⊂ F a completely regular closed
cone, gn(x, y) : E × E → F, n = 1, 2, . . .. Suppose that the following conditions
are satisfied

(i) gn is a bounded mapping, i.e. g maps bounded subsets to bounded subsets, n =
1, 2, . . .;

(ii) For each bounded subset B, gn(x, y) is uniformlyweak continuous in y for x ∈ B,
n = 1, 2, . . .;

(iii) For each y ∈ E, gn(x, y) is cone concave and continuous in x, n = 1, 2, . . .;
(iv) g1(x, x) ≥ g2(x, x) ≥ · · · is bounded for each x ∈ E, f (x) = limn→∞ gn(x, x),

and f (x) ≤ f (y) implies that gm(x, x) ≤ gm(y, y) for all m = 1, 2, . . ..

Then, f (x) is a sequentially cone upper semi-continuous from below function in the
weak topology of E.

4 Minimum and Equilibrium Problems

In this section, let E, F be two normed vector spaces, and C ⊂ F a cone, and let
φ(x) : D ⊆ E → F be a vector function. We will study the minimum (respec-
tively, maximum) problem and find x0 ∈ D such that φ(x0) = minx∈D φ(x),
(respectively, φ(x0) = maxx∈D φ(x)). Several existence results are obtained under
lower (respectively, upper) semi-continuity from above (respectively, below) condi-
tion. Applications to equilibrium problems and von Neumann’s minimax principle are
also given.
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Theorem 4.1 Let E be a Banach space, F a normed vector space, C ⊂ F a closed
cone, D ⊂ E a weakly compact subset, and φ : D → F a sequentially cone lower
semi-continuous from above function in the weak topology of E. Suppose that φ(D)

is separable. Then there exists y0 ∈ D such that

φ(y0) = min{φ(x) : x ∈ D}.

Proof For each totally ordered subset T ⊂ φ(D), we prove that T has a lower bound.
Since φ(D) is separable, there exist xn ∈ D, n = 1, 2, . . . such that cl{φ(xn) : n =
1, 2, . . .} = T . We first prove that there exists x0 ∈ D such that φ(x0) ≤ φ(xn) for
n = 1, 2, . . .. Without loss of generality, we may assume that φ(x1) ≥ φ(x2) ≥ · · · ,
since T is totally ordered.

By using the assumption that D is weakly compact, there exist xnk , k = 1, 2, . . .,
such that xnk ⇀ x0 as k → ∞. The cone lower semi-continuity from above of φ in
the weak topology implies that φ(x0) ≤ φ(xnk ). Since φ(xnk ) ≤ φ(xn) for all k ≥ n,
so we have

φ(x0) ≤ φ(xn) (1)

for all n = 1, 2, . . ..
We next prove that φ(x0) ≤ φ(y) for all φ(y) ∈ T . For each φ(y) ∈ T , there

exist φ(xnm ), m = 1, 2, . . ., such that φ(xnm ) → φ(y) as m → ∞. By (1), we get
φ(x0) ≤ φ(y), so φ(x0) is the lower bound for T . By Zorn’s Lemma, φ(D) has a
minimal element. This completes the proof. 
�

By using a similar argument to Theorem 4.1, we get the following

Theorem 4.2 Let E be a Banach space, F a normed vector space, C ⊂ F a closed
cone, D ⊂ E a weakly compact subset, and φ : D → F a sequentially cone upper
semi-continuous from below function in the weak topology of E. Suppose that φ(D)

is separable. Then there exists y0 ∈ D such that

φ(y0) = max{φ(x) : x ∈ D}.

Theorem 4.3 Let E be a reflexive Banach space, F a normed vector space, C ⊂ F
a cone, cl(B(0, r)) the closed ball centred at zero with radius r > 0 , D ⊂ E a
closed and convex subset, and φ : D → F a cone convex and cone lower semi-
continuous mapping. Suppose that φ(D ∩ cl(B(0, r))) is separable. Then there exists
y0 ∈ D ∩ cl(B(0, r)) such that

φ(y0) = min{φ(x) : x ∈ D ∩ cl(B(0, r))}.

Proof For each totally ordered subset T ⊂ φ(D ∩ cl(B(0, r)), we prove that T has a
lower bound. Since φ(D∩ cl(B(0, r))) is separable, there exist xn ∈ D∩ cl(B(0, r)),
n = 1, 2, . . . such that cl{φ(xn) : n = 1, 2, . . .} = T . We first prove that there exists
x0 ∈ D ∩ cl(B(0, r)) such that φ(x0) ≤ φ(xn) for n = 1, 2, . . .. Without loss of
generality, we may assume that φ(x1) ≥ φ(x2) ≥ · · · , since T is totally ordered.
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By using the assumption that E is reflexive, there exist yk = xnk , k = 1, 2, . . .,
such that yk ⇀ x0 as k → ∞. We have x0 ∈ cl(conv{ym : m ≥ k}) for k = 1, 2, . . .,
there exist zk = �αk

i yi ∈ conv{ym : m ≥ k}, k = 1, 2, . . ., such that zk → x0 in
E , where αk

i ≥ 0 with only finite many αk
i > 0 satisfying �αk

i = 1. By using cone
convexity of φ, we get

φ(zk) ≤ �αk
i φ(yi ) ≤ φ(yk) = φ(xnk ) ≤ φ(xn), for all k ≥ n.

By using the cone lower semi-continuity of φ, we get

φ(x0) ≤ φ(xn), n = 1, 2, . . . . (2)

We next prove that φ(x0) ≤ φ(y) for all φ(y) ∈ T . For each φ(y) ∈ T , there
exist φ(xnm ), m = 1, 2, . . ., such that φ(xnm ) → φ(y) as m → ∞. By (2), we get
φ(x0) ≤ φ(y), so φ(x0) is the lower bound for T . By Zorn’s Lemma, φ(D) has a
minimal element. This completes the proof. 
�

By using a similar argument to Theorem 4.3, we get the following

Theorem 4.4 Let E be a reflexive Banach space, F a normed vector space, C ⊂ F
a closed cone, cl(B(0, r)) the closed ball centred at zero with radius r > 0 , D ⊂ E
a closed and convex subset, and φ : D → F a cone concave and cone upper semi-
continuous mapping. Suppose that φ(D ∩ cl(B(0, r))) is separable. Then there exists
y0 ∈ D ∩ cl(B(0, r))) such that

φ(y0) = max{φ(x) : x ∈ D ∩ cl(B(0, r))}.

In the following, let E, F be two normed vector spaces, C ⊂ F a closed cone. ≤ is
the order induced by C on F . Assume that D ⊂ E , and f (x, y) : D × D → F , we
consider the vector equilibrium problem and find x0 ∈ D such that

f (x0, y) 
< 0, for all y ∈ D. (VEP)

Theorem 4.5 Assume that D is a weakly compact subset, and f (x, y) ≤ f (x, z) +
f (z, y) for all x, y, z ∈ D. If there exists z0 ∈ D such that f (x, z0)) : D → F is
sequentially cone upper semi-continuous from below in the weak topology of E, and
f (D, z0) is separable, then there exists x0 ∈ D such that (VEP) holds.

Proof Since f (x, z0) : D → F is sequentially cone upper semi-continuous from
below in the weak topology of E , and f (D, z0) is separable, by Theorem 3.2, there
exists x0 ∈ D such that f (x0, z0) = max{ f (x, z0) : x ∈ D}.

We also have f (x0, y) ≥ f (x0, z0)− f (y, z0), for all y ∈ D. Therefore, f (x0, y) 
<
0 for all y ∈ D. 
�
Remark 4.1 When F is the real numbers, Theorem 4.5 is proved in [20].

Theorem 4.6 (vonNeumann’sminimaxprinciple)Let E1, E2 be two reflexiveBanach
spaces, and let X ⊂ E1, Y ⊂ E2 be two nonempty convex bounded subsets. Assume
that F is a separable normed vector space, and C ⊂ F is a closed cone. Suppose that
f : X × Y → F is a function satisfying the following conditions:
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(i) y → f (x, y) is sequentially cone lower semi-continuous from above in the weak
topology of E2 and quasi cone convex for each fixed x ∈ X;

(ii) x → f (x, y) is sequentially cone upper semi-continuous from below in the weak
topology of E1 and quasi cone concave for each fixed y ∈ Y ;

(iii) For each r ∈ F, there exist xi ∈ X, i = 1, 2, . . . , n, such that Ai = {y :
f (xi , y) > r} is open and Y = ∪n

i=1Ai ;
(iv) For each r ∈ F, there exist y j ∈ Y , j = 1, 2, . . . ,m, such that B j = {x :

f (x, y j ) < r} is open and X = ∪m
j=1Bj .

Then, maxx∈X miny∈Y f (x, y) 
< miny∈Y maxx∈X f (x, y).

Proof Since F is separable and X , Y are weakly compact, by assumptions
(i), (ii), and Theorems 3.1 and 3.2, we know that maxx∈X miny∈Y f (x, y) and
miny∈Y maxx∈X f (x, y) both exist. Now we show that

max
x∈X min

y∈Y f (x, y) 
< min
y∈Y max

x∈X f (x, y).

If this is not true, then there would be a element r ∈ F such that

max
x∈X min

y∈Y f (x, y) < r < min
y∈Y max

x∈X f (x, y)

Define two maps A, B : X → 2Y by Ax = {y : f (x, y) > r} and Bx = {y :
f (x, y) < r} for x ∈ X . It is obvious that

Y = ∪n
i=1Axi , X = ∪m

j=1B
−1y j .

Since f (x, y) is quasi cone convex in y and quasi cone concave in x , we know that
A−1y is convex for y ∈ Y and Bx is convex for each x ∈ X . Thus by Theorem 4.1 in
[14], there exist x0 ∈ X and y0 ∈ Y such that y0 ∈ Ax0 ∩ Bx0 
= φ. Therefore, we
have f (x0, y0) < r < f (x0, y0), which is a contradiction. This completes the proof.


�
Similarly, by using Theorems 3.3, 3.4 and 4.1 in [14], we get the following

Theorem 4.7 Let E1, E2 be two reflexive Banach spaces, and and let X ⊂ E1, Y ⊂
E2 be two nonempty convex bounded subsets. Assume that F is a separable normed
vector space, and C ⊂ F is a closed cone. Suppose that f : X ×Y → F is a function
satisfying the following conditions:

(i) y → f (x, y) is cone lower semi-continuous and cone convex for each fixed
x ∈ X;

(ii) x → f (x, y) is cone upper semi-continuous from below and cone concave for
each fixed y ∈ Y ;

(iii) For each r ∈ F, there exist xi ∈ X, i = 1, 2, . . . , n, such that Ai = {y :
f (xi , y) > r} is open and Y = ∪n

i=1Ai ;
(iv) For each r ∈ F, there exist y j ∈ Y , j = 1, 2, . . . ,m, such that B j = {x :

f (x, y j ) < r} is open and X = ∪m
j=1Bj .

Then, maxx∈X miny∈Y f (x, y) 
< miny∈Y maxx∈X f (x, y).
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Remark 4.2 If f (X,Y ) is a totally ordered subset of F , especially F is the real num-
bers, then we have maxx∈X miny∈Y f (x, y) = miny∈Y maxx∈X f (x, y) in Theorems
4.6 and 4.7.

5 Conclusions

Lower semi-continuous from above functions are very useful in recent research papers;
we obtain new results on the lower semi-continuity from above of vector functionswith
form g(x, x) in ordered normed vector spaces. Our results can be viewed as general
versions of the corresponding results in [10]. By using lower semi-continuous from
above and upper semi-continuous from below conditions, we prove some new results
on the existence of minimal points and maximal points of vector-valued functions in
ordered normed vector spaces. These results are used to study equilibrium problems
and von Newman’s minimax principle.
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