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Abstract The aim of this paper is to propose a new formulation of the fractional
optimal control problems involving Mittag–Leffler nonsingular kernel. By using the
Lagrange multiplier within the calculus of variations and by applying the fractional
integration by parts, the necessary optimality conditions are derived in terms of a non-
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1 Introduction

Fractional calculus (FC) is developing fast, and its various applications are exten-
sively used in many fields of science and engineering. There is a rich literature on
the theoretical research of fractional differential equations (FDEs). An introduction
to the FDEs, their methods of solutions and some of their applications can be seen in
[1]. Kilbas et al. [2] presented the basic concepts of FDEs and their applications. In
[3], Baleanu et al. reported new advances in nanotechnology and FC. In addition, the
local fractional integral transforms and their applications have been investigated in
[4]. We recall that the fractional-order representation provides more realistic behav-
iors of many real-world phenomena [5]. Due to this fact, the FC has some interesting
applications in bioengineering [6], vibration equation [7], hydrologic modeling [8],
mobile–immobile advection–dispersion equation [9], heat transfer [10], diffusion and
subdiffusion processes [11], viscoelasticity [12], optimization [13], etc. Therefore,
finding valuable fractional numerical techniques is one of the most interesting topics
in the area of FC [14]. In [15], an efficient finite difference method has been proposed
to solve FDEs accurately and robustly. In [16], a piecewise integro quadratic spline
interpolation has been used to solve FDEs appeared in the area of fluid dynamics.
In [17], a toolbox package in MATLAB has been developed for solving FDEs with
spectral convergence based on the operational matrix of fractional differentiation.

The application of FC in the optimal control problems is a strong topic to be consid-
ered. In [18], Agrawal formulated the fractional optimal control problems (FOCPs) in
terms of Riemann–Liouville fractional derivative (FD). The state and control variables
were considered in the form of truncated series, and the solution was obtained by using
a virtual work-based approach. In [19], Agrawal converted this fractional problem (in
the Caputo sense) into a system of algebraic equations by substituting the FDEs with
Volterra-type integral equations. In [20], the FOCPs were considered in the sense of
Riemann–Liouville, and the Grünwald–Letnikov approximationwas used for the FDs.
In [21], a central difference formula was derived in order to modify the Grünwald–
Letnikov definition for the optimal control of fractional-order dynamic systems. In
[22], necessary conditions of the FOCPs in the sense of Caputo were investigated. In
the past decade, Frederico and Torres [23] presented a Noether-type theorem for the
FOCPs in the Caputo sense. Recently, Almeida and Torres [24] presented a solution
scheme for this problem, in which the original fractional problem is approximated by
a new integer one. The latter integer problem is then solved numerically by using the
finite difference methods. In [25], a shooting method-like procedure was used for the
FOCPs. In [26], a combination of variational and penalty methods was provided for
solving a class of FOCPs. In [27], a simple accurate scheme based on the Ritz’s direct
method was developed to solve fractional variational and optimal control problems.
In [28], a finite horizon linear quadratic optimal control problem was studied for a
class of discrete-time fractional-order systems with multiplicative noise. The numer-
ical solution of FOCPs was also investigated based on the pseudospectral method,
Legendre orthogonal polynomials and Chebyshev–Legendre operational technique in
[29–31], respectively.

The FC brings new features in describing complex behaviors of the real-world
phenomena with memory effects. However, the description of systems with memory
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effect is still a big challenge for researchers, since the classic type of FDs with singular
kernel cannot characterize always properly the nonlocal dynamics. Hence, it seems
there is a need of new FDs with nonsingular kernel to better describe the nonlocality of
complex systems. One of the best candidates among existing kernels is the one based
on Mittag–Leffler function [32]. As a result, recently a new FD with nonlocal and
nonsingular kernel was constructed by using the generalized Mittag–Leffler function
[32] and applied to several real-world problems [33–36]. One of the main advantages
of this approach is that we have a new asymptotic behavior which differs from the
classic version of fractional operators. However, the properties of FC with Mittag–
Leffler nonsingular kernel should be deeply investigated and the related numerical
methods should be continuously developed in order to have a better analysis of real-
world models within this new calculus. Inspired by the above discussion, the main
contribution of this paper is to develop a new formulation of the FOCPs involving
Mittag–Leffler nonsingular kernel. Indeed, we believe that the models based on this
new derivative have the potential to better control the undesirable behavior of the real-
world phenomena than the other FC derivatives. In this paper, the Lagrange multiplier
within the calculus of variations and the fractional integration by parts formula are
used to derive the necessary optimality conditions in the form of a nonlinear two-point
fractional boundary value problem (BVP). To solve this type of BVP, a numerical
scheme is presented and its error analysis is also investigated. Finally, the numerical
simulations verifying the theoretical analysis are included.

The rest of this paper is structured in the following way. In Sect. 2, we briefly
review the new FDs with nonlocal and nonsingular kernel. Section 3 is devoted to the
problem statement, which is followed by the necessary optimality conditions in terms
of a fractional two-point BVP. In Sect. 4, we solve this problem by a numerical scheme
and prove its convergence by using the generalized discrete Grönwall’s inequality.
Numerical findings and comparative results are reported in Sect. 5, which demonstrate
the efficiency of the suggested technique. Finally, we finish the paper by a conclusion
part.

2 Definitions and Preliminaries

Here, we briefly recall some basic definitions and results related to the new FDs with
Mittag–Leffler nonsingular kernel (AB) defined in [32].

Definition 2.1 [32] For f ∈ H1(t0, t f ) and 0 < α < 1, the (left) AB FD in the
Riemann–Liouville sense is defined by

R
t0D

α
t f (t) = B(α)

1 − α

d

dt

∫ t

t0
f (τ )Eα

(
−α

(t − τ)α

1 − α

)
dτ, (1)

and in the Caputo sense is given by

C
t0D

α
t f (t) = B(α)

1 − α

∫ t

t0

d f (τ )

dτ
Eα

(
−α

(t − τ)α

1 − α

)
dτ, (2)
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where B(α) is a normalization function obeying B(0) = 1 and B(1) = 1. The symbol
Eα denotes the generalized Mittag–Leffler function

Eα(t) =
∞∑
k=0

tk

Γ (αk + 1)
. (3)

The associated fractional integral is also defined as

t0 I
α
t f (t) = 1 − α

B(α)
f (t) + α

B(α)Γ (α)

∫ t

t0
(t − τ)α−1 f (τ )dτ. (4)

Definition 2.2 [32] For f ∈ H1(t0, t f ) and 0 < α < 1, the (right) AB FD in the
Riemann–Liouville sense is defined by

R
t D

α
t f f (t) = − B(α)

1 − α

d

dt

∫ t f

t
f (τ )Eα

(
−α

(τ − t)α

1 − α

)
dτ, (5)

and in the Caputo sense is given by

C
t D

α
t f f (t) = − B(α)

1 − α

∫ t f

t

d f (τ )

dτ
Eα

(
−α

(τ − t)α

1 − α

)
dτ. (6)

The associated fractional integral is also defined as

t I
α
t f f (t) = 1 − α

B(α)
f (t) + α

B(α)Γ (α)

∫ t f

t
(τ − t)α−1 f (τ )dτ. (7)

There are useful relations between the left and right AB FDs in the Riemann–Liouville
and Caputo senses and the associatedAB fractional integrals as the following formulas
state [32]

t0 I
α
t

{
R
t0D

α
t f (t)

}
= t It f

{
R
t D

α
t f f (t)

}
= f (t), (8)

t0 I
α
t

{
C
t0D

α
t f (t)

}
= f (t) − f (t0), (9)

t I
α
t f

{
C
t D

α
t f f (t)

}
= f (t) − f (t f ). (10)

For more details on the new AB FDs and their properties, the interested reader can
refer to [32,37].

3 Nonlinear FOCPs with Mittag–Leffler Nonsingular Kernel

In this section, we formulate a FOCP with Mittag–Leffler nonsingular kernel and use
a variational approach to derive the necessary optimality conditions for this problem.
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To this end, we consider a fractional dynamic system described by

C
t0D

α
t x(t) = F(x(t), u(t), t), t0 ≤ t ≤ t f , x(t0) = x0, (11)

where x ∈ R
n and u ∈ R

m are the state and control vectors, respectively. The
expression C

t0D
α
t x(t) denotes the new AB FD in the Caputo sense given by Eq. (2),

F : Rn×m×1 → R
n is a nonlinear vector function, and x0 ∈ R

n is the specified initial
state vector. In order to achieve a desired behavior in terms of performance require-
ments, here we select a performance index for dynamical system (11). In selecting the
performance index, the designer attempts to define a mathematical expression which
when minimized indicates that the system is performing in the most desirable manner.
Thus, choosing a performance index is a translation of system’s physical require-
ments into mathematical terms [38]. For fractional dynamic system (11), we choose
the following performance index

J =
∫ t f

t0
L(x(t), u(t), t)dt, (12)

where L :Rn×m×1 → R is a scalar function. The problem is to find the optimal control
u∗(t) for Eq. (11), which minimizes cost functional (12). In the following, we derive
the necessary optimality conditions corresponding to new FOCP (11) and (12).

Theorem 3.1 (Necessary optimality conditions) Let (x(t), u(t)) be a minimizer of
(12) under dynamic constraint (11); then, there exists a function λ(t) for which the
triplet (x(t), λ(t), u(t)) satisfies

• the Hamiltonian system

⎧⎪⎨
⎪⎩

C
t0D

α
t x(t) = ∂H

∂λ(t)
(x(t), λ(t), u(t), t), t0 ≤ t ≤ t f ,

R
t D

α
t f λ(t) = ∂H

∂x(t)
(x(t), λ(t), u(t), t), t0 ≤ t ≤ t f ,

(13)

• and the stationary condition

∂H
∂u(t)

(x(t), λ(t), u(t), t) = 0, t0 ≤ t ≤ t f , (14)

where H is a scalar function, called the Hamiltonian, defined by

H(x(t), λ(t), u(t), t) := L(x(t), u(t), t) + λT(t)F(x(t), u(t), t). (15)

Proof To deduce the necessary optimality conditions that an optimal pair (x, u) must
satisfy, we use a Lagrangemultiplier to adjoin dynamic constraint (11) to performance
index (12). Thus, we form the augmented functional

Ja(u) =
∫ t f

t0

[
H(x(t), λ(t), u(t), t) − λT(t)Ct0D

α
t x(t)

]
dt, (16)
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where λ ∈ R
n is the Lagrange multiplier also known as costate or adjoint variable.

Taking the first variation of augmented performance index Ja(u) in Eq. (16), we obtain

δ Ja(u) =
∫ t f

t0

{[
∂H
∂x

]T
δx(t) +

[
∂H
∂λ

− C
t0D

α
t x(t)

]T
δλ(t)

+
[
∂H
∂u

]T
δu(t) − λT(t)Ct0D

α
t δx(t)

}
dt.

(17)

Using the fractional integration by parts formula [37], the last integral in Eq. (17) can
be written as

∫ t f

t0
λT(t)Ct0D

α
t δx(t)dt =

∫ t f

t0

(
R
t D

α
t f λ(t)

)T
δx(t)dt, (18)

where R
t D

α
t f λ(t) denotes the rightABRiemann–Liouville FDofλ(t) defined inEq. (5).

Note that, the identity in Eq. (18) is satisfied if δx(t0) = 0 or λ(t) = 0, and δx(t) = 0
or λ(t f ) = 0 [37]. Since x(t0) is specified, we have δx(t0) = 0. However, δx(t)
is not equal to zero for all t0 < t < t f and thus we require λ(t f ) = 0. With these
assumptions, Eq. (18) is satisfied. Using Eqs. (17) and (18), we deduce the following
formula

δ Ja(u) =
∫ t f

t0

{[
∂H
∂x

− R
t D

α
t f λ(t)

]T
δx(t)

+
[
∂H
∂λ

− C
t0D

α
t x(t)

]T
δλ(t) +

[
∂H
∂u

]T
δu(t)

}
dt. (19)

The necessary condition for an extremal is that the first variation of Ja(u) must vanish
on the extremal for all independent variations δx(t), δλ(t) and δu(t). For this purpose,
all factors multiplying a variation in Eq. (19) must vanish. In accordance with the
definition of H in Eq. (15), the coefficient of δλ(t) in (19) is zero since dynamic
constraint (11) must be satisfied by an extremal. Taking into account this point and
also setting to zero the coefficients of δx(t) and δu(t) in Eq. (19) yield the necessary
conditions for an extremal, as it is shown in Eqs. (13) and (14). ��

Equations (13) and (14) represent the Euler–Lagrange equations of FOCP (11) and
(12). Based on these equations, we shall find the necessary optimality conditions of
the following problem

minimize J = 1

2

∫ t f

t0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt, (20)

subject to

C
t0D

α
t x(t) = A(t)x(t) + B(t)u(t) + f (x(t)), t0 ≤ t ≤ t f , x(t0) = x0, (21)
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where A(t) and B(t) are real-valued continuous matrices of appropriate dimensions,
f :Rn → R

n is a nonlinear vector function, and Q, R are positive semidefinite and
positive definite matrices, respectively. For FOCP (20) and (21), the Hamiltonian
function given by Eq. (15) will be in the form

H(x(t), λ(t), u(t), t) = 1

2

(
xT(t)Qx(t) + uT(t)Ru(t)

)

+ λT(t) (A(t)x(t) + B(t)u(t) + f (x(t))) . (22)

Thus, Euler–Lagrange equations (13) and (14) lead to Eq. (21) and

R
t D

α
t f λ(t) = Qx(t) + AT(t)λ(t) + g(x(t), λ(t)), t0 ≤ t ≤ t f , (23)

Ru(t) + BT(t)λ(t) = 0, t0 ≤ t ≤ t f , (24)

where g(x(t), λ(t)) :=
(

∂ f (x(t))
∂x(t)

)T
λ(t). From Eqs. (21) and (23) and (24), we get the

necessary optimality conditions

⎧⎨
⎩

C
t0D

α
t x(t) = A(t)x(t) − S(t)λ(t) + f (x(t)), t0 ≤ t ≤ t f ,

R
t D

α
t f λ(t) = Qx(t) + AT(t)λ(t) + g(x(t), λ(t)), t0 ≤ t ≤ t f ,

x(t0) = x0, λ(t f ) = 0,
(25)

where S(t) = B(t)R−1BT(t). Thus, the state and costate variables x(t) and λ(t) are
obtained by solving the nonlinear two-point fractional BVP given by Eq. (25). Once
λ(t) is known, the optimal control u∗(t) can be obtained using Eq. (24)

u∗(t) = −R−1BT(t)λ(t), t0 ≤ t ≤ t f . (26)

As it is shown, Eq. (25) is a system of coupled nonlinear two-point fractional BVPs
involving the left and right FDs simultaneously. This clearly indicates that the solution
of nonlinear FOCPs requires the knowledge of both forward and backward derivatives.
Finding the exact solution of nonlinear fractional BVP (25) is extremely difficult, if
not impossible. To overcome this difficulty, an efficient numerical scheme finding the
state and costate variables will be presented in the next section.

4 Numerical Scheme

In this section, we first extend the finite difference methods for the discretization of
fractional initial value problems with Mittag–Leffler nonsingular kernel. To approxi-
mate the solution of nonlinear two-point fractional BVP (25), a numerical scheme is
developed by using the Euler finite difference formula.
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4.1 Fractional Initial Value Problems

Consider the following fractional differential equation

C
t0D

α
t x(t) = ϕ(t, x(t)), t0 < t ≤ t f < ∞, x(t0) = x0, (27)

where 0 < α < 1. By using the AB fractional integration for Eq. (27), we derive

x(t) = x0 + 1 − α

B(α)
ϕ(t, x(t)) + α

B(α)Γ (α)

∫ t

t0
(t − τ)α−1ϕ(τ, x(τ ))dτ. (28)

To design a numerical scheme for the approximate solution of Eq. (28), a uniformmesh
ti = t0 + ihN on [t0, t f ] is first considered, where i = 0, 1, . . . , N and hN = t f −t0

N .
Then, by using the Euler convolution quadrature rule for the discretization of Eq. (28),
we have

xi+1 = x0 + 1 − α

B(α)
ϕ(ti+1, xi+1) + αhα

N

B(α)Γ (α + 1)

i∑
j=0

b(α)
i, j ϕ(t j , x j ), (29)

where i = 1, . . . , N and xi denotes the numerical approximation of x(ti ). The expres-
sion of the coefficient b(α)

i, j has the following form

b(α)
i, j = (i − j + 1)α − (i − j)α, j = 0, . . . , i. (30)

In the following theorem, an error bound for numerical method (29) is provided.

Theorem 4.1 Assume that xi (1 ≤ i ≤ N ) is the solution of Euler method (29), x(t)
is the solution of Eq. (27), and ϕ(t, x(t)) satisfies the following Lipschitz condition

|ϕ(t, x1(t)) − ϕ(t, x2(t))| ≤ M |x1(t) − x2(t)| , (31)

where M is a positive constant. Then, we have

|x(ti ) − xi | ≤ Chα
N , i = 0, 1, . . . , N − 1, (32)

where C is a positive constant independent of hN and i .

Proof From Eqs. (28) and (29), we have

x(ti ) − xi = 1 − α

B(α)
(ϕ(ti , x(ti )) − ϕ(ti , xi ))

+ α

B(α)Γ (α)

⎛
⎝
∫ ti

0
(ti − τ)α−1ϕ(τ, x(τ ))dτ − hα

N

α

i∑
j=0

b(α)
i, j ϕ(t j , x j )

⎞
⎠

= 1 − α

B(α)
(ϕ(ti , x(ti )) − ϕ(ti , xi ))
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+ α

B(α)Γ (α)

⎛
⎝
∫ ti

0
(ti − τ)α−1ϕ(τ, x(τ ))dτ − hα

N

α

i∑
j=0

b(α)
i, j ϕ(t j , x(t j ))

⎞
⎠

+ αhα
N

B(α)Γ (α + 1)

i∑
j=0

b(α)
i, j (ϕ(t j , x(t j )) − ϕ(t j , x j )). (33)

Using Lipschitz condition (31), we derive

|x(ti ) − xi | ≤ Cα| 1

Γ (α)

i∑
j=0

∫ t j+1

t j
(ti − τ)α−1(ϕ(τ, x(τ ))

−ϕ(t j , x(t j )))dτ | + CαMhα
N

Γ (α + 1)

i∑
j=0

b(α)
i, j |x(t j ) − x j |, (34)

where Cα = α
|B(α)−(1−α)M| . From Lemma 3.7 in [39], it leads to

|x(ti ) − xi | ≤ CαC1hα
N

Γ (α)
+ CαMhα

N

Γ (α + 1)

i∑
j=0

b(α)
i, j |x(t j ) − x j |, (35)

where C1 is a constant independent of hN . Applying the Grönwall’s inequality given
by Lemma 3.4 in [39], it attributes to inequality (32). ��

4.2 Fractional Boundary Value Problems

To design a numerical scheme for the approximate solution of fractional BVP (25), we
first apply the AB fractional integrations given by Eqs. (4) and (7). Thus, we derive

⎧⎪⎪⎨
⎪⎪⎩
x(t) = x0 + 1 − α

B(α)
F(x(t), λ(t), t)

α

B(α)Γ (α)

∫ t

t0

F(x(τ ), λ(τ ), τ )

(t − τ)1−α
dτ,

λ(t) = 1 − α

B(α)
G(x(t), λ(t), t) + α

B(α)Γ (α)

∫ t f

t

G(x(τ ), λ(τ ), τ )

(τ − t)1−α
dτ,

(36)

where

{
F(x(t), λ(t), t) := A(t)x(t) − S(t)λ(t) + f (x(t)),
G(x(t), λ(t), t) := Qx(t) + AT(t)λ(t) + g(x(t), λ(t)).

(37)

Using the Euler convolution quadrature rule to discretize the convolution integral in
the right-hand side of Eq. (36), we then deduce the following formula

{
xi+1 = x0 + r1F(xi+1, λi+1, ti+1) + r2hα

N

∑i
j=0 b

(α)
i+1, j F(x j , λ j , t j ),

λi = r1G(xi , λi , ti ) + r2hα
N

∑N−(i+1)
j=0 ω

(α)
N−i, j G(xN− j , λN− j , tN− j ),

(38)
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where 0 ≤ i ≤ N − 1, r1 = 1−α
B(α)

, r2 = α
B(α)Γ (α+1) and λi denotes the numerical

approximation of λ(ti ). For i = 0, 1, . . . , N − 1, the coefficient b(α)
i+1, j is given by Eq.

(30), and ω
(α)
i, j is defined as

ω
(α)
N−i, j = (N − i − j)α − (N − i − ( j + 1))α, j = 0, . . . , N − (i + 1). (39)

Finally, the algebraic system given by Eq. (38) can be rewritten in the matrix form

M1z1 + M0F(z1) + M2z2 = C1, M3z1 + M4z2 = C2, (40)

where z1 = [x1, x2, . . . , xN ]T, z2 = [λ0, λ1, . . . , λN−1]T and

⎧⎨
⎩

M0 = − (r1I + r2hα
NB0

)
, M1 = I − r1D1 − r2hα

NG1,

M2 = r1D2 + r2hα
NB, M3 = −r1D3 − r2hα

NG3,

M4 = I − r1D4 − r2hα
NG2.

(41)

Moreover, the matrix I is the identity matrix of order N , and

F(z1) = [ f (x1), . . . , f (xN−1), f (xN )]T, D1 = diag(A(t1), . . . , A(tN )),

D4 = diag(v0, v1, . . . , vN−1), vi = AT(ti ) + ∂ f (x)

∂x

∣∣∣∣
x=xi

, i = 0, . . . , N ,

C1 = [
x0 + r2h

α
Nb

(α)
1,0(A(t0)x0 + f (x0)), . . . , x0 + r2h

α
Nb

(α)
N ,0(A(t0)x0 + f (x0))

]T
,

C2 = [r1Qx0, 0, . . . , 0]T, (42)

D2 =

⎡
⎢⎢⎢⎢⎢⎣

0 S1

0 S2

. . .
. . .

0 SN−1

0

⎤
⎥⎥⎥⎥⎥⎦

, D3 =

⎡
⎢⎢⎢⎢⎢⎣

0
Q 0

Q 0
. . .

. . .

Q 0

⎤
⎥⎥⎥⎥⎥⎦

, (43)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(α)
1,0S0

b(α)
2,0S0 b(α)

2,1S1

b(α)
3,0S0 b(α)

3,1S1 b(α)
3,2S2

...
. . .

b(α)
N ,0S0 b(α)

N ,1S1 b(α)
N ,2S2 · · · b(α)

N ,N−1SN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
b(α)
2,1 0

b(α)
3,1 b(α)

3,2 0
...

. . .
. . .

b(α)
N ,1 b(α)

N ,2 · · · b(α)
N ,N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (45)
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G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
b(α)
2,1 A(t1) 0

b(α)
3,1 A(t1) b(α)

3,2 A(t2) 0
. . .

. . .

b(α)
N ,1A(t1) b

(α)
N ,2A(t2) · · · b(α)

N ,N−1A(tN−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (46)

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 w
(α)
N ,N−1v1 w

(α)
N ,N−2v2 w

(α)
N ,N−3v3 . . . w

(α)
N ,1vN−1

0 w
(α)
N−1,N−2v2 w

(α)
N−1,N−3v3 . . . w

(α)
N−1,1vN−1

0 w
(α)
N−2,N−3v3 . . . w

(α)
N−2,1vN−1

. . .
. . .

...

w
(α)
2,1vN−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

w
(α)
N ,N−1Q W (α)

N ,N−2Q w
(α)
N ,N−3Q . . . w

(α)
N ,1Q w

(α)
N ,0Q

w
(α)
N−1,N−2Q w

(α)
N−1,N−3Q . . . w

(α)
N−1,1Q w

(α)
N−1,0Q

. . .
. . .

...

w
(α)
2,1Q w

(α)
2,0Q

w
(α)
1,0Q

⎤
⎥⎥⎥⎥⎥⎥⎦

. (48)

Remark 4.1 As it is interpreted from Theorem 4.1, if the numerical scheme defined
by Eq. (40) is convergent, then the approximate solution converges to the solution
of fractional BVP (25). Moreover, fractional problem (25) for f (x) ≡ 0 reduces to
a linear problem and the system of equations in (40) reduces to the following linear
system

M1z1 + M2z2 = C1, M3z1 + M4z2 = C2, (49)

where matrices Mi , i = 1, 2, 3, 4, depend only on time.

We give the next theorem, which guarantees the existence of the solution for Eq. (40).

Theorem 4.2 Suppose that the following conditions are satisfied for fractional
BVP (25)

AT(t) + ∂ f (x)

∂x

∣∣∣∣
x=x(t)


= B(α)

1 − α
, ∀t ≥ t0, (50)

hα
N ≤ 1 + 2r1α0

2r2α0
, (51)

where

α0 = max

⎧⎨
⎩‖Q‖,max

t
{‖S(t)‖},max

t
{‖A(t)‖},max

i

∑
j

b(α)
i+1, j ,max

i

∑
j

w
(α)
N−i, j

⎫⎬
⎭ .

(52)
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(i) If f (x) ≡ 0, then the solutions z1 and z2 for system (40) exist and they have the
forms

z1 = M−1
1 (I + ξ1)

−1ψ1, z2 = M−1
4 (I + ξ2)

−1ψ2, (53)

where

ξ1 = −M2M−1
4 M3M−1

1 , ψ1 = C1 − M2M−1
4 C2, (54)

ξ2 = −M3M−1
1 M2M−1

4 , ψ2 = C2 − M3M−1
1 C1. (55)

(ii) If f (x) 
= 0, then the sequence
{
(zn1, zn2)

}
produced by

zn+1
1 = M−1

1 (I + ξ1)
−1ψn

1 , zn+1
2 = M−1

4 (I + ξ2)
−1ψn

2 , (56)

tends to the solution of nonlinear system (40), where

ψn
1 = C1 − M0F(zn1) − M2M−1

4 C2, (57)

ψn
2 = C2 − M3M−1

1 (C1 − M0F(zn1)). (58)

Proof The matrix M4 = I − r1D4 − r2hα
NG2 is a lower triangular matrix in which

the main diagonal elements are 1 − r1(AT(ti ) + ∂ f (x)
∂x

∣∣∣
x=xi

) 
= 0, i = 1, . . . , N . The

relation given by Eq. (50) guarantees that all elements on themain diagonal ofM4 have
nonzero values. Thus, the matrix M4 is invertible. Multiplying the second equation in
(40) by M2M−1

4 and subtracting the resultant equation from Eq. (40), we obtain

(
I − M2M−1

4 M3M−1
1

)
M1z1 + M0F(z1) = C1 − M2M−1

4 C2. (59)

Similarly, the inverse of matrix M1 = I − r1D1 − r2hα
NG1 also exists, and we have

z2 = M−1
4 (C2 − M3z1). (60)

(i) If f (x) 
= 0, then ‖ξ1‖ = ‖ξ2‖ ≤ (α0(r1+r2hα
N ))2

(1−α0(r1+r2hα
N ))2

. Using the relation given by

Eq. (51), we conclude that ‖ξ1‖ = ‖ξ2‖ ≤ 1. Therefore, matrices I+ξ1 and I+ξ2
are invertible (see Lemma 4.4.14 in [40]). Thus, we can get the solutions z1 and
z2 from Eq. (53).

(ii) If f (x) 
= 0, then the system given by Eq. (40) is a nonlinear one. We can
linearize this system as follows

M1zn+1
1 + M0F(zn1) + M2zn+1

2 = C1, M3zn+1
1 + M4zn+1

2 = C2. (61)

Using part (i), the solution of system (61) is in the form given by Eq. (56), when
f (x(t)) is a Lipschitz function. ��
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5 Illustrative Examples

In this section, two illustrative examples are given to show the effectiveness of the
proposed approach. In these examples, the effect of using the classic and AB Caputo
fractional operators is investigated on the behavior of controlled system in terms
of performance requirements such as settling time and overshoot. Notice that, all
computations have been performed using a PC Intel Core i5-2410M/2.3 GHz.

Example 5.1 Consider the problem of minimizing

J = 1

2

∫ 5

0

(
2x2(t) + u2(t)

)
dt, (62)

subject to the nonlinear fractional-order system

C
0 D

α
t x(t) = sin(x(t)) + t2u(t), 0 ≤ t ≤ 5, x(0) = π. (63)

The objective is to find the optimal control u∗(t), which minimizes Eq. (62) such that
fractional dynamic constraint (63) is satisfied.

From Eq. (25), the necessary optimality conditions of FOCP (62) and (63) are formu-
lated as

⎧⎨
⎩

C
0 D

α
t x(t) = sin(x(t)) − t4λ(t), 0 ≤ t ≤ 5,

R
t D

α
5 λ(t) = 2x(t) + cos(x(t))λ(t), 0 ≤ t ≤ 5,

x(0) = π, λ(5) = 0,
(64)

while the optimal control law is computed from Eq. (26) in the form

u∗(t) = −t2λ(t), 0 ≤ t ≤ 5. (65)

Table 1 includes the cost functional value and the elapsed CPU time derived by frac-
tional Eulermethod (38) for different values ofα and N . The reported results in Table 1
verify that the proposed algorithm converges extremely fast and a satisfactory preci-
sion is achieved within less than 1.75 seconds of CPU time. Applying numerical Euler
method (38) for N = 320, simulation curves of x(t) and u(t) for α = 0.7, 0.8, 0.9, 1
are plotted in Fig. 1. In this figure, we also provided the solution of classical Euler–
Lagrange equations in addition to some different solutions of Eq. (64) for 0 < α ≤ 1.
This figure indicates that the numerical solution of Eq. (64) approaches the classic
case as α approaches 1. Figure 1 also verifies that decreasing the fractional-order α

leads to decreasing the settling time of the response. Therefore, the behavior of con-
trolled system depends notably on the fractional-order α. This provides an additional
control parameter α to be selected in order to achieve a desired behavior of controlled
system in terms of performance requirements such as settling time. Table 2 provides a
comparison of using the classic and AB Caputo FDs for Example 5.1. As it is shown
in Table 2, the cost functional values obtained within the AB Caputo FD are less than
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Table 1 The cost value (J ) and the elapsed CPU time in seconds (CTs) for Example 5.1 by fractional
Euler method (38)

N α = 0.7 α = 0.8 α = 0.9 α = 1

J CTs J CTs J CTs J CTs

10 11.48 0.02 12.14 0.02 13.10 0.01 14.41 0.01

20 11.32 0.04 11.98 0.04 12.94 0.03 14.25 0.03

40 11.24 0.06 11.90 0.06 12.86 0.06 14.17 0.06

80 11.20 0.15 11.86 0.15 12.82 0.14 14.13 0.15

160 11.18 0.56 11.84 0.54 12.80 0.55 14.11 0.54

320 11.17 1.75 11.83 1.33 12.79 1.48 14.10 1.25

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t (sec.)

x
(t
)

α=0.7
α=0.8
α=0.9
α=1
α=1 (classic)

0 1 2 3 4 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

t (sec.)

u
(t
)

α=0.7
α=0.8
α=0.9
α=1
α=1 (classic)

The state x(t .) The control u(t).(a) (b)

Fig. 1 Simulation curves of x(t) and u(t) for Example 5.1 when α = 0.7, 0.8, 0.9, 1 and the classic
solution. a The state x(t). b The control u(t)

Table 2 Comparative results of
J for Example 5.1 within the
classic and AB Caputo FDs

FD J

α = 0.7 α = 0.8 α = 0.9 α = 1

Classic Caputo 12.08 12.75 13.42 14.10

AB Caputo 11.17 11.83 12.79 14.10

those of the classic Caputo for all values of α. Figure 2 compares the manner of per-
formance within the classic and AB Caputo fractional operators. This figure indicates
that applying the AB Caputo FD instead of classic Caputo provides better results in
terms of settling time for all values of 0 < α < 1. Moreover, both definitions of the
FDs lead to the same results for α = 1, as expected. Comparing the results in Table 2
and Fig. 2 verifies the superiority of AB Caputo in comparison with the classic Caputo
for the FOCPs.

Example 5.2 Minimize

J = 1

2

∫ 20

0

(
x21 (t) + x22 (t) + 100u2(t)

)
dt, (66)
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α = 0. .7 α = 0.8.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
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−0.5

0

0.5

1

1.5
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t (sec.)

x
(t
)

Classic Caputo
AB Caputo

α = 0. .9 α = 1.

(a) (b)

(c) (d)

Fig. 2 Simulation curves of x(t) for Example 5.1 within the classic and AB Caputo FDs. a α = 0.7. b
α = 0.8. c α = 0.9. d α = 1

subject to

⎧⎨
⎩

C
0 D

α
t x1(t) = x2(t), 0 ≤ t ≤ 20,

C
0 D

α
t x2(t) = −t x1(t) + (1 − x21 (t))x2(t) + 10te−t u(t), 0 ≤ t ≤ 20,

x1(0) = 1, x2(0) = 0.
(67)

From Eq. (25), the necessary optimality conditions of FOCP (66) and (67) are formu-
lated as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
0 D

α
t x1(t) = x2(t),

C
0 D

α
t x2(t) = −t x1(t) + (1 − x21 (t))x2(t) − t2e−2tλ2(t),

R
t D

α
20λ1(t) = x1(t) − (t + 2x1(t)x2(t))λ2(t),

R
t D

α
20λ2(t) = x2(t) + λ1(t) + (1 − x21 (t))λ2(t),

x1(0) = 1, x2(0) = 0, λ1(20) = λ2(20) = 0.

(68)

Also, from Eq. (26), the following formula is obtained for the optimal control law

u∗(t) = −0.1te−tλ2(t), 0 ≤ t ≤ 20. (69)
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Table 3 The cost value (J ) and
the elapsed CPU time in seconds
(CTs) for Example 5.2 by
fractional Euler method (38)

N α = 0.7 α = 0.8 α = 0.9 α = 1

J CTs J CTs J CTs J CTs

10 1.72 0.06 1.98 0.06 3.58 0.06 4.68 0.06

20 1.56 0.09 1.82 0.09 2.94 0.08 4.52 0.08

40 1.48 0.21 1.74 0.21 2.62 0.17 4.44 0.16

80 1.44 0.54 1.70 0.55 2.38 0.55 4.40 0.48

160 1.42 3.46 1.68 3.28 2.34 3.32 4.38 3.29

320 1.41 5.96 1.67 5.19 2.32 5.96 4.37 5.14
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(a) (b)

(c)

Fig. 3 Simulation curves of x1(t), x2(t) and u(t) for Example 5.2 when α = 0.7, 0.8, 0.9, 1 and the classic
solution. a The state x1(t). b The state x2(t). c The control u(t)

Table 4 Comparative results of
J for Example 5.2 within the
classic and AB Caputo FDs

FD J

α = 0.7 α = 0.8 α = 0.9 α = 1

Classic Caputo 1.87 2.29 3.03 4.37

AB Caputo 1.41 1.67 2.32 4.37
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Fig. 4 Simulation curves of x1(t) for Example 5.2 within the classic and AB Caputo FDs. a α = 0.7. b
α = 0.8. c α = 0.9. d α = 1

Table 3 reports our numerical findings for different values of α and N . Simula-
tion curves of x(t) and u(t) computed by numerical Euler method (38) for α =
0.7, 0.8, 0.9, 1 and N = 320 are also plotted in Fig. 3. As it is shown in Fig. 3, the
numerical solution of Eq. (68) approaches the classic case as α approaches 1. In addi-
tion, decreasing the FD order α leads to decreasing the settling time and overshoot
of the response. This confirms that the performance of controlled system depends
notably on the fractional-order α. Therefore, the parameter α can be selected as a
control parameter in order to achieve a desired behavior of controlled system in terms
of performance requirements such as settling time and overshoot. Table 4 compares
the results of using the classic and AB Caputo FDs for Example 5.2. As it is shown in
Table 4, the cost functional values obtained within the AB Caputo are less than those
of the classic Caputo for all values of α. Figures 4 and 5 compare the performance of
solution within the classic and AB Caputo fractional operators. These figures indicate
that applying the AB Caputo FD instead of classic Caputo provides better results in
terms of settling time and overshoot of the response for all values of 0 < α < 1.
Moreover, both definitions of the FDs lead to the same results for α = 1, as expected.
Comparing the results in Table 4 and Figs. 4 and 5 verifies that applying the AB
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Fig. 5 Simulation curves of x2(t) for Example 5.2 within the classic and AB Caputo FDs. a α = 0.7. b
α = 0.8. c α = 0.9. d α = 1

Caputo FD in the FOCPs (rather than the classic Caputo) has the advantages of less
cost functional value and better settling time and overshoot of the response.

6 Conclusions

Motivated by the fact that thememory effects have various behaviors,many researchers
tried to suggest several new FDs to describe more accurately these phenomena.
Recently, a new FD with Mittag–Leffler nonsingular kernel was proposed and applied
to some real-world models. An important issue for this new type of FDs is to dis-
cuss the numerical methods based on this new derivative. The first purpose of this
manuscript was to investigate a new formulation of the FOCPs involving the AB
FD with Mittag–Leffler nonsingular kernel. We used the Lagrange multiplier within
the calculus of variations and applied the fractional integration by parts in order to
derive the necessary optimality conditions in terms of a nonlinear two-point fractional
BVP. Then, a numerical scheme was presented and its error bound was investigated
by using the Grönwall’s inequality. Numerical results including the cost functional
value and the elapsed CPU time reported in Tables 1 and 3 confirm that the pro-
posed method is accurate and fast-convergent. The effect of using the classic and

123



736 J Optim Theory Appl (2017) 175:718–737

AB Caputo fractional operators was also investigated on the behavior of controlled
system in terms of performance requirements such as settling time and overshoot
of the response. Numerical findings in Tables 2 and 4 and Figs. 2, 4 and 5 verify
that applying the AB Caputo FD in the FOCPs (rather than the classic Caputo) has
the advantages of less cost functional value and better settling time and overshoot
of the response. Consequently, new aspects of the FC provide more flexible models
and have the potential to better control the undesirable behavior of the real-world
phenomena.
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