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Abstract Nonlinear complementarity and mixed complementarity problems arise in
mathematical models describing several applications in Engineering, Economics and
different branches of physics. Previously, robust and efficient feasible directions inte-
rior point algorithm was presented for nonlinear complementarity problems. In this
paper, it is extended to mixed nonlinear complementarity problems. At each iteration,
the algorithmfinds a feasible directionwith respect to the region defined by the inequal-
ity conditions, which is also monotonic descent direction for the potential function.
Then, an approximate line search along this direction is performed in order to define
the next iteration. Global and asymptotic convergence for the algorithm is investigated.
The proposed algorithm is tested on several benchmark problems. The results are in
good agreement with the asymptotic analysis. Finally, the algorithm is applied to the
elastic–plastic torsion problem encountered in the field of Solid Mechanics.
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1 Introduction

Mixed nonlinear complementarity problems (MNCP) appear in many mathematical
models. For example, elastic–plastic torsion problems [1,2] can be modeled as free
boundary problems and can bewritten asmixed complementarity problem [3].Another
example involves an in situ combustion described by a system of two nonlinear dif-
ferential equations. It can be modeled as a complementarity problem [4] or mixed
complementarity problem [5]. Other examples can be found in [6].

A number of papers aim at providing a numerical solution of MNCP. These include
works using the interior point methods [7], non-monotone stabilization scheme [8], a
class of active set Newton’s methods [9,10], fictitious time integration methods [11],
hybrid smoothing method [12], among others [13].

The present method deals with inequality constraints and complementarity con-
ditions in a way inspired by an algorithm for constrained optimization presented in
[14–16]. This approach, as in primal dual algorithms, solves optimality conditions
with Newton-like iterations. However, the iterations are perturbed in such way to
have feasible descent directions. In this paper, feasible directions algorithm (FDA) is
employed to solve MNCP. This method consists of an interior point algorithm based
on amodification of Newton’smethod characterized by fast convergence, easy compu-
tational implementation and robustness. At each iteration, one feasible descent search
direction is computed following the ideas of FDA-NCP [17]. The presented algorithm
is appropriate for practical applications since it brings together the classical numerical
techniques for PDEs combined with a robust and efficient interior point algorithm
for MNCP, which has a complete theoretical foundation and shows good numerical
results. The first steps in this direction were given by Mazorche [18].

This paper is organized as follows. Section 2 presents MNCP and FDA-MNCP. In
Sect. 3, theoretical results are proved including the properties on global and asymptotic
convergence. In Sect. 4, we apply FDA-MNCP to solve benchmark problems found
in the literature showing the convergence and robustness of the present approach.
In Sect. 5 the elastic–plastic torsion problem is formulated as MNCP and solved
numerically using FDA-MNCP. Finally, Sect. 6 presents conclusions and discussions.

2 The Nonlinear Mixed Complementarity Algorithm

Three different variations of presenting MNCP can be found in the literature.

Definition 2.1 ([6–8]) Find x ∈ R
n; w, v ∈ R

n+ satisfying f (x) = w − v; wT(x −
l) = 0; vT(u − x) = 0; l ≤ x ≤ u, where l, u ∈ R̄

n = (R∪ {−∞,∞})n with li �= ui

for all i and f : Rn → R
n is a continuously differentiable mapping.

Definition 2.2 ([3,12,13,19]) Let f : Rn → R
n , f ∈ C1 and

li , ui ∈ R∪{−∞,∞},with li < ui for all i = 1, . . . , n. Find a vector x ∈ R
n such that

if xi = ui ⇒ fi (x) ≤ 0, if li < xi < ui ⇒ fi (x) = 0 and if xi = li ⇒ fi (x) ≥ 0.

Definition 2.3 ([18]) Find (x, y) ∈ R
n × R

m such that x ≥ 0, F(x, y) ≥ 0,
Q(x, y) = 0 and x•F(x, y) = 0,where F : Rn ×R

m → R
n and Q : Rn ×R

m → R
m
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are continuously differentiable, H(x, y) = x • F(x, y) represents the Hadamard prod-
uct H(x, y) = (x1F1(x, y), . . . , xn Fn(x, y))T.

Definitions 2.1 and 2.2 can be rewritten to match Definition 2.3 if one considers

F(w, v, x) = (
x1 − l1, . . . , xn − ln, u1 − x1, . . . , un − xn

)T
,

Q(w, v, x) = f (x) + v − w, (w v)T • F(w, v, x) = 0,
(1)

where (w, v) ∈ R
n+ × R

n+ are auxiliary variables and x ∈ R
n .

Many mathematical programming problems can be formulated as an MNCP. In
particular, one can formulate algebraic systems of nonlinear equations by setting ui =
+∞ and li = −∞ [13,19], nonlinear programming can be treated by applying KKT
conditions [9,20], nonlinear complementarity problems by setting ui = +∞ and
li = 0 [6], Variational Inequalities can be similarly formulated [6,12].

Considerable research effort was devoted bymathematicians and engineers to solve
MNCP, looking for strong and efficient techniques for real engineering applications.
Our approach to solve MNCP in the form given by Definition 2.3 is based on the
iterative solution of the nonlinear system of equations:

S(x, y) = (x • F(x, y), Q(x, y))T = 0. (2)

Given an initial point inside the domain, FDA-MNCP generates a sequence of points
such that the potential function

f (x, y) ≡ φ(x, y) + ‖Q(x, y)‖2, (3)

decreases at each iteration, where φ(x, y) = xTF(x, y).
The set of feasible points of MNCP, following Definition 2.3, is

Ω := {(x, y) ∈ R
n × R

m : x ≥ 0, F(x, y) ≥ 0}.

The interior ofΩ is denoted asΩ0. For some fixed real number c > 0, this work seeks
the solution of MNCP in the following set

Ωc := {
(x, y) ∈ Ω◦ : f (x, y) ≤ c

}
. (4)

Applying a Newton–Raphson iteration to (2) results in

∇S
(

xk, yk
) (

xk+1 − xk yk+1 − yk
)T = −S

(
xk, yk

)
.

Notice that (xk+1, yk+1) corresponds to a search direction dk
1 = (xk+1 − xk, yk+1 −

yk)T, which is not necessarily feasible. This problem is circumvented by using the
perturbed Newton’s iteration

∇S(xk, yk)dk =
(−xk • F(xk, yk)

−Q(xk, yk)

)
+ ρk

(
E1
E0

)
, (5)
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where

E1 = [1, . . . , 1]T ∈ R
n, E0 = [0, . . . , 0]T ∈ R

m;
ρ0 = αmin{1, 1/(cβ−1)}, α ∈ ]0, 1[, β ∈]1, 2];

ρ0φ
β−1(xk, yk) < 1; ρk = ρ0φ

β(xk, yk)

n
∈]0, 1[; (6)

∇S(xk, yk) =
(∇x H(xk, yk) diag(xk)∇y F(xk, yk)

∇x Q(xk, yk) ∇y Q(xk, yk)

)
, (7)

for all (xk, yk) ∈ Ωc, and diag(xk) ∈ R
n×n is a diagonal matrix such that

(diag(xk))i i ≡ (xk)i . Sect. 3 shows that dk is a descent direction of the potential
function f (x, y) and also is a feasible direction in Ω .

2.1 Description of the Algorithm

The present algorithm uses the following parameters c > 0, α ∈ ]0, 1[, η ∈ ]0, 1[,
ν ∈ ]0, 1[, β ∈ ]1, 2] and ρ0 < αmin{1, 1/(cβ−1)}.

Initial Data: (x0, y0) ∈ Ω0, such that f (x0, y0) < c and k = 0.
Step 1: Calculate the search direction dk by solving System (5).
Step 2: Armijo’s linear search: consider dk = (dk

x dk
y )

T and obtain tk as the first
number of the sequence {1, ν, ν2, . . .} satisfying

xk + tkdk
x ≥ 0, F

(
xk + tkdk

x , yk + tkdk
y

)
≥ 0, (8)

f
(

xk + tkdk
x , yk + tkdk

y

)
≤ f

(
xk, yk

)
+ tkη∇ f

(
xk, yk

)t
dk . (9)

Step 3: Compute (xk+1, yk+1) = (xk + tkdk
x , yk + tkdk

y ). Go back to Step 1.

A new iteration is obtained by performing an inexact line search procedure that looks
for a new feasible point with a sufficient reduction of the potential function f (x, y).
We employ an extension of Armijo’s line search that deals with inequality constraints
proposed in [15]. Line search procedures based on Wolfe’s or Goldstein’s inexact line
search criteria can also be employed [21,22].

This algorithm is a perturbation to Newton’s iterations. Below we prove that under
standard assumptions the rate of convergence of the presented method is superlinear.
Thus, a smaller ρk will result in faster convergence. That is why, when near a solution,
the algorithm considers ρk = O(φβ(xk, yk)). The presented algorithm is easy to
implement and requires computational resources similar to that of Newton’s method
for a system of nonlinear equations.

One common difficulty concerning the interior point methods is checking if the
chosen initial point is feasible. FDA-MNCP circumvents this difficulty by working
inside the set Ωc given in (4), whose definition is simple to verify.

As far as we know, there are no other feasible direction methods addressingMNCP.
However, in the literature there are methods addressing MNCP using variations of
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Newton’s method [3,12,23] and for Linear Complementarity Problems by interior
point techniques [3].

There are important advantages in using feasible point techniques. From mathe-
matical point of view, in some problems [18] the function F is not defined outside the
feasible region, turning tricky application of other techniques. From the perspective of
applications, the intermediate steps in the algorithm are in agreement with the physics
of the problem.Moreover, the stop criteria are always approximated.When the iterates
approximate the solution from the outside the feasible region, there is a possibility to
stop at an unfeasible point. In this case, it may be possible to recover the feasibility at
the price of increasing an error of the complementarity value.

3 Theoretical Results

This section provides theoretical background for the choice of the direction dk of
System (5) as well as global and asymptotic convergence of FDA-MNCP. First steps
in this direction were made by Mazorche [18].

3.1 The Search Direction

Proposition 3.1 (Feasible direction) Consider a point (xk, yk) ∈ Ωc and the direc-
tion dk obtained as a solution of System (5). Then, dk is a feasible direction in Ω

whenever xk • F(xk, yk) �= 0.

Proof Since (xk, yk) ∈ Ωc and xk • F(xk, yk) �= 0, it follows that ρ0 and ρk given in
(6) are well defined. From (5), for each row i = 1, 2, . . . , n, follows [Fi (xk, yk)ei +
xi∇Fi (xk, yk)]dk = −xk

i Fi (xk, yk)+ρk , where ei is the vector of the canonical base
of Rn × R

m . The two following cases are important: If xk
i = 0 and Fi (xk, yk) > 0,

then dk
i = ρk/Fi (xk, yk) > 0; If xi > 0 and Fi (xk, yk) = 0, then ∇Fi (xk, yk)dk =

ρk/xi > 0. It follows that dk is a feasible direction at (xk, yk) ∈ Ω (see Proposition
2 [17] for details). ��

Proposition 3.2 (Descent direction) The search direction dk is a descent direction
for f (xk, yk) at any (xk, yk) ∈ Ωc whenever xk • F(xk, yk) �= 0 is true and the
conditions established in (6) are valid.

Proof Since xk • F(xk, yk) �= 0 and (xk, yk) ∈ Ωc, then c �= 0. From (3), it follows
∇ f (xk, yk) = (ET

1 2Q(xk, yk))T∇S(xk, yk). Multiplying the last equation by dk

and using (5) and (6) after some algebraic manipulations result in

∇ f
(

xk, yk
)

dk = −2

[

f
(

xk, yk
)

− 1 + ρ0φ
β−1

(
xk, yk

)

2
φ

(
xk, yk

)]

< 0.

(10)
We conclude that dk is a feasible direction. ��
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3.2 Global Convergence of FDA-MNCP

In order to prove global convergence, the following assumptions are necessary:

Assumption 3.1 The set Ωc given by (4) is a compact set, and it has an nonempty
interior Ω0

c . Each (x, y) ∈ Ω0
c satisfies x > 0 and F(x, y) > 0.

Assumption 3.2 Functions F(x, y), Q(x, y) are of classC1(Rn×R
m),∇F(x, y) and

∇Q(x, y) satisfy Lipschitz conditions ‖∇F(x2, y2) − ∇F(x1, y1)‖ ≤ γ ‖(x2, y2) −
(x1, y1)‖ and ‖∇Q(x2, y2) − ∇Q(x1, y1)‖ ≤ L‖(x2, y2) − (x1, y1)‖, for any
(x1, y1), (x2, y2) ∈ Ωc, where γ and L are real positive numbers.

Assumption 3.3 The matrix ∇S(x, y) given in (7) is invertible in Ωc.

Assumption 3.4 There is a real constant σ > 0, such that the subsetΩ∗ := {(x, y) ∈
Ωc : σ‖Q(x, y)‖ ≤ φ(x, y)} is nonempty.

Assumptions 3.1–3.4 imply that x and F(x, y) are nonzero simultaneously for
(x, y) ∈ Ωc, which means that the linear system (5) always possesses a solution.
Since ∇F(xk, yk) and ∇Q(xk, yk) are continuous, the matrix in Assumption 3.3
possesses a continuous inverse in Ωc. Thus, there exists a scalar κ > 0, such that
‖∇S(xk, yk)−1‖ ≤ κ for any (xk, yk) ∈ Ωc.

The following results prove that the sequence of search direction {dk} of the present
algorithm is bounded and constitutes a uniformly feasible directions field for β ∈
(1, 2] in Ωc, i.e., there exists ξ̄ > 0 such that for any (xk, yk) ∈ Ωc it follows that
(xk, yk) + tdk ∈ Ωc for all t ∈ [0, ξ̄ ].
Lemma 3.1 Under Assumptions 3.3–3.4, for any (xk, yk) ∈ Ω∗, there is a constant
κ̄ such that the search direction dk satisfies ‖dk‖ ≤ κ̄φ(xk, yk) ≤ κ̄c.

Proof Let E = (E1 E0)
T ∈ R

n ×R
m , where E1, E0 are given in (6). It follows that:

‖ρk E − S(xk, yk)‖2 = ‖xk • F(xk, yk)‖2−2ρkφ(xk, yk)+n(ρk)2+‖Q(xk, yk)‖2.
(11)

Similarly to what was done by Herskovits and Mazorche in [17], it is possible to find
a bound to the left side of Eq. (11). Define

T :=
∥∥
∥xk • F

(
xk, yk

)∥∥
∥
2 − 2ρkφ

(
xk, yk

)
+ n

(
ρk

)2

and observe that from the definition of φ in (3) it follows that ‖xk • F(xk, yk)‖2 ≤
φ2(xk, yk). Using it results in

T ≤
(
φ

(
xk, yk

)
− ρk

)2 + (n − 1)
(
ρk

)2
.

Substituting ρk from (6), we obtain:

T ≤
[(

n − ρ0φ
β−1

(
xk, yk

))2 + (n − 1)
(
ρ0φ

β−1
(
xk, yk

))2

n2

]

φ2
(

xk, yk
)

. (12)
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The third condition in (6) results in n − 1 < n − ρ0φ
β−1(xk, yk) < n. Substituting it

in (12) yields

T ≤
(

n − ρ0φ
β−1

(
xk, yk

))
φ2

(
xk, yk

)
/n < φ2

(
xk, yk

)
.

Using (11) and Assumption 3.4 yields

∥
∥∥ρk E − S

(
xk, yk

)∥
∥∥
2 ≤ φ2

(
xk, yk

)
+

∥
∥∥Q

(
xk, yk

)∥
∥∥ ≤

(
1 + 1/σ 2

)
φ

(
xk, yk

)2
.

Considering (5), we obtain

∥∥
∥dk

∥∥
∥ ≤ κ̄

∥∥
∥ρk E − S

(
xk, yk

)∥∥
∥ ,

where κ̄ = κ
√
1 + 1/σ 2. As consequence

∥
∥dk

∥
∥ ≤ κ̄c. ��

Lemma 3.2 Consider the sequence of search directions {dk} given by FDA-MNCP.
Under Assumptions 3.2–3.3, there exists Θ > 0, such that for all (xk, yk) ∈ Ωc holds
(xk+1, yk+1) = (xk, yk) + τdk ∈ Ω for all τ ∈ [0,Θ].
Proof ByAssumption 3.2,∇S(x, y) is Lipschitz with some constant γ . Let (xk, yk) ∈
Ωc, Proposition 3.1 implies that there exists θ > 0, such that [(xk, yk), (xk, yk) +
τdk] ⊂ Ω for τ ∈ [0, θ ]. From the Mean Value Theorem, after some calculations it
follows that for all τ ∈ [0, θ ], τ ≤ min{1, ρk/γ ‖dk‖2}:

Si

((
xk, yk

)
+ τdk

)
≥ 0 for all i = 1, 2, . . . , n. (13)

Notice that Si ((xk, yk) + τdk) = xk+1Fi (xk+1, yk+1) yielding xk+1 ≥ 0 and
Fi (xk+1, yk+1) ≥ 0 (see Lemma 4.1.6 in [18] for details). It follows that (xk, yk) +
τdk ∈ Ω . Considering Lemma 3.1 and ρk defined in (6), Eq. (13) holds for
τ ≤ min

{
1, ρ0φ(xk, yk)β−2/(γ nκ̄2)

}
. Since β ∈ ]1, 2], the present lemma is valid

for Θ = min
{
1, ρ0cβ−2/γ nκ̄2

}
. ��

Lemma 3.3 Under Assumptions 3.3–3.4, there exists ζ > 0 such that, for (xk, yk)

∈ Ωc, the Armijo’s line search given by (9) is satisfied for any tk ∈ [0, ζ ].
Proof Let tk ∈ ]0,Θ], where Θ was obtained in the previous lemma. Applying the
Mean Value Theorem for i = 1, 2, . . . , n results in

Si

(
xk+1, yk+1

)
≤ Si

(
xk, yk

)
+ tk∇Si

(
xk, yk

)
dk +

(
tk

)2
γ

∥∥∥dk
∥∥∥
2
.

Adding the previous n inequalities and substituting the value of ∇Si (xk, yk) dk yield

φ
(

xk+1, yk+1
)

≤
(
1 − tk

)
φ

(
xk, yk

)
+ tknρk + ntk2γ

∥∥∥dk
∥∥∥
2
. (14)
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Similarly, applying the Mean Value Theorem for Q2
i yields

∥∥∥Q
(

xk+1, yk+1
)∥∥∥

2 ≤
(
1 − tk

) ∥∥∥Q
(

xk, yk
)∥∥∥

2 + m
(

tk
)2

γ

∥∥∥dk
∥∥∥
2
. (15)

Adding (14) and (15), the limitation for f is obtained

f
(

xk+1, yk+1
)

≤
(
1 − tk

)
f
(

xk, yk
)

+ tk
[

nρk + (n + m)tkγ

∥∥∥dk
∥∥∥
2
]

.

Definition ofρk in (6) andAssumption 3.1 imply 1/ f (xk, yk) ≤ 1/φ(xk, yk), yielding

f
(

xk+1, yk+1
)
≤

[

1−
(

1−ρ0φ
β−1

(
xk, yk

)
− (n+m)γ

∥∥dk
∥∥2 tk

φ
(
xk, yk

)

)

tk

]

f
(

xk, yk
)

.

In order for Armijo’s line search (9) to be satisfied, it is sufficient that

(
1−ρ0φ

β−1
(

xk, yk
))

− (n+m)γ

∥∥∥dk
∥∥∥
2

tk/φ
(

xk, yk
)
≥η

(
1−ρ0φ

β−1
(

xk, yk
))

.

As in the previous lemma, it follows

tk ≤ (1 − η)
(
1 − ρ0φ

β−1
(

xk, yk
))

φ
(

xk, yk
)

/

(
(n + m)γ

∥
∥∥dk

∥
∥∥
2
)

.

Considering Θ from Lemma 3.2, from Lemma 3.1 the result follows for ζ =
min

{
(1 − η)(1 − ρ0cβ−1)

(n + m)γ κ̄2c3
,Θ

}
. ��

Lemma 3.4 Under Assumptions 3.3 and 3.4, there exists ξ̄ > 0 such that, for
(xk, yk) ∈ Ω∗, the point (xk+1, yk+1) = (xk, yk) + tkdk belongs to set Ω∗ for
any tk ∈ [0, ξ̄ ].
Proof ByLemmas 3.2 and 3.3, there exists ζ > 0, such that (xk+1, yk+1) = (xk, yk)+
tkdk ∈ Ωc for all (xk, yk) ∈ Ω∗, dk is generated by FDA-MNCP and tk ∈ [0, ζ ].
We are going to prove that (xk+1, yk+1) ∈ Ω∗. Similarly to Lemma 3.3, applying the
Mean Value Theorem to Si (i = 1, 2, . . . , n) results in

φ
(

xk+1, yk+1
)

≥
(
1 − tk

)
φ

(
xk, yk

)
+ ntkρk − n

(
tk

)2
γ

∥∥∥dk
∥∥∥
2
. (16)

Using the Second Fundamental Theorem of Calculus for each Qi (i = 1, . . . , m):

Q
(

xk+1, yk+1
)

= Q
(

xk, yk
)

+ tk
[∫ 1

0
∇Q

((
xk, yk

)
+ θ tkdk

)
dθ

]
dk . (17)
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Substituting ∇Q(xk, yk)dk = −Q(xk, yk) from (5) into (17), calculating l2 norm,
multiplying by −σ and adding it to (16) yield

φ
(

xk+1, yk+1
)

− σ

∥∥
∥Q

(
xk+1, yk+1

)∥∥
∥

≥
(
1 − tk

) [
φ

(
xk, yk

)
− σ

∥∥∥Q
(

xk, yk
)∥∥∥

]
+ tk

[
nρk − (nγ + σ L)

∥∥∥dk
∥∥∥
2

tk
]

.

In order to guarantee that the right side is positive, it is sufficient that nρk − (nγ +
σ L)‖dk‖2tk > 0. Using the definition of ρk , we obtain that tk ≤ δ

(
ρk/(γ ‖dk‖2)),

where δ = nγ /(nγ + σ L) ∈ ]0, 1]. It follows that (xk+1, yk+1) ∈ Ω∗, for all tk ∈
]0, ξ̄ ) and ξ̄ = min

{
δρ0cβ−2/(γ κ̄2n), ζ

}
. ��

As a consequence of the three previous lemmas, the sequence {dk} generated by
FDA-MNCP is a uniformly feasible directions field in Ωc. Moreover, the number of
steps required by Armijo’s line search described in Step 2 of the algorithm is finite
and bounded from above. The following theorem addresses the global convergence of
the presented algorithm.

Theorem 3.1 Under Assumptions 3.1–3.4, given the initial point (x0, y0) ∈ Ω∗, there
exists a subsequence of {(xk, yk)} generated by FDA-MNCP converging to (x∗, y∗),
a solution of MNCP given by Definition 2.3.

Proof From Lemmas 3.1–3.3, it follows that (xk, yk) ∈ Ωc. This, jointly with
Assumption 3.1, implies that there exists a subsequence {(xkn , ykn )} ∈ Ωc con-
verging to (x∗, y∗) ∈ Ωc. Using that f is a continuous function, Proposition 3.2
implies that f (xk, yk) is a decreasing sequence converging to its infimum f (x∗, y∗).
If f (x∗, y∗) �= 0, from the definition of f results that φ(x∗, y∗) �= 0 and the set
of indexes J := { j ∈ [1, n] : x j Fj (x∗, y∗) �= 0} is nonempty. On the other hand,
‖dk‖ ↓ 0 as tk is bounded from below. From System (5), it follows that

dk = ∇−1S
(

xk, yk
) [

−S
(

xk, yk
)

+ ρk E
]
.

Thus, −x∗
i Fi (x∗, y∗) + ρ0φβ(x∗, y∗)/n = 0, for each row i = 1, . . . , n. Adding

these equations, it follows that ρ0φβ−1(x∗, y∗) = 1, contradicting the third condition
in (6). Thus, (x∗, y∗) is the solution of MNCP. ��

3.3 Asymptotic Convergence

The present algorithm is a perturbation of Newton’s iteration, and it is natural to
expect a rate of convergence close to quadratic for smaller values of ρk . Unfortunately,
a unitary step-length can not be always ensured. The present approach possesses
asymptotic convergence as formulated next.

Theorem 3.2 Consider the sequence {(xk, yk)} generated by FDA-MNCP that con-
verges to a solution (x∗, y∗) of MNCP given by Definition 2.3. Then, (i) taking
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β ∈ ]1, 2[ and tk = 1 for k large enough, the rate of convergence of the present
algorithm is at least superlinear; (ii) if tk = 1 for large k and β = 2, then the rate of
convergence is quadratic.

Proof Considering Θ from Lemma 3.2, ξ̄ from Lemma 3.4 and tk ∈ ]0, min{Θ, ξ̄ }],
it follows that

∥∥∥
(

xk+1, yk+1
)

− (
x∗, y∗)

∥∥∥

≤
(
1 − tk

) ∥∥
∥
(

xk, yk
)

− (
x∗, y∗)

∥∥
∥

+ κρ0φ
β

(
xk, yk

)
/
√

n + O

(∥∥∥
(

xk, yk
)

− (
x∗, y∗)

∥∥∥
2
)

. (18)

From the Mean Value Theorem and the Lipschitz condition, it follows that

φβ (x1, y1) ≤ φβ (x2, y2) + βφβ−1 (x̄, ȳ)
√

n O (‖(x1, y1) − (x2, y2)‖) ,

where (x̄, ȳ) = (x2, y2)+ε((x1, y1)−(x2, y2)) for some ε ∈ ]0, 1[. Taking (x2, y2) =
(x∗, y∗), for all (x1, y1) = (xk, yk) sufficiently near (x∗, y∗) it is equivalent to

φβ
(

xk, yk
)

≤ φβ−1 (x̄, ȳ) β
√

n O
(∥∥∥

(
xk, yk

)
− (

x∗, y∗)
∥∥∥
)

. (19)

(i) Hypothesis β ∈ ]1, 2[ and tk = 1 for large k in (19) imply

φβ
(

xk, yk
)

= O
(∥∥∥

(
xk, yk

)
− (

x∗, y∗)
∥∥∥
)

.

By substitution in (18), we obtain that limk→∞ ‖(xk+1,yk+1)−(x∗,y∗)‖
‖(xk ,yk )−(x∗,y∗)‖ = 0. Thus,

the rate of convergence is superlinear.
(ii) The result for β = 2 is obtained in a similar way. ��

4 Benchmark Problems

To test the numerical behavior of the present algorithm, a number of problems pre-
sented in the literature are solved. The numerical implementation considers ρ0 =
αmin{1, φβ−1(xk, yk)} in order to avoid extremely large deflections far from the
solution and ρ0 is constant when φ(xk, yk) is small. All the simulations were per-
formed for two cases: β = 1.1 and β = 2. All problems were solved with the same
parameters: α = 0.25, η = 0.4, ν = 0.8 and the stop criteria f (xk, yk) < 10−8. For
each test problem, ten different starting points were considered. The complementarity
condition used is (w, v)T • F(w, v, x) = 0, where w, v have different dimensions
for each test problem. The results are summarized in Table 1 for the values β = 1.1
and β = 2, where Min and Max represent the minimum and maximum numbers of
iterations. As shown in Table 1 for different initial points, the number of iterations
does not change significantly for both analyzed values of parameter β. The exception
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Table 1 Number of iterations for the benchmark problems to converge

β\Problem 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9a 4.9b 4.10

1.1

Min 24 23 16 15 15 16 13 13 11 11 104,542

Max 25 25 22 16 20 18 17 14 13 14 471,302

2

Min 22 20 14 12 13 14 13 10 13 13 21

Max 23 23 19 13 20 21 18 17 16 17 40

is β = 1.1 for the problem 4.10, which presented bad convergence due to strong
nonlinearity presented in this example. The present algorithm converged in all tested
benchmark problems showing the robustness of FDA-MNCP.

Problem 4.1 (Example 3.5 [9]) This problem is proposed as NCP and solved as
MNCP using (1) with li = 0, ui = M = 105, i = 1, 2. This problem consists in
searching for (w, v) ∈ R

2+ × R
2+ and x ∈ R

2 such that F(w, v, x) = (x1, x2, M −
x1, M − x2)T, Q(w, v, x) = ((x1 − 1)2, x1 + x2 − 1)T + v − w. The exact solution
of this problem is (1, 0).

Problem 4.2 (Example 6.1 [9]) This problem is proposed as NCP. In order to solve
this problem as MNCP, we use (1) with li = 0, ui = M = 105, i = 1, 2. This problem
consists in searching for (w, v) ∈ R

2+ × R
2+ and x ∈ R

2, such that F(w, v, x) =
(x1, x2, M − x1, M − x2)T, Q(w, v, x) = ((x1−1)2, x1+ x2+ x22 −1)T+v−w = 0.
The exact solution for this problem is (1, 0).

Problem 4.3 (Example 6.2 [9]) This is a minimization problem. Applying KKT con-
ditions [20], this problem can be written as MNCP in the form of Definition 2.3. This
problem consists in searching for w ∈ R

2+, x ∈ R
2, such that F(w, x) = (x1, x2)T,

Q(w, z) = (2x1 + 2x2 − w1, 2x1 + 2x2 − w2)
T, where w = (w1, w2) are KKT mul-

tipliers, x = (x1, x2) are the primal variables.

Problem 4.4 (Example 6.3 [9]) This is a minimization problem. It can be written as
MNCP in the form of Definition 2.3 using KKT conditions from [20]. This problem
consists in searching for w ∈ R+, x ∈ R, such that F(w, x) = x, Q(w, x) = x3−w.
The exact solution for this problem is x = 0.

Problem 4.5 (Example 6.5 [9]) This is a minimization problem. Applying KKT
conditions given in [20], this problem can be written as MNCP in the form of Def-
inition 2.3. This problem consists in searching for w ∈ R

2+, x ∈ R
2 such that

F(w, x) = (
x1 − x22/2, x1 + x22/2

)T
, Q(w, x) = (x1−w1−w2, x22+w1x2−w2x2)T.

This problem has the exact solution x = (0, 0)T .

Problem 4.6 (Example 3.4 [10]) This is a minimization problem. Applying KKT
conditions given in [20], this problem can be written as MNCP in the form of Def-
inition 2.3. This problem consists in searching for w ∈ R

3+, x ∈ R
2, such that
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F(w, x) = (x1, x2, x1 + x2)T, Q(w, x) = (1 + x1 − w1 − w3, x2 − w2 − w3).
The exact solution for this problem is x = (0, 0)T.

Problem 4.7 (Powell’s badly scaled problem [24])
This problem consists of a system of nonlinear equations that can be written as

MNCP [13,19]. It can also be written as MNCP given by Definition 2.3 by using
li = −ui = −M = −105, i = 1, 2. It is symmetric under the transformation
x1 ↔ x2, and it possesses two solutions x∗ = (9.106, 1.098× 10−5)T; x̂ = (1.098×
10−5, 9.106)T. This problem consists in searching for (w, v) ∈ R

2+ ×R
2+ ∈ R

2, such
that F(w, v, x) = (x1 + M, x2 + M, M − x1, M − x2)T, Q(w, v, x) = (104 x1x2 −
1, e−x1 + e−x2 − 1.0001)T + v − w.

Problem 4.8 (Powell’s singular function [24]) This problem consists of a system of
nonlinear equations, and it possesses a singular Jacobian on the hyperplane x1−x4 =
0, and thus, the Newton’s method is not applicable. The only solution of this problem
is x = (0, 0, 0, 0)T [24]. It can also be written as MNCP given by Definition 2.3 by
using li = −ui = −M = −105, i = 1, 2, 3, 4. This problem consists in searching
for (w, v) ∈ R

4+ × R
4+, x ∈ R

4, such that F(w, v, x) = (x1 + M, x2 + M, x3 +
M, x4 + M, M − x1, M − x2, M − x3, M − x4)T, Q(w, v, x) = (x1 +10x2,

√
5(x3 −

x4), (x2 − 2x3)2,
√
10(x1 − x4)2)T + v − w.

Problem 4.9 (Walsarian equilibrium model [7]) The Walsarian equilibrium model,
presented in as MNCP in the form Definition 2.1 [7], was rewritten as a minimization
problem and solved applying the infeasible interior point algorithm. Depending on
the values of the constants b2, b3 > 0 and α ∈ (0, 1), this problem possesses different
solutions. For numerical results is used (α, b2, b3) = (0.75, 1, 0.5) (4.9b in Table 1)
and (0.75, 1, 2) (4.9a in Table 1) as in [7]. Considering li = 0, ui = M = 105, i =
1, 2, 3, 4; this problem can be written as Definition 2.3. This problem consists in
searching for (w, v) ∈ R

4+ × R
4+, x̄ = (z, x1, x2, x3)T ∈ R

4, such that

F(w, v, x̄) = (z, x̄1, x̄2, x̄3, M − z, M − x̄1, M − x̄2, M − x̄3)
T ,

Q(w, v, x̄) = (−x1 + x2 + x3, z − α(b2x2 + b3x3)/x1,

b2 − z − (1 − α)(b2x2 + b3x3)/x2, b3 − z)T + v − w.

Problem 4.10 (Kojima–Shindo’s Problem [7,25,26]) This problem was proposed
as NCP and solved by using Algorithms EN and EQN [26], by using quasi New-
ton’s methods [25] and by using NLCP algorithm [7]. The exact solutions are
x̄ = (

√
6/2, 0, 0, 0.5) and x̄ = (1, 0, 3, 0). It is possible to write it in the form of

Definition 2.3 using li = 0, ui = M = 105, i = 1, 2, 3, 4. This problem consists in
searching for (w, v) ∈ R

4+ × R
4+, x ∈ R

4, such that

F(w, v, x) = (x1, x2, x3, x4, M − x1, M − x2, M − x3, M − x4)
T,
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Fig. 1 Torsion of a prismatic
bar with a circular cross section

Q(w, v, x) =
(
3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6,

2x21 + x1 + x22 + 10x3 + 2x4 − 2,

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9,

x21 + 3x22 + 2x3 + 3x4 − 3
)T + v − w.

5 Elastic–Plastic Torsion Problem

The application of mathematical programming theory and methods, including com-
plementarity, to analyze elastic–plastic structures dates back to the late 1960s and
early 1970s. Torsion of a long, hollow bar made of an elastic–plastic material is a
mathematically well-defined problem [27], and thus it can be used to test the proposed
algorithm. Except for the circular cross section case, there are no analytical solutions
available [27]. That is why in the present paper, the circular cross section correspond-
ing to w = 0 is considered [28]. Following [2,28], we consider a prismatic bar whose
longitudinal axis is the Z -axis and whose cross sections Σ ⊂ R

2 lie in the XY -plane
and is a simply connected, bounded open domain, see Fig. 1. This elastic–plastic tor-
sion problem is described by the system of equations in terms of a stress function φ

[2],

φ = 0 on ∂Σ; −∇φ = θ in Σe := {x ∈ Σ : |∇φ| < 1}; |∇φ| = 1 in Σp, (20)

where Σe is the elastic region, Σp := Σ − Σe is the plastic region and θ is the twist
angle per unit length. In order to write this problem using a weak formulation, the
following Sobolev space is considered H1

0 (Σ) := {v ∈ H1(Σ) : v = 0 on ∂Σ},
which is a closed vector subspace of H1(Σ). We seek the solution in the closed
and convex subset K̂ of H1

0 (Σ) given by K̂ := {v ∈ H1
0 (Σ) : |v(x)| ≤ 1}. The

System (20) can be rewritten as a variational inequality [2],

∫ ∫

Σ

∇u .∇(v − u) ≥
∫ ∫

Σ

(v − u) ∀ v ∈ K̂ , u ∈ K̂ , (21)

which possesses a unique solution [29].
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The elastic–plastic torsion problem in the variational formulation (21) is espe-
cially appropriate for a numerical solution by using the Finite Element Method
(FEM) by writing it as a mixed complementarity problem, which is solved by
using FDA-MNCP. The equivalence between the elastic–plastic torsion problem
given by variational inequality (21) and same inequality substituting the set K̂
by K := {v ∈ H1

0 (Σ) : |v(x1, x2)| ≤ d(x1, x2)} was proven in [30] using
d(x1, x2) = distance((x1, x2), ∂Σ), ∀(x1, x2) ∈ Σ̄ .

FEM formulation used here follows [3] with a standard triangulation Th on Σ̄ =
Σ ∪ ∂Σ . The space H1(Σ) is substituted by a finite dimensional discrete space Vh of
piecewise polynomials vh of degree one. Inequality (21) is written in a discrete form,
i.e., search uh ∈ Kh such that

∫ ∫

Σ

�uh . � (vh − uh) ≥
∫ ∫

Σ

(vh − uh) ∀ vh ∈ Kh . (22)

Let {ϕ1, . . . , ϕn} a base of Vh , where n is the number of nodes, then

vh(x1, x2) =
n∑

j=1

v jϕ j (x1, x2), zh(x1, x2) =
n∑

j=1

z jϕ j (x1, x2),

for each (x1, x2) ∈ Σ ∪ ∂Σ . Replacing these expressions into (22) yields

(v − z)T(q + Mz) ≥ 0 for all v ∈ Kh, (23)

where Kh , the matrix M = (mi j ) ∈ R
n×n and the vector q = (qi ) ∈ R

n are given by
Kh := {v ∈ R

n : ai ≤ vi ≤ bi , i = 1, . . . , n; vi = gi in ∂Σ ∪ Th},

mi j =
∫∫

Σ

[
∂ϕi

∂x1

∂ϕ j

∂x1
+ ∂ϕi

∂x2

∂ϕ j

∂x2

]
dx1dx2, qi = −

∫∫

Σ

θϕ(x1, x2)dx1dx2.

In [3] was established that (23) can be written as MNCP in the form of Definition 2.2
setting J as the set of interior nodes and N as the number of elements of J . The
problem consists in searching U, V ∈ R

N+ and z ∈ R
N such that

F(w, v, z) ≥ 0,

where Fi (w, v, z) = zi −ai , Fi+N (w, v, z) = bi −zi for all i ∈ J . Here, Q(w, v, z) =
q + Mz + v − w = 0 and the complementarity condition is given by (w v)T •
F(w, v, z) = 0, which is solved applying FDA-MNCP with FEM. The results are

Table 2 Number of iterations solving the elastic–plastic torsion problem presented in [3]

n 143 537 2081 8193

Interior point 27 23 20 19

The total numbers of nodes is n
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Table 3 Number of iterations solving the elastic–plastic torsion problem by FDA-MNCP

β\n 11 16 56 208 776 2798 3767 5358

1.1

FDA 17 17 17 20 25 31 30 32

l2 error 0.6885 0.3143 0.0791 0.0136 0.0049 0.0059 0.0022 0.0019

2.0

FDA 15 17 17 20 20 25 26 26

l2 error 0.6885 0.3143 0.0791 0.0136 0.0049 0.0059 0.0022 0.0019

Numbers of total nodes is n

Fig. 2 Exact (a, c and e) and numerical (b, d and f) solutions obtained for different mesh sizes n. The
numerical simulations using FDA-MNCP for θ = 5 and R = 1. a n = 11, b n = 11, c n = 776, d n = 776,
e n = 5358, f n = 5358

presented in Table 3. They are similar to the results presented in [3] summarized in
Table 2, where the same problem is solved in the form of Definition 2.2. Notice that
the number of mesh nodes is different.
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The exact solution of the elastic–plastic torsion problem of the cylindrical bar with
cross section Σ ⊂ R

2 is known [2]:

If θ ≤ 2R φ(x) = θ(R2 − r2)/4,

if θ ≥ 2R φ(x) =
{

R − r, if R′ ≤ r ≤ R,

−θ r2/4 + (R − 1/θ), if 0 ≤ r ≤ R′,
(24)

where Σ = {(x1, x2) ∈ R
2 / x21 + x22 ≤ R2}, r =

√
x21 + x22 and R′ = 2/θ . Table 3

shows the l2 error of FDA-MNCP when compared to the exact solution (24). It can be
observed that it is decreasing according to theoretical predictions until the numerical
precision is reached in the last four columns. Notice that in the last three columns the
total number of iterations stabilizes for both values of the parameter β.

In Fig. 2,we show the comparison between the exact solution (24) and the numerical
solution obtained by using FDA-MNCP with FEM. In agreement with the results
presented in Table 3, the graphics are indistinguishable for big mesh numbers.

6 Conclusions

The feasible points algorithm for mixed nonlinear complementarity problems was
presented. It generalizes the ideas of FDA-NCP [4,17]. Global and asymptotic conver-
gencewas rigorously proven. For the parameterβ ∈ ]1, 2[, the superlinear convergence
was proved. On the other hand, ifβ = 2, quadratic convergencewas obtained. The pre-
sented algorithm is easy to implement numerically and is efficient as can be observed
from the number of iterations required to solve the benchmark problems. Moreover,
it is robust in the sense that it does not need parameters tuning. In our case, all the
examples were solved using the same parameters μ, ν and β showing good results.
The choice of the starting point should not be a problem for the algorithm as we proved
the global convergence, i.e., for all starting points in the interior of the domain. This
theoretical results were endorsed by numerical simulations with, at least, ten different
initial values for each benchmark problem. The Maratos effect was rarely observed in
the test problems.

The algorithm was applied to the elastic–plastic torsion problem with a circular
cross section. The obtained results agree with the analytical solution and ones found
in the literature. These results can also be extended to other problems, such as Math-
ematical Program with Equilibrium Constraints (MPEC).

Acknowledgements We thank the anonymous reviewer and A. Chapiro for help in improving the text.
Angel E. R. Gutierrez was supported in part by FONDECYT “Generación Científica—Becas Nacionales—
Fortalecimiento de Programas de doctorado en universidades peruanas” under Award 217-2014. José
Herskovitswas supported in part byCNPqandFAPERJ.GrigoriChapirowas supported in part byFAPEMIG
under Award APQ-01377-15.

References

1. Leontiev, A., Huacasi, W., Herskovits, J.: An optimization technique for the solution of the signorini
problem using the boundary element method. Struct. Multidiscip. Optim. 24(1), 72–77 (2002)

123



448 J Optim Theory Appl (2017) 175:432–449

2. Glowinski, R., Lions, J., Trémolières, R.: Numerical Analysis of Variational Inequalities, vol. 8. North-
Holland, Amsterdam (1981)

3. Judice, J., Soares, M.: Solution of some linear complementarity problems arising in variational models
of mechanics. Investigaç. Operac. 18, 17–31 (1998)

4. Chapiro, G., Gutierrez, A., Herskovits, J., Mazorche, S., Pereira, W.: Numerical solution of a class
of moving boundary problems with a nonlinear complementarity approach. J. Optim. Theory Appl.
168(2), 534–550 (2016)

5. Ramírez, A., Mazorche, S., Chapiro, G.: Numerical simulation of an in-situ combustion model formu-
lated as mixed complementarity problem. Revista Interdisciplinar de Pesquisa em Engenharia—RIPE
2(17), 172–181 (2016)

6. Dirkse, S., Ferris, M.: Mcplib: a collection of nonlinear mixed complementarity problems. Optim.
Method Softw. 5(4), 319–345 (1995)

7. Simantiraki, E., Shanno, D.: An infeasible-interior-point algorithm for solving mixed complementarity
problems. In: Complementarity and Variational Problems: State of the Art, MC Ferris and JS Pang,
eds., Philadelphia, Pennsylvania, pp. 386–404 (1997)

8. Dirkse, S., Ferris,M.: The path solver: a nommonotone stabilization scheme formixed complementarity
problems. Optim. Method Softw. 5(2), 123–156 (1995)

9. Daryina, A., Izmailov, A., Solodov, M.: A class of active-set Newton methods for mixed complemen-
tarityproblems. SIAM J. Optim. 15(2), 409–429 (2005)

10. Daryina, A., Izmailov, A., Solodov, M.: Numerical results for a globalized active-set Newton method
for mixed complementarity problems. Comput. Appl. Math. 24(2), 293–316 (2005)

11. Liu, C., Atluri, S.: A fictitious time integration method (FTIM) for solving mixed complementarity
problems with applications to non-linear optimization. Comput. Model. Eng. Sci. 34(2), 155–178
(2008)

12. Gabriel, S.: A hybrid smoothing method for mixed nonlinear complementarity problems. Comput.
Optim. Appl. 9(2), 153–173 (1998)

13. Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Global Optim.
16(1), 1–21 (2000)

14. Herskovits, J.: A feasible directions interior point technique for nonlinear optimization. J. Optim.
Theory Appl. 99(1), 121–146 (1998)

15. Herskovits, J.: A two-stage feasible directions algorithm for nonlinear constrained optimization. Math.
Program 36(1), 19–38 (1986)

16. Herskovits, J.: A two-stage feasible direction algorithm including variable metric techniques for non-
linear optimization problems. Ph.D. thesis, Inria (1982)

17. Herskovits, J., Mazorche, S.: A feasible directions algorithm for nonlinear complementarity problems
and applications in mechanics. Struct. Multidiscip. Optim. 37(5), 435–446 (2009)

18. Mazorche, S.: Algoritmos para problemas de complementaridade não linear. Ph.D. thesis, Universidade
Federal do Rio de Janeiro (2007)

19. Billups, S., Dirkse, S., Ferris,M.: A comparison of large scalemixed complementarity problem solvers.
Comput. Optim. Appl. 7(1), 3–25 (1997)

20. McCormick, G.P.: Second Order Conditions for Constrained Minima, pp. 259–270. Springer, Basel
(2014)

21. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear programming: theory and algorithms. Wiley, New York
(2013)

22. Herskovits, J.:A feasible direction interior-point technique for nonlinear optimization. J.Optim.Theory
Appl. 99(1), 121–146 (1998)

23. Gabriel, S.A.: Solving discretely constrained mixed complementarity problems using a median func-
tion. Optim. Eng. 18(3), 631–658 (2017)

24. Rheinboldt, W.: Some nonlinear test problems. http://folk.uib.no/ssu029/Pdf_file/Testproblems/
testprobRheinboldt03.pdf (2003)

25. Sun, D., Han, J.: Newton and quasi-Newton methods for a class of nonsmooth equations and related
problems. SIAM J. Optim. 7(2), 463–480 (1997)

26. Kojima, M., Shindoh, S.: Extensions of Newton and quasi-Newton methods to systems of PC 1 equa-
tions. J. Oper. Res. Soc. Jpn. 29(4), 352–374 (1986)

27. Herakovich, C., Hodge, P.: Elastic–plastic torsion of hollow bars by quadratic programming. Int. J.
Mech. Sci. 11(1), 53–63 (1969)

123

http://folk.uib.no/ssu029/Pdf_file/Testproblems/testprobRheinboldt03.pdf
http://folk.uib.no/ssu029/Pdf_file/Testproblems/testprobRheinboldt03.pdf


J Optim Theory Appl (2017) 175:432–449 449

28. Wagner, W., Gruttmann, F.: Finite element analysis of Saint–Venant torsion problem with exact inte-
gration of the elastic–plastic constitutive equations. Comput. Method Appl. Mech. Eng. 190(29),
3831–3848 (2001)

29. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. CR Acad. Sci. Paris
258(1), 964 (1964)

30. Brezis, H., Sibony, M.: Équivalence de deux inéquations variationnelles et applications. Arch. Ration.
Mech. Anal. 41(4), 254–265 (1971)

123


	An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
	Abstract
	1 Introduction
	2 The Nonlinear Mixed Complementarity Algorithm
	2.1 Description of the Algorithm

	3 Theoretical Results
	3.1 The Search Direction
	3.2 Global Convergence of FDA-MNCP
	3.3 Asymptotic Convergence

	4 Benchmark Problems
	5 Elastic–Plastic Torsion Problem
	6 Conclusions
	Acknowledgements
	References




