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1 Introduction

The cardinality constraint, also known as the sparsity constraint, has attracted grow-
ing interest in various disciplines due to the “dimension curse” in the big data era.
This paper treats a general cardinality-constrained optimization model called the
cardinality-constrained cone programming (CCCP), which aims to minimize a gen-
eral continuously differentiable function subject to the cardinality constraint together
with some general nonlinear cone constraint. The CCCP problem provides a unified
framework for a rich variety of cardinality-constrained problems arising from many
applications including the subset selection problem in regression [1,2], the portfo-
lio optimization problems [3–7], and the linear and nonlinear compressed sensing in
signal processing [8–10].

The CCCP problem is generally NP-hard due to the cardinality function and so
convex and nicely behaved nonconvex relaxation strategies are typically employed
to handle this problem with various numerical algorithms (see, e.g., [11–17] and ref-
erences therein). Most existing theoretical results are then addressed on relaxation
exactness-guaranteed conditions such as the restricted isometry property (RIP) [10],
while less results are explored on the optimality analysis for the cardinality-constrained
problem directly. Such limited research results are mainly distributed in [18–26]. For
example, with the single cardinality constraint, Beck and Eldar [19] presented three
types of first-order necessary optimality conditions based upon the notions of sta-
tionarity and coordinatewise optimality. Extended analysis for the cardinality and the
so-called symmetric set constraints were discussed in [20,25] in a similar manner. For
a relatively more general case, where the feasible region is characterized by the cardi-
nality constraint and nonlinear equality and inequality constraints, Lu and Zhang [24]
established a first-order necessary optimality condition by employing the Robinson
constraint qualification (RCQ) from variational analysis. Such a model was recently
reformulated as amixed-integer program [21] and complementarity constrainedmath-
ematical program [22], and optimality analysis was then built upon the corresponding
reformulated models. Besides the tool of constraint qualifications (CQs) as employed
in [21,22,24], the notions of tangent cones and normal coneswere utilized to character-
ize optimality conditions for cardinality-constrained problems, such as the Bouligand
tangent cone and the proximal and Mordukhovich normal cones to the cardinality-
constrained set as discussed in [18], the Bouligand and Clarke tangent cones and
corresponding normal cones to the intersection of the cardinality-constrained set and
the nonnegative orthant in [26], and the Fréchet and Mordukhovich normal cones to
the intersection of the cardinality-constrained set and any given convex polyhedron in
[23].

Our purpose is to extend the first- and the second-order optimality conditions to
the more general and unified CCCP model by proposing some tailored forms of the
RCQ. These CQs are well designed to ensure decomposition properties of the tangent
cone and the normal cone to the intersection of the cardinality-constrained set and the
nonlinear cone constrained set, which will play a vital role in establishing the desired
optimality conditions.

The remainder of the paper is organized as follows. The CCCPmodel and its related
fundamental properties will be introduced in Sect. 2. The restricted forms of the RCQ
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and the strict RCQ tailored for the CCCP problem will be proposed and discussed
in Sect. 3. The first- and the second-order optimality conditions are then proposed in
Sects. 4 and 5, respectively. Concluding remarks are drawn in Sect. 6.

2 Preliminaries

In this paper, we focus on the following CCCP problem:

min f (x) s.t. G(x) ∈ K , ‖x‖0 ≤ s, (1)

where f :Rn → R, G:Rn → R
m are continuously differentiable functions, K is a

nonempty, closed and convex cone in R
m , ‖x‖0 denotes the cardinality of the vector

x ∈ R
n , i.e., the number of nonzero elements in x , s ∈ ]0, n[ is any given positive

integer.
Several specific models of the form (1) arise from statistical regression, finance,

signal processing and others; see, e.g., the subset selection in regression [27], the
cardinality-constrained principal component analysis [28] and its relaxation [29], the
cardinality-constrained semidefinite programming [30], the cardinality-constrained
nonnegative matrix factorization [31], etc.

For convenience, we denote the feasible set of (1) as � := � ∩ S with

� := {x ∈ R
n :G(x) ∈ K } and S := {x ∈ R

n : ‖x‖0 ≤ s}. (2)

Some related fundamental notation throughout the paper is listed as follows. For any
given x ∈ R

n , we denote supp(x) := {i = 1, . . . , n: xi �= 0}. For an index set J ⊆
{1, 2, . . . , n}, |J | is the cardinality of J and J̄ = {1, . . . , n}\J .Rn

J := span{ei : i ∈ J }
denotes the subspace of Rn spanned by {ei : i ∈ J }, where ei is the i-th unit vector
in R

n . J := {J ⊆ {1, 2, . . . , n}: |J | = s}. For x∗ ∈ S, we denote �∗ := supp(x∗)
and J ∗ := {

J ∈ J : J ⊇ �∗}. For any given set � ⊆ R
n , x ′ �−→ x means x ′ → x

and x ′ ∈ �. For a cone K ⊆ R
n , K ◦ := {d ∈ R

n : 〈d, x〉 ≤ 0,∀x ∈ K } is its
(negative) polar cone. The distance from the point x ∈ R

n to set � ⊆ R
n is denoted

dist(x,�) = inf y∈� ‖x − y‖. Denote G−1:Rm → R
n as the inverse mapping of G,

DG(x):Rn → R
m as the derivative of G and DG(x)Rn = {DG(x)y: y ∈ R

n}. The
support function of set � is denoted as σ(x,�) = sup{〈x, y〉, y ∈ �}. cl(�) and
int(�) stand for the closure and the interior of the set �, respectively. Let x ∈ �. The
tangent (also called contingent or Bouligand) cone and Clarke (also called regular)
tangent cone to � at x are denoted as T�(x) and TC

� (x), respectively (see, e.g., [32,
Definition 6.1] and [32, Definition 6.25]). The normal cones in the sense of Fréchet
(also called regular), Clarke, and Mordukhovich (also called limiting or basic) are
denoted as N̂�(x), NC

�(x) and N�(x), respectively (see, e.g., [32, Definition 6.3] and
[33]). For a nonempty and closed set � ⊆ R

n and a point x ∈ �, the outer second-
order tangent set to � at x in the direction d is denoted as T 2

�(x, d) (see, e.g., [32,
Definition 13.11]).

By utilizing the observation S = ⋃
J∈J R

n
J , we have the following properties on

the tangent cones, normal cones and outer second-order tangent set to S.
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Lemma 2.1 [18, Theorems 3.9 and 3.15], [26, Theorems 2.1 and 2.2] Let x∗ ∈ S. We
have NC

S (x∗) = R
n
�

∗ , T C
S (x∗) = R

n
�∗ , and

N̂S(x
∗) =

{
R
n
�

∗ , if |�∗| = s,

{0}, if |�∗| < s,
TS(x

∗) =
{

R
n
�∗ , if |�∗| = s,⋃

J∈J ∗
R
n
J , if |�∗| < s.

Proposition 2.1 Let x∗ ∈ S and d ∈ TS(x
∗). Then

T 2
S (x∗, d) = TS(x

∗) ∩ TS(d).

Proof The desired result follows from

T 2
S (x∗, d) = T 2⋃

J∈J R
n
J
(x∗, d) =

⋃

J∈J
T 2
R
n
J
(x∗, d) =

⋃

J∈J ∗
T 2
R
n
J
(x∗, d)

=
⋃

J∈J ∗,
d∈Rn

J

(TRn
J
(x∗)+Rd) =

⋃

J∈J ∗,
d∈Rn

J

(Rn
J + Rd) =

⋃

J∈J ∗,
d∈Rn

J

R
n
J =

⋃

|J |=s,J⊇�∗,
J⊇supp(d)

R
n
J

=
⎛

⎝
⋃

|J |=s,J⊇�∗
R
n
J

⎞

⎠ ∩
⎛

⎝
⋃

|J |=s,J⊇supp(d)

R
n
J

⎞

⎠ = TS(x
∗) ∩ TS(d),

where the second equality is from [34, Proposition 3.37], the third equality follows
from the fact that for any R

n
J satisfying x∗ /∈ R

n
J (i.e., J /∈ J ∗), T 2

R
n
J
(x∗, d) = ∅ and

the forth equality is from [32, Proposition 13.12]. This completes the proof. ��
It is easy to verify that, for any d ∈ TS(x

∗), TC
S (x∗) ⊆ T 2

S (x∗, d).

3 Restricted Robinson Constraint Qualification

In order to get a decomposed form for the tangent cone and the normal cone to
� ∩ S, we will introduce restricted variants of the classical RCQ and the strict RCQ
tailored for the constraint system of (1). Recall that the RCQ for � holds at x∗ ∈ �

if 0 ∈ int{G(x∗) + DG(x∗)Rn − K }. According to [34, Corollary 2.98], the RCQ is
equivalent to

DG(x∗)Rn − TK (G(x∗)) = R
m . (3)

By invoking [34, Lemma 3.27], this further leads to

N̂�(x∗) = [T�(x∗)]◦ = DG(x∗)�NK (G(x∗)). (4)

Some other essential properties on the RCQ are reviewed as follows.

Lemma 3.1 [34, Proposition 2.90, Corollary 2.91] Suppose that the RCQ holds
at some x∗ ∈ �. Then T�(x∗) = {d ∈ R

n :DG(x∗)d ∈ TK (G(x∗))}, and
dist(d, T�(x∗)) = o(‖d‖), ∀ x∗ + d ∈ �.
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Recall that the strict RCQ for � holds at (x∗, λ∗) with λ∗ ∈ NK (G(x∗)) if 0 ∈
int{G(x∗) + DG(x∗)Rn − K0} with K0 := {y ∈ K : 〈λ∗, y − G(x∗)〉 = 0}.

For � ∩ S, we introduce restricted forms of RCQ and strict RCQ as below.

Definition 3.1 Let 0 �= x∗ ∈ � ∩ S, and λ∗ ∈ NK (G(x∗)). We say that the restricted
RCQ (RRCQ) with respect to � ∩ S holds at x∗ if

0 ∈ int{G(x∗) + DG(x∗)Rn
�∗ − K }, (5)

and the restricted strict RCQ (RSRCQ) to � ∩ S holds at (x∗, λ∗) if

0 ∈ int{G(x∗) + DG(x∗)Rn
�∗ − K0}, (6)

where K0 = {y ∈ K : 〈λ∗, y − G(x∗)〉 = 0}.
Properties on the above proposed CQs are discussed as follows.

Proposition 3.1 If the RRCQ holds at some 0 �= x∗ ∈ � ∩ S, then

T�∩S(x
∗) = T�(x∗) ∩ TS(x

∗). (7)

Proof Analogous to the equivalence between RCQ and (3), we immediately get that
RRCQ (5) is equivalent to DG(x∗)Rn

�∗ − TK (G(x∗)) = R
m , which yields that

DG(x∗)Rn
J − TK (G(x∗)) = R

m , for any J ∈ J ∗ from R
n
�∗ ⊆ R

n
J . By taking the

polar to both sides, it follows from [32, Corollary 11.25] that [DG(x∗)�]−1
R
n
J̄

∩
NK (G(x∗)) = {0}, and hence

R
n
J̄

∩ DG(x∗)�NK (G(x∗)) = {0}. (8)

Combining with (4) and the fact NR
n
J
(x∗) = R

n
J̄
, it follows from [32, Theorem 6.42]

that
T�∩Rn

J
(x∗) = T�(x∗) ∩ R

n
J , ∀J ∈ J ∗. (9)

The desired result then holds from

T�∩S(x
∗) = T⋃

J∈J ∗ �∩Rn
J
(x∗) =

⋃

J∈J ∗
T�∩Rn

J
(x∗) =

⋃

J∈J ∗
T�(x∗) ∩ R

n
J

= T�(x∗) ∩
⋃

J∈J ∗
R
n
J = T�(x∗) ∩ TS(x

∗). (10)

��
Lemma 3.2 Let 0 �= x∗ ∈ �∩S,λ∗ ∈ NK (G(x∗)), and theRSRCQ holds at (x∗, λ∗).
Then for any λ ∈ NK (G(x∗)),

(
DG(x∗)�λ

)
�∗ = (

DG(x∗)�λ∗)
�∗ implies λ = λ∗.

Proof Denote A := DG(x∗), r := |�∗|, and A�∗ as the submatrix consisting of
columns of A indexed by �∗. For any given λ ∈ NK (G(x∗)) satisfying

(
A�λ

)
�∗ =(

A�λ∗)
�∗ , denote μ := λ − λ∗. Then, A�

�∗μ = 0. The RSRCQ implies that for any
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y ∈ R
m and any sufficiently small ε > 0, there exist h ∈ R

r and k0 ∈ K0 such that
εy = G(x∗) + A�∗h − k0. Thus,

〈μ,G(x∗) − k0〉 = 〈μ, εy − A�∗h〉 = ε〈μ, y〉 − 〈A�
�∗μ, h〉 = ε〈μ, y〉.

On the other hand, as k0 ∈ K0, we have

〈μ,G(x∗) − k0〉 = 〈λ,G(x∗) − k0〉 − 〈λ∗,G(x∗) − k0〉 = 〈λ,G(x∗) − k0〉 ≥ 0.

The arbitrariness of y immediately implies μ = 0. ��

Proposition 3.2 Let 0 �= x∗ ∈ � ∩ S, λ∗ ∈ NK (G(x∗)), and the RSRCQ holds at
(x∗, λ∗). Then

N̂�∩S(x
∗) = N̂�(x∗) + N̂S(x

∗). (11)

Proof It is known from (10) and Lemma 3.1 that

T�∩S(x
∗) =

⋃

J∈J ∗
T�(x∗) ∩ R

n
J =

⋃

J∈J ∗

{
d ∈ R

n
J :DG(x∗)d ∈ TK (G(x∗))

}
. (12)

Now we claim that (
T�(x∗) ∩ R

n
J

)◦ = N̂�(x∗) + R
n
J̄
. (13)

From [32, Corollary 11.25] and (4), we have

(
T�(x∗) ∩ R

n
J

)◦ = cl
[
N̂�(x∗) + R

n
J̄

] = cl
[
DG(x∗)�NK (G(x∗)) + R

n
J̄

]
. (14)

SinceDG(x∗)�NK (G(x∗)) is a nonempty, closed and convex cone underRCQ, and for
any z1 ∈ 0+(DG(x∗)�NK (G(x∗))) and z2 ∈ 0+(Rn

J̄
) = R

n
J̄
satisfying z1 + z2 = 0,

we have z1 ∈ DG(x∗)�NK (G(x∗)) and z1 = −z2 ∈ R
n
J̄
, which yields that z1 ∈

DG(x∗)�NK (G(x∗)) ∩ R
n
J̄
. From (8), we obtain z1 = z2 = 0. Therefore, z1 and

z2 belong to the linearity spaces of cl(DG(x∗)�NK (G(x∗))) and cl(Rn
J̄
). From [35,

Corollary 9.1.1],

cl
[
DG(x∗)�NK (G(x∗)) + R

n
J̄

] = DG(x∗)�NK (G(x∗)) + R
n
J̄
.

Together with (14), we have proved the claim in (13).
If ‖x∗‖0 = s, then T�∩S(x∗) = T�(x∗) ∩ R

n
�∗ . By (13), we have

N̂�∩S(x
∗) = (T�∩S(x

∗))◦ = N̂�(x∗) + R
n
�

∗ = N̂�(x∗) + N̂S(x
∗).

If 0 < ‖x∗‖0 < s, from (10) and (13), we have
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Fig. 1 The relationship among the above CQs, where * means the case of K = R
l+ × {0}m−l

N̂�∩S(x
∗) = (

T�∩S(x
∗)

)◦ = ( ⋃

J∈J ∗
T�(x∗) ∩ R

n
J

)◦

=
⋂

J∈J ∗

(
T�(x∗) ∩ R

n
J

)◦ =
⋂

J∈J ∗

(
N̂�(x∗) + R

n
J̄

)
.

We next show that
⋂

J∈J ∗
(
N̂�(x∗) + R

n
J̄

) = N̂�(x∗). It suffices to show
⋂

J∈J ∗
(
N̂�(x∗) + R

n
J̄

) ⊆ N̂�(x∗). Let v ∈ ⋂
J∈J ∗

(
N̂�(x∗) + R

n
J̄

)
. Pick any two

index sets J ′, J ′′ ∈ J ∗, we have v = DG(x∗)�λ′ + ξ ′ = DG(x∗)�λ′′ + ξ
′′
, with

λ′, λ
′′ ∈ NK (G(x∗)) and ξ ′ ∈ R

n
J̄ ′ , ξ

′′ ∈ R
n

J̄ ′′ . Since
⋂

J∈J ∗ J = �∗, then

v�∗ = (
DG(x∗)�λ′)

�∗ = (
DG(x∗)�λ

′′)
�∗ .

From the RSRCQ and Lemma 3.2, we have λ′ = λ
′′
.
⋃

J∈J ∗ J = {1, . . . ,m}, then
v ∈ DG(x∗)�NK (G(x∗)). By invoking Lemma 2.1, we obtain (11). ��

It is worth pointing out that when K = R
l+ × {0}m−l , the RRCQ is exactly the

CC-MFCQ as proposed in [22] and the RSRCQ can be implied by the CC-LICQ in
[22]. Some weak CQs, which are generalized versions of Mangasarian–Fromovitz,
Abadie and Guignard constraint qualifications (abbreviated as GMFCQ, GACQ and
GGCQ, respectively) are proposed in [36] for a general minimization problem whose
feasible region is {x ∈ R

n : F(x) ∈ 	}with some continuously differentiable function
F and some nonempty and closed set 	. Since the constrained system of (1) can be
rewritten as

(
G(x), x

) ∈ K ×⋃
J∈J R

n
J =: K (s), where K (s) is evidently nonempty

and closed, the corresponding GMFCQ can be easily shown to be weaker than RRCQ.
The relationship among all the above CQs is illustrated as follows (Fig. 1).

All the involved functions in the constrained systems as discussed in the afore-
mentioned CQs are continuously differentiable. Functions without continuous dif-
ferentiability are also considered in [37,38] to define the weakest CQ for equality
and inequality constrained systems. In [38], the involved functions are called C-
differentiable functions and hence the corresponding CQ is called the CCQ. If the
problem with differentiable equality and inequality constraints, we have the following
scheme:

RCQ ⇔ MFCQ ⇔ GMFCQ ⇒ GACQ ⇒ GGCQ ⇔ CCQ.

It will be a challenging work to extend this CCQ to conic constrained system with
cardinality constraint or to consider CCCP problem where the involved functions are
not continuously differentiable.
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4 First-Order Optimality Conditions

Denote the Lagrangian function of problem (1) as

L(x, λ) := f (x) + 〈λ,G(x)〉, (x, λ) ∈ R
n × R

m . (15)

Lagrangian multiplier sets in the sense of Fréchet and Clarke are defined as

	B(x∗) := {λ ∈ R
m : − ∇x L(x∗, λ) ∈ N̂S(x

∗), λ ∈ NK (G(x∗))}, (16)

	C (x∗) := {λ ∈ R
m : − ∇x L(x∗, λ) ∈ NC

S (x∗), λ ∈ NK (G(x∗))}, (17)

respectively. Obviously, 	B(x∗) ⊆ 	C (x∗).

Theorem 4.1 (First-order necessary optimality condition) Let x∗ �= 0 be a locally
optimal solution of (1), and λ∗ ∈ NK (G(x∗)).

(i) If the RRCQ holds at x∗, then d = 0 is an optimal solution of

min
d∈Rn

∇ f (x∗)�d s.t. d ∈ TS(x
∗) and DG(x∗)d ∈ TK (G(x∗)). (18)

(ii) If the RRCQ holds at x∗, then 	C (x∗) is a nonempty, convex and compact set.
(iii) If the RSRCQ holds at (x∗, λ∗), then 	B(x∗) is a singleton.

Proof (i) By Proposition 3.1 and Lemma 3.1, the RRCQ implies

T�(x∗) = T�(x∗) ∩ TS(x
∗) = {d ∈ TS(x

∗):DG(x∗)d ∈ TK (G(x∗))}.

Utilizing the property of tangent cone, we can easily get (i).
(ii) Consider the following convex problem

min
d∈Rn

∇ f (x∗)�d s.t. d ∈ TC
S (x∗) and DG(x∗)d ∈ TK (G(x∗)). (19)

Obviously, d = 0 is an optimal solution of (19) since TC
S (x∗) ⊆ TS(x∗), and its RCQ

holds by the hypothesis. Note that the dual of (19) takes the form

max
λ

{0 : −∇x L(x∗, λ) ∈ NC
S (x∗), λ ∈ NK (G(x∗)}.

The strong duality theory for convex programming implies (ii) immediately.
(iii) Under Proposition 3.2 and (4), we have

N̂�(x∗) = N̂�(x∗) + N̂S(x
∗) = (DG(x∗))�NK (G(x∗)) + N̂S(x

∗).

Additionally, it is known from (i) that −∇ f (x∗) ∈ N̂�(x∗). Thus, there always exists
some λ ∈ NK (G(x∗)) such that

−∇x L(x∗, λ) = −∇ f (x∗) − (DG(x∗))�λ ∈ N̂S(x
∗),
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which indicates that 	B(x∗) �= ∅. For any λ′ ∈ 	B(x∗), it follows from Lemma 2.1
and (16) that

(
DG(x∗)�λ

)
�∗ = (

DG(x∗)�λ′)
�∗ = 0. Immediately we have λ′ = λ

by invoking Lemma 3.2. This completes the proof. ��
The inverse implications of the conditions (ii) and (iii) in Theorem 4.1 do not hold

as the following two examples illustrate.

Example 4.1 Consider the problemminx∈R2 {x2 s.t. x2 = 0, ‖x‖0 ≤ 1} .Obviously,
x∗ = (1, 0)� is an optimal solution, and the RRCQ does not hold at x∗ since
(0, 1)(R, 0)� − {0} �= R. To prove that the inverse implication of (ii) in Theorem
4.1 does not hold, 	C (x∗) should be a nonempty, convex and compact set; however,
	C (x∗) = R is not compact.

Example 4.2 Consider the problem

min
x∈R3

{
f (x) = x21 s.t. G(x) = (gi, j (x)) ∈ S

3+, ‖x‖0 ≤ 2
}

, (20)

where g1,1(x) = x1, gi,4−i (x) = x2, i = 1, 2, 3, g3,3(x) = 1 − x3 and others are
zero. S3+ is the cone consisting of all 3-by-3 symmetric positive semidefinite matrices.
Evidently, the optimal solution set of (20) is {(0, 0, x3): x3 ≤ 1}. Let x∗ = (0, 0, 1)�.
Then �∗ = {3} and 	B(x∗) = {O3×3}. For any given Z ∈ N

S
3+(G(x∗)), denote

K0 := {
Y ∈ S

3+ : 〈Z ,Y − G(x∗)〉 = 0
} = S

3+ ∩ Z⊥. Thus,

M := G(x∗) + DG(x∗)R3
�∗ − K0 =

{
te3e

�
3 − Y : t ∈ R,Y ∈ S

3+ ∩ Z⊥}
.

Note that for any U ∈ M, the submatrix U[1:2,1:2] ∈ −S
2+. This immediately implies

that 0 /∈ intM, which indicates that the RSRCQ does not hold at (x∗, λ∗) with λ∗ ∈
NK (G(x∗)) for any Z ∈ NK (G(x∗)).

Next, we proceed with establishing the first-order sufficient conditions. We define
a sufficient optimality condition for the local minimizer.

Definition 4.1 We say that the γ -growth (γ > 0) condition holds for a function f at
point x∗, if there exist a constant c > 0 and a neighborhoodN (x∗) of x∗ such that for
all x ∈ N (x∗), the following inequality holds

f (x) ≥ f (x∗) + c‖x − x∗‖γ , ∀x ∈ � ∩ N (x∗).

For a feasible point x∗ ∈ � and η ≥ 0, define the set

Fη(x
∗) := {d ∈ TS(x

∗), dist[DG(x∗)d, TK (G(x∗))] ≤ η‖d‖}. (21)

Fη(x∗) is a closed cone. If η = 0, F0(x∗) := {d ∈ TS(x∗),DG(x∗)d ∈ TK (G(x∗))}
is the feasible set of problem (18).

Theorem 4.2 (First-order sufficient optimality condition) Let x∗ be a feasible point
of the problem (1). The following assertions hold.
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(i) If there exist constants α > 0 and η > 0 such that

∇ f (x∗)�d ≥ α‖d‖, ∀d ∈ Fη(x
∗), (22)

then the first-order growth condition holds at x∗.
(ii) Suppose that RRCQ is satisfied at x∗. Set η = 0. If there exists an α > 0 such that

(22) holds, then the first-order growth condition holds at x∗.

Proof (i) Consider a feasible point x∗ + d ∈ � ∩ S for a sufficiently small d ∈ R
n .

We first show d ∈ TS(x∗). Assume di �= 0. Then (x∗ + d)i �= 0 holds if x∗
i = 0

obviously and also holds if x∗
i �= 0 by letting ‖d‖ < min{|x∗

i |, i ∈ �∗}. This means
that supp(d) ⊆ supp(x∗ + d), or ‖d‖0 ≤ ‖x∗ + d‖0 ≤ s. Furthermore, we assert that
�∗ ⊆ supp(d). In fact, if there is an i0 ∈ �∗ with di0 = 0, then we can let s +1−|�∗|
elements of d

�
∗ be nonzeros. In such case, ‖d‖0 = s but ‖x∗ + d‖0 ≥ s + 1, which

is a contradiction with x∗ + d ∈ S. Hence, d ∈ TS(x∗).
It follows from the Taylor expansion G(x∗ + d) = G(x∗) + DG(x∗)d + o(‖d‖)

and G(x∗ + d) ∈ K ⊆ G(x∗) + TK (G(x∗)) that DG(x∗)d + o(‖d‖) ∈ TK (G(x∗)).
Then it yields that

dist(DG(x∗)d, TK (G(x∗))) ≤ ‖DG(x∗)d − DG(x∗)d − o(‖d‖)‖ = o(‖d‖). (23)

So d ∈ Fη(x∗) for sufficiently small d. By (22), we obtain
f (x∗ + d) = f (x∗) + ∇ f (x∗)�d + o(‖d‖) ≥ f (x∗) + α‖d‖ + o(‖d‖),

which proves (i).
(ii) Using the similar proof as (i), for a feasible point x∗ +d ∈ �with a sufficiently

small d ∈ R
n , we have d ∈ TS(x∗). Suppose d ∈ R

n
J for some J ∈ J ∗. From

G(x∗ + d) ∈ K , we also have (23).
Under (5), we have DG(x∗)Rn

J − TK (G(x∗)) = R
m . Lemma 3.1 yields that

dist(d, (DG(x∗))−1)TK (G(x∗)) ≤ c · dist(DG(x∗)d, TK (G(x∗))) = o(‖d‖).
Then there is a d ′ ∈ (DG(x∗))−1)TK (G(x∗) such that ‖d − d ′‖ = o(‖d‖). From
‖d − d ′‖ = o(‖d‖),we have supp(d ′) ⊆ supp(d). Otherwise, if d ′

i �= 0 but di = 0,
then ‖d − d ′‖ ≥ |d ′

i |. This is contradicted with ‖d − d ′‖ = o(‖d‖). Then d ′ ∈ R
n
J

from d ∈ R
n
J . Therefore, we obtain that there exists a d ′ ∈ R

n
J ⊆ TS(x∗) satisfying

DG(x∗)d ′ ∈ TK (G(x∗) and ‖d − d ′‖ = o(‖d‖). By (22), we have ∇ f (x∗)�d ′ ≥
α‖d ′‖.

Using the first-order Taylor expansion of f ,

f (x∗ + d) = f (x∗) + ∇ f (x∗)�d + o(‖d‖)
= f (x∗) + ∇ f (x∗)�d ′ + ∇ f (x∗)�(d − d ′) + o(‖d‖)
≥ f (x∗) + α‖d ′‖ + ∇ f (x∗)�(d − d ′) + o(‖d‖)
≥ f (x∗) + α(‖d‖ − ‖d − d ′‖) + ∇ f (x∗)�(d − d ′) + o(‖d‖)
= f (x∗) + α‖d‖ + o(‖d‖).

Then the first-order growth condition holds. ��
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5 Second-Order Optimality Conditions

In this section, we assume that functions f (·) and G(·) in problem (1) are twice
continuously differentiable on �. The linearized problem of (1) is defined by (18) and
the critical cone is

C(x∗) := {d ∈ TS(x
∗) : DG(x∗)d ∈ TK (G(x∗)),∇ f (x∗)�d = 0}. (24)

For some d, w ∈ R
n , denote a path x(·) : R+ �→ S with the form:

x(t) = x∗ + td + 1

2
t2w + r(t)

such that r(t) = o(t2). Then by using the second-order Taylor expansion of G at x∗,
we obtain

G(x(t)) = G

(
x∗ + td + 1

2
t2w + o(t2)

)

= G(x∗) + tDG(x∗)d + 1

2
t2[DG(x∗)w + D2G(x∗)(d, d)] + o(t2), (25)

where D2G(x∗)(d, d) = [D2G(x∗)d]d is the quadratic form corresponding to the
second-order derivative D2G(x) of G at x∗. It follows from the definition of the outer
second-order tangent set that for some tn ↓ 0, dist (G(x(t)) , K ) = o(t2n ) if and only if

DG(x∗)w + D2G(x∗)(d, d) ∈ T 2
K (G(x∗),DG(x∗)d). (26)

Lemma 5.1 Suppose that x∗ is a locally optimal solution of problem (1) and RRCQ
holds at x∗. Then for any d ∈ C(x∗) and w ∈ T 2

S (x∗, d) satisfying (26), it follows
that

∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉 ≥ 0. (27)

Proof Consider d ∈ C(x∗) and w ∈ T 2
S (x∗, d) = TS(x∗) ∩ TS(d) satisfying

(26). It yields that there exists a sequence tn ↓ 0 such that for some J ∈ J ∗,
x̄(tn) := x∗ + tnd + 1

2 t
2
nw ∈ R

n
J and dist(G(x̄(tn)), K ) = o(t2n ). Therefore, we

obtain dist(x̄(tn),G−1(K )) ≤ dist(G(x̄(tn), K )) = o(t2n ) from RRCQ and Lemma
3.1. By restricting o(t2n ) on Rn

J , we have
x(tn) = x̄(tn) + o(t2n ) = x∗ + tnd + 1

2 t
2
nw + o(t2n ) ∈ G−1(K ) ∩ R

n
J ,

i.e., the point x(tn) are feasible.
By the second-order Taylor expansion of f at x∗, we have

f (x(tn)) = f

(
x∗ + tnd + 1

2
t2nw + o(t2n )

)

= f (x∗) + 1

2
t2n [∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉] + o(t2n ).

Combining with f (x(tn)) ≥ f (x∗), we get (27). ��
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Immediately, for any d ∈ C(x∗), the optimal value of the following problem is
nonnegative

minw ∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉
s.t. DG(x∗)w + D2G(x∗)(d, d) ∈ T 2

K

(
G(x∗),DG(x∗)d

)
, (28)

w ∈ T 2
S (x∗, d).

Theorem 5.1 (Second-order necessary optimality condition) Suppose x∗ �= 0 is a
locally optimal solution of (1) and the RRCQ holds at x∗. Then for any d ∈ C(x∗)
and any convex set T (d) ⊆ T 2

K

(
G(x∗),DG(x∗)d

)
, the following inequality holds:

sup
λ∈	C (x∗)

{〈d,∇2
xx L((x∗, λ)d〉 − σ

(
λ, T (d))

} ≥ 0. (29)

Proof It follows from T 2
S (x∗, d) = TS(x∗) ∩ TS(d) for any d ∈ TS(x∗) that Rn

�∗ ⊆
T 2
S (x∗, d). Let T (d) := cl{T (d) + TK (G(x∗))}, which is the topological closures of

the sum of two convex sets. Hence T (d) is convex.
Since T (d) ⊆ T 2

K

(
G(x∗),DG(x∗)d

)
and DG(x∗)d ∈ TK (G(x∗)), by [34, Propo-

sition 3.34] and the closedness of T 2
K

(
G(x∗),DG(x∗)d

)
, we have

T (d) ⊂ T 2
K

(
G(x∗),DG(x∗)d

)
.

Clearly, if we replace T 2
S (x∗, d) and T 2

K

(
G(x∗),DG(x∗)d

)
in (28) by its subset

R
n
�∗ and T (d), respectively, the optimal value of the obtained optimization problem

will be greater than or equal to the optimal value of (28), and hence the optimal value
of the problem

min
w

{
∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉 : DG(x∗)w + D2G(x∗)(d, d) ∈ T (d), w ∈ R

n
�∗

}

(30)
is nonnegative as well. Equation (30) is linear, and its dual is

max
λ∈	C (x∗)

{〈d,∇2
xx L((x∗, λ)d〉 − σ(λ, T (d))

}
. (31)

Indeed, the Lagrangian function of (30) is

L(w,μ, λ)

= ∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉 + 〈λ,DG(x∗)w〉 + 〈λ, D2G(x∗)(d, d)〉 + 〈μ,w〉
= ∇ f (x∗)�w + 〈d,∇2 f (x∗)d〉 + 〈λ,DG(x∗)w〉 + 〈d, [D2G(x∗)d]�λ〉 + 〈μ,w〉
= 〈∇x L(x∗, λ) + μ,w〉 + 〈d,∇2

xx L((x∗, λ)d〉.

Thus, infw L(w,μ, λ) = 〈d,∇2
xx L((x∗, λ)d〉, ∇x L(x∗, λ) + μ = 0.
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It follows that σ((μ, λ),Rn
�∗ × T (d)) = σ(μ,Rn

�∗) + σ(λ, T (d)) = ∞, for any
μ /∈ R

n
�

∗ = NC
S (x∗) or λ /∈ (TK (G(x∗)))◦ = NK (G(x∗)). Therefore, the effective

domain of the parametric dual of (30) is contained in	C (x∗). The duality then follows.
For any z = (z1, z2) ∈ R

n
�∗ ×T (d) = cl{Rn

�∗ ×T (d)+R
n
�∗ ×TK (G(x∗))}, we have

z +R
n
�∗ × TK (G(x∗)) ⊂ R

n
�∗ × T (d). Then z2 + TK (G(x∗)) ⊆ T (d). Moreover, the

RRCQ implies thatDG(x∗)Rn
�∗−TK (G(x∗)) = R

m .Thus, z2+DG(x∗)Rn
�∗−T (d) =

R
m, which means DG(x∗)Rn

�∗ − T (d) = R
m . Hence there is w ∈ R

n
�∗ such that

DG(x∗)w + D2G(x∗)(d, d) ∈ T (d). Therefore, Eq. (30) has a feasible solution.
Moreover, from RRCQ, we have

0 ∈ int{DG(x∗)Rn
�∗ − TK (G(x∗))} ⊆ int{DG(x∗)Rn

�∗ − T (d)},

where the last inclusion is due to TK (G(x∗)) ⊆ T (d). From the feasibility of w∗, it
holds that DG(x∗)w∗ + D2G(x∗)(d, d) ∈ T (d). Then

int{DG(x∗)Rn
�∗ − T (d)}

= int{DG(x∗)Rn
�∗ + DG(x∗)w∗ + D2G(x∗)(d, d) − T (d)}

= int{DG(x∗)Rn
�∗ + D2G(x∗)(d, d) − T (d)},

where the last equality follows from the feasibility of w∗ and R
n
�∗ + w∗ = R

n
�∗ .

Therefore, the RCQ for problem (30) holds. Consequently, from [34, Theorem 2.165],
there is no duality gap between (30) and its dual (31). We obtain that the optimal value
of (31) is nonnegative. Since T (d) ⊂ T (d), we have that σ(λ, T (d)) ≤ σ(λ, T (d)),
and hence (29) follows. ��

Let AK ,M (d) := AK ,M (G(x∗),DG(x∗)d) with M := DG(x∗) be the upper
second-order approximation set for K at the point G(x∗) in the direction DG(x∗)d ∈
TK (G(x∗)) (see [34, Definition 3.82]). We have the following second-order sufficient
condition for the CCCP.

Theorem 5.2 (Second-order sufficient optimality condition) Suppose that x∗ �= 0 is a
feasible solution with	B(x∗) �= ∅, and theRRCQ holds at x∗. Then the second-order
growth condition holds at x∗ if

sup
λ∈	B (x∗)

{〈d,∇2
xx L((x∗, λ)d〉 − σ(λ,AK ,M (d))

}
> 0, ∀d ∈ C(x∗) \ {0}. (32)

Proof By invoking Proposition 3.1, the desired result can be obtained by mimicking
the proof of [34, Theorem 3.83]. ��

It is worth mentioning that for the above two second-order optimality conditions
as stated in Theorems 5.1 and 5.2, one may observe that besides the change from
the inequality in (29) to the strict inequality in (32), the Lagrangian multiplier set for
taking the supremum over becomes smaller since	B(x∗) ⊆ 	C (x∗). This makes that
(32) implies (29).
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6 Conclusions

In this paper, we studied the first- and second-order optimality conditions for theCCCP
problemwhich provides a unified framework for most existing cardinality-constrained
optimization problems. By introducing the RRCQ and RSRCQ, we decomposed the
tangent cone and the normal cone to the involved feasible region and consequently
presented the first-order optimality conditions. The second-order optimality condi-
tions were also proposed by exploiting the outer second-order tangent set of the
cardinality-constrained set. These proposed results heavily relied on the tailored con-
straint qualifications and the special structure of the cardinality-constrained set. It
might be an interesting future research topic to see whether one can obtain the opti-
mality conditions when the involved objective function and the closed convex cone
enjoy special structures in the general CCCP model.
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