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Abstract Westudy a stochastic optimal control problem for a delayedMarkov regime-
switching jump-diffusion model. We establish necessary and sufficient maximum
principles under full and partial information for such a system.We prove the existence–
uniqueness theorem for the adjoint equations, which are represented by an anticipated
backward stochastic differential equation with jumps and regimes. We illustrate our
results by a problem of optimal consumption problem from a cash flowwith delay and
regimes.
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1 Introduction

Stochastic optimal control problems for regime-switchingmodels have been studied by
many authors (cf., e.g., [1–4]). Amain reason that regime-switchingmodels received a
lot of attention by the researchers is the ability of these models to capture the different
modes of the financial market easily. The shifts from one regime to another may be
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activated by a change in economic policy, e.g., an exchange rate policy or by a major
event, e.g., the bankruptcy of Lehman Brothers in September 2008.

Moreover, in the real world, investors tend to look at the historical performance of
risky assets. This leads us to consider the time delay in themodel, whichmay represent
the memory in the dynamics of the system or the inertia in the financial market. A
very complete treatment of the theory of the stochastic differential delay equations
(SDDEs) can be found in the monograph by Mohammed [5]. On the other hand, the
results of the modern theory of regime-switching models with delay are presented in
the monograph by Mao and Yuan [6].

Optimal control of the SDDEs have already been studied by various authors; see,
for example, Øksendal and Sulem [7], Larssen [8] and Elsanosi et al. [9] and ref-
erences therein. A stochastic maximum principle of a forward-backward delayed
regime-switching diffusion model has been given by Lv et al. [2]. The stochastic
maximum principle is one of the main approaches of stochastic optimal control the-
ory. It is the stochastic extension of the Pontryagin’s maximum principle, which is
used for the optimal control of deterministic dynamic systems; here we refer to, for
example, the monographs by Øksendal and Sulem [10], Yong and Zhou [11]. More-
over, to solve optimal control problems by the tools of the maximum principle, it is
well known that one needs the adjoint equations represented by backward stochastic
differential equations (BSDEs) (cf., e.g., [12–15]). One can find a different perspec-
tive for BSDEs in [15], which studies BSDEs just on Markov chains. Moreover, if one
studies on an SDDE, he has to consider a new form of BSDEs for the adjoint equations,
which are called the anticipated (time-advanced) BSDEs (ABSDEs). Peng and Yang
[16] developed the duality between SDDEs and ABSEDs and provided some main
results related to ABSDEs. Øksendal et al. [17] and Tu and Hao [18] extended the
existence–uniqueness results of ABSDEs for jump-diffusion models. To the best of
our knowledge, our work shows the first extension of the stochastic maximum princi-
ple for a Markov regime-switching jump-diffusion model with delay (SDDEJR) and
the existence–uniqueness theorem of the ABSDEs with jumps and regimes.

The paper is organized as follows. The model setup and optimal control problem
are presented in Sect. 2. In Sect. 3, we prove the existence–uniqueness theorem for
ABSDE with jumps and regimes. In Sects. 4, 5, 6 and 7, sufficient and necessary
maximum principles are developed under full and partial information, respectively.
An optimal consumption problem from a cash flow with delay is studied in Sect. 8.
The final section is devoted to the conclusions.

2 Model Setup and the Control Problem

Throughout the paper we work with a finite time horizon T > 0, which is the matu-
rity time. Let (N (dt, dz) : t ∈ [0, T ], z ∈ R0) be a Poisson random measure on
([0, T ] × R0,B([0, T ]) ⊗ B0), where R0 := R \ {0} and B0 is the Borel σ -field
generated by open subset O of R0, whose closure does not contain the point 0. Let
Ñ (dt, dz) := N (dt, dz)−ν(dz)dt be a compensated Poisson randommeasure, where
ν is theLévymeasure of the jumpmeasure N (·, ·). Furthermore, let (W (t) : t ∈ [0, T ])
be a Brownian motion and (α(t) : t ∈ [0, T ]) be a continuous-time, finite state and
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observable Markov chain. Let (�,F,Ft ,P) be a complete filtered probability space
generated by the Brownian motion W (·), the Poisson random measure N (·, ·) and
the Markov chain α(·). Let F = (Ft : t ∈ [0, T ]) be a right-continuous, P-completed
filtration. We assume that the Brownian motion, the Markov chain and the Poisson
random measure are independent and adapted to F.

The finite state space of the Markov chain α(t), S = {e1, e2, . . . , eD}, is called
a canonical state space, where D ∈ N, ei ∈ R

D and the j th component of ei is
the Kronecker delta δi j for each pair of i, j = 1, 2, . . . , D. We suppose that the
chain is homogenous and irreducible. The generator of the chain under P is defined
by � := [λi j ]i, j=1,2,...,D . For each i, j = 1, 2, . . . , D, λi j is the constant transition
intensity of the chain from each state ei to the state e j at time t . For i �= j , λi j ≥ 0
and

∑D
j=1 λi j = 0; hence, λi i ≤ 0. We suppose that for each i, j = 1, 2, . . . , D, with

i �= j , λi j > 0 and λi i < 0.
Elliott et al. [19] obtained the following semimartingale representation for the

chain α:

α(t) = α(0) +
∫ t

0
�Tα(u)du + M(t),

where (M(t) : t ∈ [0, T ]) is an R
D-valued (F,P)-martingale and �T represents the

transpose of the matrix.
Let us introduce a set of Markov jump martingales associated with the chain α.
For each i, j = 1, 2, . . . , D, with i �= j and t ∈ [0, T ], let J i j (t) be the number of

the jumps from state ei to state e j up to time t . Then,

J i j (t) :=
∑

0<s≤t

〈α(s−), ei 〉
〈
α(s), e j

〉

=
∑

0<s≤t

〈α(s−), ei 〉
〈
α(s) − α(s−), e j

〉

=
∫ t

0
〈α(s−), ei 〉

〈
dα(s), e j

〉

=
∫ t

0
〈α(s−), ei 〉

〈
�Tα(s), ei

〉
ds +

∫ t

0
〈α(s−), ei 〉

〈
dM(s), e j

〉

= λi j

∫ t

0
〈α(s−), ei 〉 ds + mi j (t),

where mi j ’s are (F,P)-martingales and called the basic martingales associated with
the chain α. For each fixed j = 1, 2, . . . , D, let 	 j be the number of the jumps into
state e j up to time t . Then,

	 j (t) :=
D∑

i=1,i �= j

J i j (t)

=
D∑

i=1,i �= j

λi j

∫ t

0
〈α(s−), ei 〉 ds + 	̃ j (t).
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Let us define 	̃ j (t) :=
D∑

i=1,i �= j
mi j (t) and λ j (t) :=

D∑

i=1,i �= j
λi j
∫ t
0 〈α(s−), ei 〉 ds; then

for each j = 1, 2, . . . , D,

	̃ j (t) = 	 j (t) − λ j (t)

is an (F,P)-martingale. Let 	̃(t) = (	̃1(t), 	̃2(t), . . . , 	̃D(t))T represent an integer-
valued random measure on ([0, T ] × S,B([0, T ]) ⊗BS), whereBS is the σ -field of
S. Let P be the predictable sigma field on � × [0, T ].

Let us represent the controlled Markov regime-switching jump-diffusion with
delay:

X (t) = b(t, X (t),Y (t), A(t), α(t), u(t))dt

+ σ(t, X (t),Y (t), A(t), α(t), u(t))dW (t)

+
∫

R0

η(t, X (t),Y (t), A(t), α(t), u(t), z)Ñ (dt, dz)

+ γ (t, X (t),Y (t), A(t), α(t), u(t))d	̃(t), t ∈ [0, T ], (1)

X (t) = x0(t), t ∈ [−δ, 0],

where

Y (t) = X (t − δ) and A(t) =
∫ t

t−δ

e−ρ(t−r)X (r)dr, t ∈ [0, T ].

Furthermore, let x0 be a continuous and deterministic function, ρ ≥ 0 be a constant
averaging parameter and δ > 0 be a constant delay.

Let us introduce:

b : [0, T ] × R × R × R × S × U → R,

σ : [0, T ] × R × R × R × S × U → R,

η : [0, T ] × R × R × R × S × U × R0 → R,

γ : [0, T ] × R × R × R × S × U → R
D,

where for all x, y, a ∈ R, ei ∈ S, u ∈ U , z ∈ R0 and t ∈ [0, T ],
b(t, x, y, a, ei , u), σ (t, x, y, a, ei , u), η(t, x, y, a, ei , u, z) and γ (t, x, y, a, ei , u)

are given Ft -measurable, C 1-functions with respect to x, y, a, u such that for all
xi = x, y, a, u,

E

[∫ T

0

{∣
∣
∣
∣
∂b

∂xi
(t, X (t),Y (t), A(t), α(t), u(t))

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂σ

∂xi
(t, X (t),Y (t), A(t), α(t), u(t))

∣
∣
∣
∣

2

+
∫

R0

∣
∣
∣
∣
∂η

∂xi
(t, X (t),Y (t), A(t), α(t), u(t), z)

∣
∣
∣
∣

2

ν(dz)
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+
D∑

j=1

∣
∣
∣
∣
∂γ

∂xi
(t, X (t),Y (t), A(t), α(t), u(t))

∣
∣
∣
∣

2

λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

Let U be a non-empty, closed and convex subset of R. An admissible control is a
U -valued, Ft -measurable and càdlàg process u(t), t ∈ [0, T ], such that (1) has a
unique solution and

E

[∫ T

0
|u(t)|2 dt

]

< ∞.

We denote by A the set of all admissible controls.
Let us define the performance criterion (objective functional) as follows:

J (u) = E

[∫ T

0
f (t, X (t),Y (t), A(t), α(t), u(t))dt + g(X (T ), α(T ))

]

for all u ∈ A , where f : [0, T ] × R × R × R × S × U → R and g : R × S → R

are C 1-functions with respect to x, y, a, u such that for all xi = x, y, a, u,

E

[∫ T

0
(| f (t, X (t),Y (t), A(t), α(t), u(t))|+

∣
∣
∣
∣
∂ f

∂xi
(t, X (t),Y (t), A(t), α(t), u(t))

∣
∣
∣
∣

2

)dt

+ |g(X (T ), α(T ))| + |gx (X (T ), α(T ))|2
]

< ∞.

Our problem is to find the optimal control û ∈ A such that

J (û) = sup
u∈A

J (u). (2)

Now let us define the Hamiltonian as follows:
H : [0, T ] × R × R × R × S × U × R × R × R × R

D → R,

H(t, x, y, a, ei , u, p, q, r, w) = f (t, x, y, a, ei , u) + b(t, x, y, a, ei , u)p

+ σ(t, x, y, a, ei , u)q

+
∫

R0

η(t, x, y, a, ei , u, z)r(t, z)ν(dz)

+
D∑

j=1

γ j (t, x, y, a, ei , u)w j (t)λi j , (3)

whereR denotes the set of all functions r : [0, T ] × R0 → R, for which the integral
in (3) converges.

Associated with H , the adjoint, unknown and adapted processes (p(t) ∈ R : t ∈
[0, T ]), (q(t) ∈ R : t ∈ [0, T ]) , (r(t, z) ∈ R : t ∈ [0, T ], z ∈ R0) and

(
w(t) ∈ R

D

: t ∈ [0, T ]) are given by the following ABSDE with jumps and regimes:
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dp(t) = E[μ(t)|Ft ]dt + q(t)dW (t) +
∫

R0

r(t, z)Ñ (dt, dz) + w(t)d	̃(t), (4)

p(T ) = gx (X (T ), α(T )),

where

μ(t) := − ∂H

∂x
(t, X (t),Y (t), A(t), α(t), u(t), p(t), q(t), r(t, ·), w(t))

− ∂H

∂y
(t + δ, X (t + δ),Y (t + δ), A(t + δ), α(t + δ), u(t + δ), p(t + δ),

q(t + δ), r(t + δ, ·), w(t + δ))1[0,T−δ](t) − eρt
(∫ t+δ

t

∂H

∂a
(s, X (s),Y (s),

A(s), α(s), u(s), p(s), q(s), r(s, ·), w(s))e−ρs1[0,T ](s)ds
)

. (5)

Note that μ(t) in (5) contains future values of X (s), α(s), u(s), p(s), q(s), r(s, ·) and
w(s) for s ≤ t + δ; hence, the BSDE (4) is anticipative (or time-advanced). In the
following section, we will prove the existence–uniqueness theorem for an ABSDE
with jumps and regimes in a general setting and then, we will apply it to a constant
delay case, δ > 0, for the rest of the work.

Moreover, the derivatives of b, σ, η and γ with respect to x, y and a are bounded.
By this assumption, it is easy to check that μ in (4)–(5) satisfies Lipschitz condition
(A1) for p, q, r, w and their future values.

Note that by the aforementioned integrability conditions on the derivatives of
b, σ, η, γ and f , A2 in Theorem 3.1 is satisfied by μ in (4)–(5), please see pp. 7–8.

Furthermore, note that p(T ) = gx (X (T ), α(T )) (see [4)] corresponds to ξ(·) in
Theorem 3.1; hence, it has to satisfy E[|gx (X (T ), α(T ))|2] < ∞, cf p. 8.

We will use the subsequent notations and introduce Banach spaces of measurable
and integrable variables and processes as follows:

L2(FT ;R) = {R-valued, FT -measurable random variables such that E[|φ|2] <

∞},
L2(B0;R) = {R-valued, B0-measurable random variables such that ‖φ‖2J =
∫
R0

|φ(z)|2 ν(dz) < ∞},
L2(BS;RD) = {RD-valued, BS-measurable random variables such that ‖φ‖2S =
∑D

j=1

∣
∣φ j
∣
∣2 λ j (t) < ∞},

L2(FT ×B0;R) = {R-valued,FT ×B0-measurable random variables such that
E[∫

R0
|φ(z)|2 ν(dz)] < ∞},

L2(FT ×BS;RD) = {RD-valued,FT ×BS-measurable random variables such
thatE[∑D

j=1

∣
∣φ j
∣
∣2 λ j (t)] < ∞},

L2
F
(0, T ;R) = {R-valued, Ft -adapted stochastic processes such that E[∫ T

0 |φ(t)|2
dt] < ∞},
S2
F
(0, T ;R) = {càdlàgprocesses in L2

F
(0, T ;R) such that E[supt∈[0,T ] |φ(t)|2] <

∞},

123



702 J Optim Theory Appl (2018) 179:696–721

H 2
F

(0, T ;R) = {R-valued, P ⊗ B0-measurable stochastic processes such that

‖φ(t)‖2H 2 = E[∫ T0 ‖φ(t)‖2J dt] < ∞},
M 2

F
(0, T ;RD) = {RD-valued, P ⊗ BS-measurable stochastic processes such

that ‖φ(t)‖2M 2 = E[∫ T0 ‖φ(t)‖2S dt] < ∞}.

3 Existence and Uniqueness Theorem

We consider a generalized form of the BSDEs as follows:

−dY (t) = f (t, Y (t), Z(t), Q(t), V (t),Y (t + δ1(t)), Z(t + δ2(t)),

Q(t + δ3(t)), V (t + δ4(t)), α(t))ds − Z(t)dW (t)

−
∫

R0

Q(t, z)Ñ (dt, dz) − V (t)d	̃(t), t ∈ [0, T ], (6)

Y (t) = ξ(t), Z(t) = ψ(t), Q(t) = ζ(t), V (t) = ϑ(t), t ∈ [T, T + K ].

Let δi (·), i = 1, 2, 3, 4, be an R
+-valued continuous function on [0, T ] such that:

(i) There exists a constant K ≥ 0 such that for all t ∈ [0, T ] and i = 1, 2, 3, 4,
t + δi (t) ≤ T + K .
(ii)There exists a constant L ≥ 0 such that for each t ∈ [0, T ] and for any non-negative
integrable function g(·),

∫ T

t
g(s + δi (s))ds ≤ L

∫ T+K

t
g(s)ds for i = 1, 2, 3, 4.

Assume that for all t ∈ [0, T ] and e j ∈ S, f (t, y, z, q, v, ξ, ψ, ζ, ϑ, e j ) : [0, T ] ×
R×R×L2(B0;R)×L2(BS;RD)×L2(Fr ;R)×L2(Fr∗ ;R)×L2(Fr̂ ×B0;R)×
L2(Fr̃ × BS;RD) × S → L2(Ft ;R), where r, r∗, r̂ , r̃ ∈ [t, T + K ].

Furthermore, f satisfies the following conditions:
A1. There exists a constant C > 0 such that for all t ∈ [0, T ], e j ∈ S, y, y′, z, z′
∈ R, q, q ′ ∈ L2(B0;R), v, v′ ∈ L2(BS;RD), ξ, ξ ′, ψ,ψ ′ ∈ L2

F
(t, T + K ;R),

ζ, ζ ′ ∈ H 2
F

(t, T + K ;R), ϑ, ϑ ′ ∈ M 2
F
(t, T + K ;RD) and r, r∗, r̂ , r̃ ∈ [t, T + K ],

we have

| f (t, y, z, q, v, ξ(r), ψ(r∗), ζ(r̂), ϑ(r̃), e j )

− f (t, y′, z′, q ′, v′, ξ ′(r), ψ ′(r∗), ζ ′(r̂), ϑ ′(r̃), e j )|
≤ C

(∣
∣y − y′∣∣+ ∣∣z − z′

∣
∣+ ∥∥q − q ′∥∥

J + ∥∥v − v′∥∥
S + E

[∣
∣ξ(r) − ξ ′(r)

∣
∣

+ ∣∣ψ(r∗) − ψ ′(r∗)
∣
∣+ ∥∥ζ(r̂) − ζ ′(r̂)

∥
∥
J + ∥∥ϑ(r̃) − ϑ ′(r̃)

∥
∥
S |Ft

])
.

A2. E
[∫ T

0

∣
∣ f (t, 0, 0, 0, 0, 0, 0, 0, 0, e j )

∣
∣2 dt

]
< ∞, for all e j ∈ S.

Let us give the main result of this section.

Theorem 3.1 Suppose f fulfills A1 and A2 and for i = 1, 2, 3, 4, δi satisfies (i)
and (i i). Then, for any given terminal variables ξ(·) ∈ S2

F
(T, T + K ;R), ψ(·) ∈
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L2
F
(T, T + K ;R), ζ(·) ∈ H 2

F
(T, T + K ;R) and ϑ(·) ∈ M 2

F
(T, T + K ;RD), the

ABSDE (6) has a unique solution, i.e., there exists a unique 4-tuple of Ft -adapted
processes (Y, Z , Q, V ) ∈ S2

F
(0, T + K ;R) × L2

F
(0, T + K ;R) ×H 2

F
(0, T + K ;R)

×M 2
F
(0, T + K ;RD) satisfying (6).

Proof We fix β = 16C2(L + 1)(T + 1), where C is the Lipschitz constant of f given
in A1 and introduce a norm in the Banach space S2

F
(0, T + K ;R)× L2

F
(0, T + K ;R)

×H 2
F

(0, T + K ;R) × M 2
F
(0, T + K ;RD) as follows:

‖(Y (t), Z(t), Q(t), V (t))‖2β = E

⎡

⎣
∫ T+K

0
eβt

⎛

⎝|Y (t)|2 + |Z(t)|2

+
∫

R0

|Q(t, z)|2 ν(dz) +
D∑

j=1

∣
∣
∣V j (t)

∣
∣
∣
2
λ j (t)

⎞

⎠ dt

⎤

⎦ .

It is more convenient to use the equivalent β-norm for applying Banach fixed point
theorem. We pose the problem,

− dY (t) = f (t, y(t), z(t), q(t), v(t), y(t + δ1(t)), z(t + δ2(t)), q(t + δ3(t)),

v(t+δ4(t)), α(t))dt−Z(t)dW (t)−
∫

R0

Q(t, z)Ñ (dt, dz)−V (t)d	̃(t), t ∈ [0, T ],
Y (t) = ξ(t), Z(t) = ψ(t), Q(t) = ζ(t) and V (t) = ϑ(t), t ∈ [T, T + K ].

Let us define:

h : S2
F
(0, T+K ;R) × L2

F
(0, T+K ;R) × H 2

F
(0, T +K ;R) × M 2

F
(0, T + K ;RD)

→ S2
F
(0, T+K ;R)×L2

F
(0, T+K ;R)×H 2

F
(0, T+K ;R)×M 2

F
(0, T+K ;RD).

According to the existence–uniqueness results of the BSDEs with jumps and regimes
(see Propositions 5.1 and 5.2 by Crépey andMatoussi [20]), the aforementioned equa-
tions have a unique solution; hence, h is well defined.

Now we will prove that h is a contraction mapping under the norm ‖·‖β .
For two arbitrary elements (y(t), z(t), q(t), v(t)) and (y′(t), z′(t), q ′(t), v′(t)) in

S2
F
(0, T+K ;R)×L2

F
(0, T+K ;R)×H 2

F
(0, T+K ;R)×M 2

F
(0, T+K ;RD), let us set

h(y(t), z(t), q(t), v(t)) = (Y (t), Z(t), Q(t), V (t)) and h(y′(t), z′(t), q ′(t), v′(t)) =
(Y ′(t), Z ′(t), Q′(t), V ′(t)).

Let us define their differences by (ŷ(t), ẑ(t), q̂(t), v̂(t)) = (y(t) − y′(t), z(t) −
z′(t), q(t)−q ′(t), v(t)− v′(t)) and (Ŷ (t), Ẑ(t), Q̂(t), V̂ (t)) = (Y (t)−Y (t), Z(t)−
Z ′(t), Q(t) − Q′(t), V (t) − V ′(t)).

Let us apply the integrating by parts for regime-switching jump-diffusions (cf.
Lemma 3.2., by Zhang et al. [3]) and take the expectation:
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E[eβt (Ŷ (t))2]+E

⎡

⎣
∫ T

t
eβs

⎛

⎝
∣
∣
∣Ẑ(s)

∣
∣
∣
2+
∫

R

∣
∣
∣Q̂(s, z)

∣
∣
∣
2
ν(dz)+

D∑

j=1

∣
∣
∣V̂ j (s)

∣
∣
∣
2
λ j (s)

⎞

⎠ ds

⎤

⎦

= E

[∫ T

t
eβs
(
2Ŷ (s) ( f (s, y(s), z(s), q(s), v(s), y(s + δ1(s)), z(s + δ2(s)),

q(s + δ3(s)), v(s + δ4(s)), α(s)) − f (s, y′(s), z′(s), q ′(s), v′(s), y′(s + δ1(s)),

z′(s + δ2(s)), q
′(s + δ3(s)), v

′(s + δ4(s)), α(s))
)]− β(Ŷ (s))2

)
ds
]
.

We note that the terms 2
∫ t
0 e

βs Ŷ (s)Ẑ(s)dW (s), 2
∫ t
0 e

βs Ŷ (s)Q̂(s, z)Ñ (ds, dz) and

2
∫ t
0 e

βs Ŷ (s)V̂ (s, z)d	̃(s) are uniformly integrable martingales. Let us show this:

E

⎡

⎢
⎣

⎛

⎝
∫ T

0

D∑

j=1

e2βt
∣
∣
∣Ŷ (t)

∣
∣
∣
2 ∣∣
∣V̂ j (t)

∣
∣
∣
2
λ j (t)dt

⎞

⎠

1
2
⎤

⎥
⎦

≤ aE

⎡

⎢
⎣ sup
0≤t≤T

∣
∣
∣Ŷ (t)

∣
∣
∣

⎛

⎝
∫ T

0

D∑

j=1

∣
∣
∣V̂ j (t)

∣
∣
∣
2
λ j (t)dt

⎞

⎠

1
2
⎤

⎥
⎦

≤ a

2
E

[

sup
0≤t≤T

∣
∣
∣Ŷ (t)

∣
∣
∣
2
]

+ a

2
E

⎡

⎣
∫ T

0

D∑

j=1

∣
∣
∣V̂ j (t)

∣
∣
∣
2
λ j (t)dt

⎤

⎦ ;

since Ŷ (t) ∈ S2
F
(0, T ;R) and V̂ (t) ∈ M 2

F
(0, T ;RD), the associated stochastic inte-

gral is a uniformly integrable martingale with null expectation. The others can be
obtained similarly.

By the aforementioned equality, conditions A1 and (ii) and the inequality 2ab ≤
(a2 + b2), we continue:

≤ E

[∫ T

t
eβs
(

−β

∣
∣
∣Ŷ (s)

∣
∣
∣
2 + 2C

∣
∣
∣Ŷ (s)

∣
∣
∣
(∣
∣ŷ(s)

∣
∣+ ∣∣ẑ(s)∣∣+ ∥∥q̂(s)

∥
∥
J + ∥∥v̂(s)

∥
∥
S

+ E
[∣
∣ŷ(s + δ1(s))

∣
∣+ ∣∣ẑ(s + δ2(s))

∣
∣+ ∥∥q̂(s + δ3(s))

∥
∥
J

+ ∥
∥v̂(s + δ4(s))

∥
∥
S |Fs

]))
ds
]

≤ E

[∫ T

t
eβs(−β

∣
∣
∣Ŷ (s)

∣
∣
∣
2
)ds

]

+ E

[∫ T

t
eβs2C

∣
∣
∣Ŷ (s)

∣
∣
∣
(∣
∣ŷ(s)

∣
∣+ ∣∣ẑ(s)∣∣+ ∥∥q̂(s)

∥
∥
J

+ ∥∥v̂(s)
∥
∥
S

)
ds
]+ E

[∫ T

t
eβs2C

∣
∣
∣Ŷ (s)

∣
∣
∣
(∣
∣ŷ(s + δ1(s))

∣
∣+ ∣∣ẑ(s + δ2(s))

∣
∣

+ ∥∥q̂(s + δ3(s))
∥
∥
J + ∥∥v̂(s + δ4(s))

∥
∥
S

)
ds
]

≤ E

[∫ T

t
eβs(−β

∣
∣
∣Ŷ (s)

∣
∣
∣
2
)ds

]
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+ E

[∫ T

t
eβs
(

β

4

∣
∣
∣Ŷ (s)

∣
∣
∣
2 + 4C2

β
(
∣
∣ŷ(s)

∣
∣+ ∣∣ẑ(s)∣∣)2

)

ds

]

+ E

[∫ T

t
eβs
(

β

4

∣
∣
∣Ŷ (s)

∣
∣
∣
2 + 4C2

β
(
∥
∥q̂(s)

∥
∥
J + ∥∥v̂(s)

∥
∥
S)

2
)

ds

]

+ E

[∫ T

t
eβs
(

β

4

∣
∣
∣Ŷ (s)

∣
∣
∣
2 + 4C2

β
(
∣
∣ŷ(s + δ1(s))

∣
∣+ ∣∣ẑ(s + δ2(s))

∣
∣)2
)

ds

]

+ E

[∫ T

t
eβs
(

β

4

∣
∣
∣Ŷ (s)

∣
∣
∣
2 + 4C2

β
(
∥
∥q̂(s + δ3(s))

∥
∥
J + ∥∥v̂(s + δ4(s))

∥
∥
S)

2
)

ds

]

≤ E

[∫ T

t
eβs 8C

2

β
(
∣
∣ŷ(s)

∣
∣2 + ∣∣ẑ(s)∣∣2 + ∥∥q̂(s)

∥
∥2
J + ∥∥v̂(s)

∥
∥2
S)ds

]

+ E

[∫ T

t
eβs 8C

2

β
(
∣
∣ŷ(s + δ1(s))

∣
∣2 + ∣∣ẑ(s + δ2(s))

∣
∣2 + ∥∥q̂(s + δ3(s))

∥
∥2
J

+ ∥∥v̂(s + δ4(s))
∥
∥2
S)ds

]

≤ 8C2

β
E

[∫ T+K

t
eβs(

∣
∣ŷ(s)

∣
∣2 + ∣∣ẑ(s)∣∣2 + ∥∥q̂(s)

∥
∥2
J + ∥∥v̂(s)

∥
∥2
S)ds

]

+ 8C2L

β
E

[∫ T+K

t
eβs(

∣
∣ŷ(s)

∣
∣2 + ∣∣ẑ(s)∣∣2 + ∥∥q̂(s)

∥
∥2
J + ∥∥v̂(s)

∥
∥2
S)ds

]

= 8C2

β
(L + 1)E

[∫ T+K

0
eβs(

∣
∣ŷ(s)

∣
∣2 + ∣∣ẑ(s)∣∣2 + ∥∥q̂(s)

∥
∥2
J + ∥∥v̂(s)

∥
∥2
S)ds

]

.

In particular,

E

[

eβt
∣
∣
∣Ŷ (t)

∣
∣
∣
2
dt

]

≤ 8C2

β
(L + 1)

∥
∥(ŷ(t), ẑ(t), q̂(t), v̂(t))

∥
∥2

β
,

E

[∫ T

0
eβt
∣
∣
∣Ŷ (t)

∣
∣
∣
2
dt

]

≤ 8C2T

β
(L + 1)

∥
∥(ŷ(t), ẑ(t), q̂(t), v̂(t))

∥
∥2

β
.

Hence,

E

⎡

⎣
∫ T+K

0
eβt

⎛

⎝
∣
∣
∣Ŷ (t)

∣
∣
∣
2+
∣
∣
∣Ẑ(t)

∣
∣
∣
2+
∫

R0

∣
∣
∣Q̂(t, z)

∣
∣
∣
2
ν(dz) +

D∑

j=1

∣
∣
∣V̂ j (t)

∣
∣
∣
2
λ j (t)

⎞

⎠ dt

⎤

⎦

≤ 8C2(L + 1)(T + 1)

β

∥
∥(ŷ(t), ẑ(t), q̂(t), v̂(t))

∥
∥2

β
.

Since β = 16C2(L + 1)(T + 1), we obtain,

∥
∥
∥(Ŷ , Ẑ , Q̂, V̂ )

∥
∥
∥

β
≤ 1√

2

∥
∥(ŷ, ẑ, q̂, v̂)

∥
∥

β
.
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Hence, h is a contracting mapping on S2
F
(0, T +K ;R)×L2

F
(0, T +K ;R)×H 2

F
(0, T

+K ;R)×M 2
F
(0, T +K ;RD). Then, by Banach fixed point theorem, (6) has a unique

solution (Y, Z , Q, V ) ∈ S2
F
(0, T + K ;R) × L2

F
(0, T + K ;R) × H 2

F
(0, T + K ;R)

×M 2
F
(0, T + K ;RD). ��

Note that if δi = δ ∈ R
+ for all i = 1, 2, 3, 4, then one can omit (ii) in the proof and,

hence, in Theorem 3.1 itself.

4 Sufficient Maximum Principle

In this section, we present the sufficient maximum principle and show that under
concavity assumptions, maximizing the Hamiltonian provides us the optimal control.
We will use the following abbreviations:

∂ Ĥ

∂x
(t) = ∂

∂x
H(t, X̂(t), Ŷ (t), Â(t), α(t), p̂(t), q̂(t), r̂(t, z), ŵ(t)),

b̂(t) = b(t, X̂(t), Ŷ (t), Â(t), α(t), p̂(t), q̂(t), r̂(t, z), ŵ(t)),

b(t) = b(t, X (t),Y (t), A(t), α(t), p(t), q(t), r(t, z), w(t)), etc.

Theorem 4.1 Let û ∈ A with corresponding state processes X̂(t), Ŷ (t) and Â(t) and
the adjoint processes p̂(t), q̂(t), r̂(t, z) and ŵ(t) assumed to satisfy the SDDEJR (1)
and the ABSDE with jumps and regimes (4), respectively. Suppose that the following
assertions hold:

1.

E

⎡

⎣
∫ T

0
p̂(t)2

⎛

⎝(σ (t) − σ̂ (t))2 +
∫

R0

(η(t, z) − η̂(t, z))2ν(dz)

+
D∑

j=1

(γ j (t) − γ̂ j (t))2λ j (t)

⎞

⎠ dt

⎤

⎦ < ∞

and

E

⎡

⎣
∫ T

0
(X (t)− X̂(t))2

⎧
⎨

⎩
q̂2(t) +

∫

R0

r̂2(t, z)ν(dz) +
D∑

j=1

(ŵ j )2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

2. For almost all t ∈ [0, T ],
H(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

= max
u∈U

H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)).

3. (x, y, a, u) �→ H(t, x, y, a, ei , u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)) is a concave function
for each t ∈ [0, T ] almost surely and ei ∈ S.

4. g(x, ei ) is a concave function of x for each ei ∈ S.

123



J Optim Theory Appl (2018) 179:696–721 707

Then, û(t) is an optimal control process and X̂(t), Ŷ (t) and Â(t) are the corre-
sponding controlled state processes.

Proof Let J (u) − J (û) = I1 − I2, where

I1=E

[∫ T

0

{
f (t, X (t),Y (t), A(t), α(t), u(t))− f (t, X̂(t), Ŷ (t), Â(t), α(t), û(t))

}
dt

]

and

I2 = E
[
g(X (T ), α(T )) − g(X̂(T ), α(T ))

]
.

By the concavity of H , we have

I1 = E

⎡

⎣
∫ T

0

⎧
⎨

⎩
H(t, X (t),Y (t), A(t), α(t), u(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

− H(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

− (b(t) − b̂(t)) p̂(t) − (σ (t) − σ̂ (t))q̂(t)

−
∫

R0

(η(t, z) − η̂(t, z))r̂(t, z)ν(dz)

−
D∑

j=1

(γ j (t) − γ̂ j (t))ŵ j (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦

≤ E

⎡

⎣
∫ T

0

⎧
⎨

⎩

∂ Ĥ

∂x
(t)(X (t) − X̂(t)) + ∂ Ĥ

∂y
(t)(Y (t) − Ŷ (t))

+ ∂ Ĥ

∂a
(t)(A(t) − Â(t)) + ∂ Ĥ

∂u
(t)(u(t) − û(t)) − (b(t) − b̂(t)) p̂(t)

− (σ (t) − σ̂ (t))q̂(t) −
∫

R0

(η(t, z) − η̂(t, z))r̂(t, z)ν(dz)

−
D∑

j=1

(γ j (t) − γ̂ j (t))ŵ j (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ . (7)

By applying integrating by parts and by concavity of g, we obtain:

I2 ≤ E

[
∂ ĝ

∂x
(T )(X (T ) − X̂(T ))

]

= E
[
p̂(T )(X (T ) − X̂(T ))

]

= E

⎡

⎣
∫ T

0
p̂(t)d(X (t) − X̂(t)) +

∫ T

0
(X (t) − X̂(t))d p̂(t)
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+
∫ T

0

⎧
⎨

⎩
(σ (t) − σ̂ (t))q̂(t) +

∫

R0

(η(t, z) − η̂(t, z))r̂(t, z)ν(dz)

+
D∑

j=1

(γ j (t) − γ̂ j (t))ŵ j (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦

= E

[∫ T

0
p̂(t)

{

(b(t) − b̂(t))dt + (σ (t) − σ̂ (t))dW (t)

+
∫

R0

(η(t, z) − η̂(t, z))Ñ (dt, dz) + (γ (t) − γ̂ (t))d	̃(t)

}

+
∫ T

0
(X (t) − X̂(t))

{

E[μ̂(t)|Ft ]dt + q̂(t)dW (t) +
∫

R0

r̂(t, z)Ñ (dt, dz)

+ŵ(t)d	̃(t)

}

+
∫ T

0

⎧
⎨

⎩
(σ (t) − σ̂ (t))q̂(t)+

∫

R0

(η(t, z) − η̂(t, z))r̂(t, z)ν(dz)

+
D∑

j=1

(γ j (t) − γ̂ j (t))ŵ j (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ . (8)

Note that X (t) = X̂(t) = x0(t) for all t ∈ [−δ, 0]. Then, by (7)–(8), we have

J (u) − J (û) ≤ E

[∫ T

0

{
∂ Ĥ

∂x
(t)(X (t) − X̂(t)) + ∂ Ĥ

∂y
(t)(Y (t) − Ŷ (t)) + ∂ Ĥ

∂a
(t)

×(A(t)− Â(t))+ ∂ Ĥ

∂u
(t)(u(t) − û(t)) + (X (t) − X̂(t))μ̂(t)

}

dt

]

= E

[∫ T+δ

δ

{
∂ Ĥ

∂x
(t − δ) + ∂ Ĥ

∂y
(t)1[0,T ](t) + μ̂(t − δ)

}

× (Y (t) − Ŷ (t))dt +
∫ T

0

∂ Ĥ

∂a
(t)(A(t) − Â(t))dt

+
∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

. (9)

Substituting r := t − δ, we get
∫ T

0

∂ Ĥ

∂a
(s)(A(t) − Â(s))ds =

∫ T

0

∂ Ĥ

∂a
(s)
∫ s

s−δ

e−ρ(s−r)(X (r) − X̂(r))drds

=
∫ T

0

(∫ r+δ

r

∂ Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)

eρr (X (r) − X̂(r))dr

=
∫ T+δ

δ

(∫ t

t−δ

∂ Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)

eρ(t−δ)(X (t − δ) − X̂(t − δ))dt. (10)
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By combining (9)–(10), we obtain

J (u) − J (û) ≤ E

[∫ T+δ

δ

{
∂ Ĥ

∂x
(t − δ) + ∂ Ĥ

∂y
(t)1[0,T ](t) + μ̂(t − δ)

+
(∫ t

t−δ

∂ Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)

eρ(t−δ)

}

(Y (t) − Ŷ (t))dt

+
∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

= E

[∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

≤ 0.

Since û(t)maximizes H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)), the last
inequality holds (see Proposition 2.1 by Ekeland and Temam [21]). Then, we obtain
that û(t) is an optimal control for problem (2).

One of the key facts in this proof is that concave and differentiable functions are
bounded above by their first-order Taylor approximation. Concavity assumptions on
H with respect to x, y, a, u and on g with respect to x for all ei ∈ S have been used
in this sense. Furthermore, Proposition 2.1 by Ekeland and Temam [21] works under
concavity condition of H with respect to u.

In the next section, we present necessary maximum principle, by which one can
determine the candidate optimal control processes, but for verification the concavity
condition is necessary. ��

5 Necessary Maximum Principle

Let û be an optimal control process and β be any other control process, satisfying
û + β =: v′ ∈ A . Since U is a convex set, for any v′ ∈ A , the perturbed control
process us = û + s(v′ − û), 0 < s < 1, is also in A . The directional derivative of
the performance criterion J (·) at û in the direction of β is given by:

d

ds
J (û + sβ)|s=0 := lim

s→0+
J (û + sβ) − J (û)

s
.

Since û is an optimal control, a necessary condition for optimality is

d

ds
J (û + sβ)|s=0 ≤ 0.

Let us assume that the derivative process ξ(t) = d
ds X

u+sβ(t) |s=0 for t ∈ [0, T ] exists
and it is defined as follows:

dξ(t) =
{

∂b

∂x
(t)ξ(t) + ∂b

∂y
(t)ξ(t − δ) + ∂b

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr
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+∂b

∂u
(t)β(t)

}

dt +
{

∂σ

∂x
(t)ξ(t) + ∂σ

∂y
(t)ξ(t − δ) + ∂σ

∂a
(t)
∫ t

t−δ

e−ρ(t−r)

×ξ(r)dr + ∂σ

∂u
(t)β(t)

}

dW (t) +
∫

R0

{
∂η

∂x
(t, z)ξ(t) + ∂η

∂y
(t, z)ξ(t − δ)

+∂η

∂a
(t, z)

∫ t

t−δ

e−ρ(t−r)ξ(r)dr+ ∂η

∂u
(t, z)β(t)

}

Ñ (dt, dz)+
{

∂γ

∂x
(t)ξ(t)

+∂γ

∂y
(t)ξ(t − δ) + ∂γ

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr + ∂γ

∂u
(t)β(t)

}

d	̃(t),

(11)

where we know that

d

ds
Y u+sβ(t)|s=0 = d

ds
Xu+sβ(t − δ)|s=0 = ξ(t − δ),

d

ds
Au+sβ(t)|s=0 = d

ds

(∫ t

t−δ

e−ρ(t−r)Xu+sβ(r)dr

)

|s=0

=
∫ t

t−δ

e−ρ(t−r) d

ds
Xu+sβ(r)|s=0dr =

∫ t

t−δ

e−ρ(t−r)ξ(r)dr,

and we have used the following abbreviations:

∂b

∂x
(t) = ∂b

∂x
(t, X (t),Y (t), A(t), α(t), u(t)), etc.

Note that ξ(t) = 0 for all t ∈ [−δ, 0].
Theorem 5.1 Let û ∈ A be an optimal control of problem (2) subject to the controlled
system (1) and let ( p̂(t), q̂(t), r̂(t, z), ŵ(t)) be the unique solution of (4). Moreover,
let us assume that,

E

[∫ T

0
p̂2(t)

{ (
∂σ̂

∂x

)2

(t)ξ̂2(t) +
(

∂σ̂

∂y

)2

(t)ξ̂2(t − δ) +
(

∂σ̂

∂a

)2

(t)

×
(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2
+
(

∂σ̂

∂u

)2

(t)β2(t) +
∫

R0

{ (
∂η̂

∂x

)2

(t, z)ξ̂2(t)

+
(

∂η̂

∂y

)2

(t, z)ξ̂2(t − δ) +
(

∂η̂

∂a

)2

(t, z)

(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2

+
(

∂η̂

∂u

)2

(t, z)β2(t)

}

ν(dz) +
D∑

j=1

{ (
∂γ̂ j

∂x

)2

(t)ξ̂2(t) +
(

∂γ̂ j

∂y

)2

(t)ξ̂2(t − δ)

+
(

∂γ̂ j

∂a

)2

(t)

(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2
+
(

∂γ̂ j

∂u

)2

(t)β2(t)

}

λ j (t)

}

dt

]

< ∞

and
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E

⎡

⎣
∫ T

0
(ξ̂ )2(t)

⎧
⎨

⎩
(q̂)2(t) +

∫

R0

(r̂)2(t, z)ν(dz) +
D∑

j=1

(ŵ j )2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

Then, for any v ∈ U , we have

∂H

∂u
(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))(v − û(t)) ≤ 0

dt − a.e, P − a.s.

Proof For simplicity of notation, let be û = u, X̂ = X , Ŷ = Y , p̂ = p, q̂ = q, r̂ = r
and ŵ = w. Then,

0 ≥ d

ds
J (u + sβ)|s=0

= d

ds
E

[∫ T

0
f (t, Xu+sβ(t),Yu+sβ(t), Au+sβ(t), α(t), u(t) + sβ)dt

+g(Xu+sβ(T ), α(T ))

] ∣
∣
∣
∣
s=0

= E

[∫ T

0

{
∂ f

∂x
(t)ξ(t) + ∂ f

∂y
(t)ξ(t − δ) + ∂ f

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr

+∂ f

∂u
(t)β(t)

}

dt + ∂g

∂x
(X (T ), α(T ))ξ(T )

]

= E

⎡

⎣
∫ T

0

⎧
⎨

⎩

∂H

∂x
(t) − ∂b

∂x
(t)p(t) − ∂σ

∂x
(t)q(t) −

∫

R0

∂η

∂x
(t, z)r(t, z)ν(dz)

−
D∑

j=1

∂γ j

∂x
(t)w j (t)λ j (t)

⎫
⎬

⎭
ξ(t)dt +

∫ T

0

⎧
⎨

⎩

∂H

∂y
(t) − ∂b

∂y
(t)p(t) − ∂σ

∂y
(t)q(t)

−
∫

R0

∂η

∂y
(t, z)r(t, z)ν(dz) −

D∑

j=1

∂γ j

∂y
(t)w j (t)λ j (t)

⎫
⎬

⎭
ξ(t − δ)dt

+
∫ T

0

⎧
⎨

⎩

∂H

∂a
(t) − ∂b

∂a
(t)p(t) − ∂σ

∂a
(t)q(t) −

∫

R0

∂η

∂a
(t, z)r(t, z)ν(dz)

−
D∑

j=1

∂γ j

∂a
(t)w j (t)λ j (t)

⎫
⎬

⎭

(∫ t

t−δ

e−ρ(t−r)ξ(r)dr

)

dt +
∫ T

0

⎧
⎨

⎩

∂H

∂u
(t)
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− ∂b

∂u
(t)p(t) − ∂σ

∂u
(t)q(t) −

∫

R0

∂η

∂u
(t, z)r(t, z)ν(dz)

−
D∑

j=1

∂γ j

∂u
(t)w j (t)λ j (t)

⎫
⎬

⎭
β(t)dt + ∂g

∂x
(X (T ), α(T ))ξ(T )

⎤

⎦ . (12)

By (11) and integration by parts, we get

E

[
∂g

∂x
(X (T ), α(T ))ξ(T )

]

= E [p(T )ξ(T )]

= E

[∫ T

0
p(t)dξ(t) +

∫ T

0
ξ(t)dp(t) +

∫ T

0
q(t)

{
∂σ

∂x
(t)ξ(t) + ∂σ

∂y
(t)ξ(t − δ)

+∂σ

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr + ∂σ

∂u
(t)β(t)

}

dt +
∫ T

0

∫

R0

r(t, z)

{
∂η

∂x
(t, z)ξ(t)

+∂η

∂y
(t, z)ξ(t − δ) + ∂η

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr + ∂η

∂u
(t)β(t)

}

ν(dz)dt

+
∫ T

0

D∑

j=1

w j (t)

{
∂γ j

∂x
(t)ξ(t) + ∂γ j

∂y
(t)ξ(t − δ)+ ∂γ j

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr

+∂γ j

∂u
(t)β(t)

}

λ j (t)dt

]

. (13)

By (12)–(13), we obtain

0 ≥ d

ds
J (u + sβ)|s=0

= E

[∫ T

0

{
∂H

∂x
(t)ξ(t) + ∂H

∂y
(t)ξ(t − δ) + ∂H

∂a
(t)
∫ t

t−δ

e−ρ(t−r)ξ(r)dr

+∂H

∂u
(t)β(t) + ξ(t)E[μ(t)|Ft ]

}

dt

]

= E

[∫ T

0
ξ(t)

{
∂H

∂x
(t) − ∂H

∂x
(t) − ∂H

∂y
(t + δ)1[0,T−δ](t)

−eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)}

dt +
∫ T

0

∂H

∂y
(t)ξ(t − δ)dt

+
∫ T

0

(∫ s

s−δ

e−ρ(s−t)ξ(t)dt

)
∂H

∂a
(s)ds +

∫ T

0

∂H

∂u
(t)β(t)dt

]

= E

[∫ T

0
ξ(t)

{

−∂H

∂y
(t + δ)1[0,T−δ](t)

−eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)}

dt +
∫ T

0

∂H

∂y
(t)ξ(t − δ)dt
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+eρt
∫ T

0

(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)

ξ(t)dt +
∫ T

0

∂H

∂u
(t)β(t)dt

]

= E

[∫ T

0

∂H

∂u
(t)β(t)dt

]

.

Let β(t) = v′(t) − u(t). Since u(t) is optimal, we have

d

ds
J (u + s(v′ − u))|s=0 =

[∫ T

0

∂H

∂u
(t)(v′(t) − u(t))dt

]

≤ 0.

Let us define,

v′(t) :=
{

v, on B × (t0, t0 + h),

u(t), otherwise,

for any deterministic element v ∈ U and for any element B of Ft . Then,

E

[∫ T

0

∂H

∂u
(t)(v′(t) − u(t))dt

]

= E

[∫ t0+h

t0

∂H

∂u
(t)(v − u(t))1Bdt

]

.

Dividing by h and taking limit, we obtain

lim
h→0

1

h
E

[∫ t0+h

t0

∂H

∂u
(t)(v − u(t))1Bdt

]

= E

[
∂H

∂u
(t0)(v − u(t0))1B

]

≤ 0 a.e.

for all B ∈ Ft0 ; this implies that

E

[
∂H

∂u
(t0)(v − u(t0))|Ft0

]

≤ 0.

Since the quantity inside the conditional expectation is Ft0 -measurable, then the
inequality in Theorem 5.1 holds dt − a.e., P − a.s., for all v ∈ U . ��

6 Sufficient Maximum Principle Under Partial Information

In this section, we establish a maximum principle of sufficient type under partial infor-
mation. Under the assumptions of Sect. 2, this theorem is the extension of Øksendal
et al. [17] to a Markov regime-switching model.

Let us introduce Et ⊆ Ft , t ∈ [0, T ], the subfiltration of {Ft }t∈[0,T ], which
represents the information available to the controller, who decides on the value of u(t)
at time t . For example, we may consider Et = F(t−d)+ for some given d > 0.
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LetAE be a given family of admissible control processes u(t), t ∈ [0, T ], included
in the set of càdlàg, E -adapted and U -valued processes such that (1) has a unique
solution.

Theorem 6.1 Let û ∈ AE with corresponding state processes X̂(t), Ŷ (t) and Â(t)
and the adjoint processes p̂(t), q̂(t), r̂(t, z) and ŵ(t) assumed to satisfy the SDDEJR
(1) and theABSDEwith jumps and regimes (4), respectively. Suppose that the following
conditions hold:

1.

E

⎡

⎣
∫ T

0
p̂(t)2

⎛

⎝(σ (t) − σ̂ (t))2 +
∫

R0

(η(t, z) − η̂(t, z))2ν(dz)

+
D∑

j=1

(γ j (t) − γ̂ j (t)

⎞

⎠

2

λ j (t))dt

⎤

⎥
⎦ < ∞

and

E

⎡

⎣
∫ T

0
(X (t) − X̂(t))2

⎧
⎨

⎩
q̂2(t) +

∫

R0

r̂2(t, z)ν(dz)

+
D∑

j=1

(ŵ j )2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

2. For almost all t ∈ [0, T ],

E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]

= max
u∈U

E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
.

3. (x, y, a, u) �→ H(t, x, y, a, ei , u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)) is a concave function
for each t ∈ [0, T ] almost surely and ei ∈ S.

4. g(x, ei ) is a concave function of x for each ei ∈ S.

Then, û(t) is an optimal control process and X̂(t), Ŷ (t), Â(t) are the corresponding
controlled state processes for problem (2).

Proof By the methods of Theorem 4.1, we obtained (9)–(10). For the sake of com-
pleteness, we give the rest of the proof. Then,

J (u) − J (û) ≤ E

[∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

= E

[∫ T

0
E

[
∂ Ĥ

∂u
(t)(u(t) − û(t))|Et

]

dt

]
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= E

[∫ T

0
E

[
∂ Ĥ

∂u
(t)|Et

]

(u(t) − û(t))dt

]

≤ 0.

Since û(t)maximizes E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
,

the last inequality holds. Hence, û(t) is an optimal control. ��

7 Necessary Maximum Principle Under Partial Information

In this section, we will give the necessary maximum principle under partial informa-
tion, which is the extension of Øksendal et al. [17] to a Markov regime-switching
model. Let us represent the technical assumptions as follows:

B1. For all u ∈ AE and all bounded β ∈ AE , there exists ε > 0 such that
u + sβ ∈ AE for all s ∈] − ε, ε[.

B2. For all t0 ∈ [0, T ] and all bounded Et0 -measurable random variables v, the
control process β(t), defined by

β(t) = v1[t0,T ](t), t ∈ [0, T ], (14)

belongs to AE .
B3. For all bounded β ∈ AE , the derivative process

ξ(t) := d

ds
Xu+sβ(t)|s=0

exists as described by (11).

Theorem 7.1 Let û ∈ AE with corresponding solutions X̂(t), Ŷ (t) and Â(t) of (1)
and p̂(t), q̂(t), r̂(t, z) and ŵ(t) of (4) and corresponding derivative process ξ̂ (t)
given by (11). Moreover, we assume that

E

[∫ T

0
p̂2(t)

{ (
∂σ̂

∂x

)2

(t)ξ̂2(t) +
(

∂σ̂

∂y

)2

(t)ξ̂2(t − δ) +
(

∂σ̂

∂a

)2

(t)

×
(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2
+
(

∂σ̂

∂u

)2

(t)β2(t) +
∫

R0

{ (
∂η̂

∂x

)2

(t, z)ξ̂2(t)

+
(

∂η̂

∂y

)2

(t, z)ξ̂2(t − δ) +
(

∂η̂

∂a

)2

(t, z)

(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2

+
(

∂η̂

∂u

)2

(t, z)β2(t)

}

ν(dz) +
D∑

j=1

{ (
∂γ̂ j

∂x

)2

(t)ξ̂2(t)
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+
(

∂γ̂ j

∂y

)2

(t)ξ̂2(t − δ) +
(

∂γ̂ j

∂a

)2

(t)

(∫ t

t−δ

e−ρ(t−r)ξ̂ (r)dr

)2

+
(

∂γ̂ j

∂u

)2

(t)β2(t)

}

λ j (t)

}

dt

]

< ∞

and

E

⎡

⎣
∫ T

0
(ξ̂ )2(t)

⎧
⎨

⎩
(q̂)2(t) +

∫

R0

(r̂)2(t, z)ν(dz) +
D∑

j=1

(ŵ j )2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

Then, the following equations are equivalent:
(iii) For all bounded β ∈ AE ,

d

ds
J (û + sβ) |s=0 = 0 .

(iv) For all t ∈ [0, T ],

E

[
∂H

∂u
(t, X̂(t), Ŷ (t), Â(t), u, α(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]

u=û(t)
= 0 a.s.

Proof By the methods of Theorem 5.1, we obtained (12)–(13). For the sake of com-
pleteness, we give the reminder of the proof. In fact,

0 = d

ds
J (u + sβ)|s=0 = E

[∫ T

0

∂H

∂u
(t)β(t)dt

]

.

Let us consider β(t) = v(ω)1[s,T ](t) in (14), where v(ω) is bounded and Et0 -
measurable, s ≥ t0. Hence, we get

E

[∫ T

s

∂

∂u
H(t)vdt

]

= 0.

Differentiating with respect to s, we get

E

[
∂

∂u
H(s)v

]

= 0

for all s ≥ t0 and for all v. Hence, we obtain

E

[
∂

∂u
H(t0)|Et0

]

= 0.

This shows that (iii) implies (iv).
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Since every bounded β ∈ AE can be approximated by linear combinations of
controls β of the form (14), i.e, by so-called simple processes having the form of step
functions, we can reverse the above steps and show that (iv) implies (iii). ��

8 An Application to Finance

Let b(t, α(t)), σ (t, α(t)), η(t, α(t), z) and γ (t, α(t)) be given bounded and adapted
processes. Let us consider a cash flow X0(t) with the dynamics,

dX0(t) = X (t − δ) [b(t, α(t))dt + σ(t, α(t))dW (t)

+
∫

R0

η(t, α(t), z)Ñ (dt, dz) + γ (t, α(t))d	̃(t)

]

, t ∈ [0, T ],

X0(t) = x0(t), t ∈ [−δ, 0],

where x0(t) is a given continuous, non-negative and deterministic function.
A consumption rate c(t) ≥ 0 is a càdlàg, Ft -adapted process satisfying

E

[∫ t

0
|c(t)|2 dt

]

< ∞.

Hence, the dynamics of the net cash flow X (t) = Xc(t) is given by

dX (t) = (X (t − δ)b(t, α(t)) − c(t))dt + X (t − δ)σ (t, α(t))dW (t)

+ X (t − δ)

∫

R0

η(t, α(t), z)Ñ (dt, dz)

+ X (t − δ)γ (t, α(t))d	̃(t), t ∈ [0, T ], (15)

X (t) = x0(t), t ∈ [−δ, 0].

Let U (t, c, ei , ω) : [0, T ] × R
+ × S × � → R be a given stochastic utility function

at each i = 1, 2, . . . , D, that it is a slightly more general way of modeling, here; U
also depends on ω, whose notation will be suppressed. Furthermore, U satisfies the
following conditions:

t �→ U (t, c, ei ) isFt -adapted for each c ≥ 0 and ei ∈ S,

c �→ U (t, c, ei ) is C
1 and

∂U

∂c
(t, c, ei ) > 0 for each ei ∈ S,

c �→ ∂U

∂c
(t, c, ei ) is strictly decreasing for each ei ∈ S,

lim
c→∞

∂U

∂c
(t, c, ei ) = 0 for all (t, ei ) ∈ [0, T ] × S.
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Let v0(t, ei ) := ∂U
∂c (t, 0, ei ) and we define,

I (t, v, ei ) :=
{
0, if v ≥ v0(t, ei ),
( ∂U

∂c (t, ·, ei ))−1(v), if 0 ≤ v < v0(t, ei ).

We want to find the optimal consumption rate ĉ such that

J (ĉ) = sup
c∈A

J (c)

= sup
c∈A

E

[∫ T

0
U (t, c(t), α(t))dt + g(X (T ), α(T ))

]

.

In this case, the Hamiltonian takes the form:

H(t, x, y, a, ei , c, p, q, r(·), w) = U (t, c, ei ) + (b(t, ei )y − c)p + yσ(t, ei )q

+y
∫

R0

η(t, ei , z)r(t, z)ν(dz) + y
D∑

j=1

γ j (t, ei )w
j (t)λi j .

(16)

Here we observe that maximizing H with respect to c gives

∂U

∂c
(t, ĉ(t), α(t)) = p(t).

The ABSDE for p(t), q(t), r(t, z) and w(t) is, by (4),

dp(t) = − E[(b(t + δ, α(t + δ))p(t + δ)

+ σ(t + δ, α(t + δ))q(t + δ)

+
∫

R0

η(t + δ, α(t + δ), z)r(t + δ, z)ν(dz)

+
D∑

j=1

γ j (t, α(t + δ))w j (t + δ)λ j (t))1[0,T−δ](t)|Ft ]dt

+ q(t)dW (t) +
∫

R0

r(t, z)Ñ (dt, dz) + w(t)d	̃(t), t ∈ [0, T ], (17)

p(T ) = gx (X (T ), α(T )).

We solve (15) inductively in the following way:
Step 1. If t ∈ [T − δ, T ], the corresponding adjoint equation takes the form:

dp(t) = q(t)dW (t) +
∫

R0

r(t, z)Ñ (dt, dz) + w(t)d	̃(t), t ∈ [T − δ, T ],
p(T ) = gx (X (T ), α(T )),
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which has the solution

p(t) = E[gx (X (T ), α(T ))|Ft ], t ∈ [T − δ, T ],

with corresponding q(t), r(t, z) and w(t) obtained by the martingale representation
theorem for regime-switching jump-diffusions, by Crépéy and Matoussi [20].

Step 2. If t ∈ [T − 2δ, T − δ] and T − 2δ > 0, we get:

dp(t) = − E[(b(t + δ, α(t + δ))p(t + δ) + σ(t + δ, α(t + δ))q(t + δ)

+
∫

R0

η(t + δ, α(t + δ), z)r(t + δ, z)ν(dz)

+
D∑

j=1

γ j (t + δ, α(t + δ))w j (t + δ)λ j (t))1[0,T−δ](t)|Ft ]dt

+ q(t)dW (t) +
∫

R0

r(t, z)Ñ (dt, dz) + w(t)d	̃(t), t ∈ [T − 2δ, T − δ],

with the terminal value p(T − δ) known from Step 1. When we follow the intervals,
it is seen that p(t + δ), q(t + δ), r(t + δ, z) and w(t + δ) are known by Step 1.
Therefore, this BSDE can be solved for p(t), q(t), r(t, z) and w(t) in the interval
[T − 2δ, T − δ]. We continue in the same way and by induction, we obtain a solution
p(t) = pX (T ),α(T )(t) of (17).

If 0 ≤ p(t) ≤ v0(t, α(t)) for all t ∈ [0, T ], then the optimal consumption rate ĉ(t)
is given by

ĉ(t) = ĉX̂(T ),α(T )
(t) = I (t, p(t), α(t)), t ∈ [0, T ]. (18)

Proposition 8.1 Let p(t), q(t), r(t, z), and w(t) be the solution of (17) and suppose
that 0 ≤ p(t) ≤ v0(t, α(t)) holds for all t ∈ [0, T ]. Then, the corresponding optimal
terminal wealth X (t) and the optimal consumption rate ĉ(t) are given implicitly by
(15) and (18), respectively.

To obtain a more explicit solution, let us assume that b(t, ei ) = b(t) is deterministic
and g(x, ei ) = kx, k > 0, i = 1, 2, . . . , D. Let us continue our study with the utility
function U (t, c, ei ) = φ(t, ei ) ln(1 + c) for all i = 1, 2, . . . , D, where φ(t, ei ) is an
R

+-valued, càdlàg andFt -adapted function such that

E

[∫ t

0
|φ(t, α(t))|2 dt

]

< ∞.

If we consider (17), since k is deterministic, we can choose q = r = w = 0. Hence,
the BSDE becomes a deterministic equation:

dp(t) = −b(t + δ)p(t + δ)1[0,T−δ](t)dt, t ≤ T,

p(t) = k, t ∈ [T − δ, T ].
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To solve this, we introduce

h(t) = p(T − t), t ∈ [0, T ].

Then, we obtain a differential delay equation:

dh(t) = −dp(T − t) = b(T − t + δ)p(T − t + δ)dt = b(T − t + δ)h(t − δ)dt,

t ∈ [δ, T ],
h(t) = p(T − t) = k, t ∈ [0, δ].

Hence, we can determine h(t) inductively on each interval as follows:
If h(t) is known on [( j − 1)δ, jδ], then

h(t) = h( jδ) +
∫ t

jδ
h′(s)ds = h( jδ) +

∫ t

jδ
b(T − t + δ)h(s − δ)ds (19)

for t ∈ [ jδ, ( j + 1)δ], j = 1, 2, . . ..
Ifwe substitute the utility functionU (t, c, ei ) = φ(t, ei ) ln(1+c), i = 1, 2, . . . , D,

in (16), then we have proved the following theorem. Furthermore, since h depends on
the constant delay δ and by the coefficient φ(t, α(t)), Theorem 8.1 clarifies the effects
of memory and different states of economy on optimal consumption rate.

Theorem 8.1 The optimal consumption rate ĉ(t) under the above construction is
explicitly given by

ĉ(t) = I (t, hδ(T − t), α(t)|α(t)=ei )

=
{
0, if hδ(T − t) ≥ φ(t, ei ),
φ(t,ei )
hδ(T−t) − 1, if 0 ≤ hδ(T − t) < φ(t, ei ),

where h(·) = hδ(·) is determined by (19).

9 Conclusions

In this paper, we study a stochastic optimal control problem by the tools of maximum
principle and prove the necessary and sufficient maximum principles for a delayed
jump-diffusionwith regimes under full and partial information.Wedevelop the general
analytic model setting and methods for the solution of such a model and apply our
results to an optimal consumption problem from a cash flowwith delay and regimes. In
our setting, under the given conditions, one may prefer any stochastic utility function
based on the information about the investor. In this work, we present the optimal
consumption rate for a specific stochastic utility function explicitly.
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