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1 Introduction

The investigation of the existence of optimal solutions is one of the most attractive
topics in optimization theory. For vector optimization, a classical result states that the
set of Pareto minimum points of a nonempty and compact set in a finite-dimensional
space, with respect to a closed convex cone, is always nonempty; see [1] for more
details. However, the compactness assumption is too strict, especially when solving
problems with data in infinite-dimensional spaces. The results on the existence of
Pareto minimum points in infinite-dimensional spaces to avoid the restrictions of
compactness can be found in [2–6] and the references therein. Borwein [2] weakens
the compactness by requiring the cone to be Daniell, while Jahn [3] uses the weakly
compactness, instead of compactness. Using the so-called cone-completeness, Luc [4]
studied the existence ofPareto efficient solutions for vector optimizationproblems.The
results of Luc[4] cover many facts already obtained in the papers [2,3,5,6]. Another
approach to obtain the existence of Pareto efficiency is to use somekind of coerciveness
assumption; see [7–9] for more details. We would like to remark that all the results in
the cited papers are established with convex ordering cones.

In [10, Definition 5.53], Mordukhovich has introduced the notion of generalized
order optimality of vector optimization problems, where the ordering set is an arbitrary
set containing the zero vector. This notion goes back to the early work by Kruger
and Mordukhovich (see [11, p. 685]); it is directly induced by the concept of local
extremal points for systems of sets and covers many of the conventional notions of
optimality in vector optimization (see [12, Sect. 2]). It is important to emphasize
that we do not generally assume that the ordering set is either convex or conical in
response to the increasing needs for practical and theoretical applications in vector
optimization and especially in economics modeling; see [13–17]. For example, by
reducing the welfare economic models to a special set-valued optimization problem,
Bao andMordukhovich [13] derived new versions of the second fundamental theorem
of welfare economics to nonconvex economies with general preference relations. We
note here that the preference relations in the cited paper do not necessarily satisfy the
almost transitivity property. Thus, it can be induced by an abstract set, which may not
be convex or conical.

Another important application of the concept of generalized order optimality is
that of deriving necessary optimality conditions for minimax problems; see [10, The-
orem 5.62]. The new approach of Mordukhovich in [10, Theorem 5.62], based on
the reduction to generalized order optimality, seems to be more appropriate and con-
venient to handle minimax problems involving maximization over a weak∗ compact
subset of a dual space.

To the best of our knowledge, until now, there are only a fewworks studying the con-
cept of generalized order optimality. In [10, Theorem5.59],Mordukhovich established
some preliminary necessary conditions to vector optimization problems with geomet-
ric constraints. In [15,18], the authors established some new subdifferential necessary
conditions to set-valued optimization problems with equilibrium constraints. Huy,
Mordukhovich, and Yao [19] gave some estimates of coderivatives of frontier and
efficient solution maps in parametric multiobjective problems with respect to general-
ized order optimality. Later, Tuyen and Yen [12, Section 4] provided some sufficient
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conditions for a point satisfying the necessary optimality condition of Mordukhovich
[10, Theorem 5.59] for being a generalized order solution of the optimization problem
under consideration. Recently, Tuyen [20] investigated some criteria for the closedness
and the connectedness of the set of generalized order solutions to vector optimization
problems.

However, none of the above-mentioned works examines the existence of efficient
solutions for vector optimizationproblemswith respect to generalizedorder optimality.
This paper is aimed at solving the problem. The rest of this paper is organized as
follows. Section 2 investigates the notion of generalized order optimality and compares
it with the traditional notions of Pareto efficiency and weakly Pareto efficiency. Some
examples are given to show that three concepts can be very different. In Sect. 3,
we prove the main theorems about the existence of generalized efficiency. Then, we
consider vector optimization problems with generalized order optimality and provide
the conditions under which optimal solutions exist. These results cover some classical
existence results for efficient points with convex ordering cones. Furthermore, some
sufficient optimality conditions for a generalized efficient point of a set satisfying
the free disposal hypothesis are also examined in this section. Examples are given to
illustrate the obtained results. The conclusions are presented in Sect. 4.

2 Generalized Order Optimality

Let Z be a real Banach space with the norm ‖ · ‖. Let A ⊂ Z be a nonempty set.
The topological interior, the topological closure, the topological boundary, the com-
plement, the convex hull, and the cone hull of A are denoted, respectively, by int A,
cl A, bd A, Ac, conv A, and cone A. The zero vector of a Banach space is denoted by
0. The closed ball with center x and radius ρ is denoted by B(x, ρ). Besides, l(A)

denotes the set A ∩ (−A).

Definition 2.1 Let A be a nonempty set in Z , and Θ ⊂ Z be a set containing the zero
vector. A point z̄ ∈ A is said to be a generalized efficient point of A with respect to Θ

iff there is a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k → ∞ such that

A ∩ (Θ + z̄ − zk) = ∅ ∀k ∈ IN. (1)

The set of generalized efficient points of A with respect to Θ is denoted by
GE(A | Θ).

ByDefinition 2.1, z̄ ∈ GE(A | Θ) iff z̄ is an extremal point of the system {A, z̄+Θ};
see [21, Definition 2.1]. Loosely speaking, the extremality of sets at a common point
means that they can be “pushed apart” by a small perturbation of even one of them
and illustrated in Fig. 1.

The following result gives a geometric characterization of the set of generalized
efficient points with respect to Θ .
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A Θ + z̄ − zkz̄ + Θ A z̄

Fig. 1 Illustration of the notion of generalized efficient point

Theorem 2.1 Let A be a nonempty set in Z, and Θ ⊂ Z be a set containing the zero
vector. Then

GE(A | Θ) = A ∩ bd (A − Θ).

Moreover, if A is a closed set, then so does GE(A | Θ).

Proof Fix z̄ ∈ GE(A | Θ). Let {zk} ⊂ Z be a sequence satisfying condition (1).
Then, z̄ − zk ∈ (A − Θ)c for all k ∈ IN. Let U be an arbitrary neighborhood of
z̄. Then, z̄ − zk ∈ U for large enough k. It follows that U ∩ (A − Θ)c �= ∅. Thus
z̄ ∈ A ∩ bd (A − Θ). Now let z̄ be in A ∩ bd (A − Θ). Then

B

(
z̄,

1

k

)
∩ (A − Θ)c �= ∅ ∀k ∈ IN.

For each k ∈ IN, choose xk ∈ B
(
z̄, 1

k

) ∩ (A − Θ)c and put zk := z̄ − xk . Then, the
sequence {zk} satisfies condition (1), and so z̄ ∈ GE(A | Θ). Thus

GE(A | Θ) = A ∩ bd (A − Θ).

Finally, if A is closed, by the closedness of bd (A − Θ), GE(A | Θ) is closed. �

Let us illustrate Theorem 2.1.

Example 2.1 Let Z = l2 denote the Hilbert space of all square summable real

sequences, A = l1+ =
{

{xn} ⊂ IR+ :
∞∑
n=1

xn < ∞
}

⊂ l2, x̄ = { 1n } ∈ l2 and

Θ = {λx̄ : −1 ≤ λ ≤ 0}. Clearly, Θ is a convex set but not a cone, and

l1+ ⊂ A − Θ ⊂ l2+ + l2+ = l2+, (2)
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where l2+ := {{xn} ∈ l2 : xn ≥ 0 ∀n ∈ IN
}
. Since (2) and cl (l1+) = l2+, we have

cl (A − Θ) = l2+. An easy computation shows that int (A − Θ) = ∅. It follows that
bd (A − Θ) = l2+. Thus

GE(A | Θ) = A ∩ bd (A − Θ) = l1+ ∩ l2+ = l1+.

Remark 2.1 If z̄ ∈ GE(A | Θ), by Theorem 2.1, z̄ /∈ int (A − Θ). In addition, as
A−Θ is a convex set with nonempty interior, by the convex separation theorem, there
exists z∗ ∈ Z∗\{0} such that

sup
z∈A

〈z∗, z − z̄〉 ≤ inf
θ∈Θ

〈z∗, θ〉. (3)

We also see that, without imposing either the convexity of A − Θ or the condition
int (A−Θ) �= ∅, separation property (3) always implies that z̄ ∈ GE(A | Θ). Indeed,
since z∗ �= 0, there is c ∈ Z such that 〈z∗, c〉 > 0. For each k ∈ IN, put zk := − c

k . It

suffices to show that (1) holds with this sequence {zk}. If otherwise, there exist ẑ, θ̂ ,
and k0 ∈ IN such that ẑ = θ̂ + z̄ − zk0 . By (3), one has

〈z∗, ẑ − z̄〉 ≤ sup
z∈A

〈z∗, z − z̄〉 ≤ inf
θ∈Θ

〈z∗, θ〉 ≤ 〈z∗, θ̂〉 = 〈z∗, ẑ − z̄ + zk0〉.

Thus 〈z∗, zk0〉 ≥ 0. This implies that 〈z∗, c〉 ≤ 0, contrary to the fact that 〈z∗, c〉 > 0.

We next compare the concept of generalized efficient point with the concepts of
Pareto efficiency and weakly Pareto efficiency.

Definition 2.2 (see [22]) Let A be a nonempty set in Z , andΘ ⊂ Z be a set containing
0 ∈ Z . A point z̄ ∈ A is said to be a Pareto efficient point of A with respect to Θ iff

A ∩ (
z̄ + Θ\{0}) = ∅.

When intΘ �= ∅, z̄ ∈ A is said to be a weakly Pareto efficient point of A with respect
to Θ iff

A ∩ (
z̄ + intΘ

) = ∅.

The set of Pareto efficient (resp., weakly Pareto efficient) points of A is denoted by
E(A | Θ) (resp., Ew(A | Θ)).

Remark 2.2 The concept of Pareto efficient point in Definition 2.2 is a bit different
from the conventional Pareto minimality notion for nonpointed ordering cones given
by

(z̄ + Θ) ∩ A ⊂ (z̄ − Θ). (4)

Bao and Mordukhovich [22] show that z̄ is a Pareto efficient point of A with respect
to Θ in the sense of (4) iff it is a Pareto efficient point of A in the sense of Definition
2.2 with respect to C := (−Θ) ∩ (Z\Θ) ∪ {0}.
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We now introduce a condition to the ordering set, which will be useful in the sequel.
This condition is weaker than the requirement that the ordering set is either convex or
conical.

Definition 2.3 ((T) condition) Let Θ ⊂ Z be a set containing 0 ∈ Z . We say that Θ

satisfies the the condition (T) iff

Θ + Θ = Θ, l(Θ) = {0} and 0 ∈ cl (Θ\{0}). (T)

Remark 2.3 (i) Clearly, ifΘ is a nontrivial convex pointed cone, then condition (T)
is satisfied. However, this condition does not imply that the set Θ is convex or
conical. For example, if Θ is given by one of the following sets:
• {(θ1, θ2) ∈ IR2 : θ1 ≥ 0, θ2 ≥ −θ21 };
• {(θ1, θ2) ∈ Q2 : θ1 ≥ 0, θ2 ≥ 0}.

(ii) Condition (T) is closely related to the asymptotic closeness property of Θ at
the origin. We recall that a set A ⊂ Z is said to be locally asymptotically closed
(L AC) at z̄ ∈ cl A if there are a neighborhood V of z̄ and a sequence {zk} in Z
with ‖zk‖ → 0 as k → ∞ such that

(cl A + zk) ∩ V ⊂ A\{z̄} ∀k ∈ IN.

This property holds in many rather general settings and is also satisfied under natural
assumptions in models of welfare economics; see [13, Sect. 4]. IfΘ satisfies condition
(T), then it induces a partial order in Z ; see Sect. 3.2. It is easy to check that, if Θ is
closed and satisfies condition (T), then Θ is (L AC) at 0. This allows us to study the
existence of solutions to the general model of welfare economics, where the preference
relation is induced by an abstract set satisfying condition (T) (may not be convex and/or
conical).

The following proposition shows that, if Θ satisfies condition (T), then any Pareto
efficient point of A is also a generalized efficient point.

Proposition 2.1 Let A be a nonempty set in Z, andΘ ⊂ Z be a set containing 0 ∈ Z.
If Θ satisfies condition (T), then we have

E(A | Θ) ⊂ GE(A | Θ). (5)

Proof On the contrary, suppose that there is z̄ ∈ E(A | Θ) but z̄ does not belong to
GE(A | Θ). By Theorem 2.1, z̄ /∈ bd (A − Θ). Thus z̄ ∈ int (A − Θ). This implies
that there exists a neighborhood U of z̄ such that U ⊂ A − Θ. Since 0 ∈ cl (Θ\{0}),
there is a sequence {θk} ⊂ Θ\{0} such that lim

k→∞ θk = 0. From lim
k→∞(z̄ + θk) = z̄ it

follows that there exists k0 large enough satisfying z̄+ θk0 ∈ U ⊂ A−Θ. Thus, there
exist a ∈ A and θ ∈ Θ such that z̄ + θk0 = a − θ . Consequently, a = z̄ + θk0 + θ . By
condition (T), we have θk0 + θ ∈ Θ and θk0 + θ �= 0. Therefore

z̄ + θk0 + θ ∈ A ∩ (
z̄ + Θ\{0}),

contrary to z̄ ∈ E(A | Θ). �
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Remark 2.4 Clearly, when Θ is a convex cone, condition (T) implies that Θ is non-
trivial, i.e.,Θ �= {0}. IfΘ is trivial and A is a closed set with a nonempty interior, then
inclusion (5) does not hold. Indeed, by Theorem 2.1, GE(A | Θ) = A ∩ bd (A) =
bd (A). Clearly, E(A | Θ) = A � GE(A | Θ).

Wenext show that, if A satisfies the free disposal condition, then any Pareto efficient
point of A with respect to a starshaped set is also a generalized efficient point. The
importance of the free disposal condition in production theory and the corresponding
version of the nonsatiation assumption in consumer theory is well known; see [14,16,
17] for more details. Recall that a set A is said to satisfy the free disposal condition
with respect to Θ iff

A − Θ = A,

and the set Θ is said to be starshaped at 0 iff

(
t ∈ [0, 1], θ ∈ Θ

) �⇒ tθ ∈ Θ.

If A satisfies the free disposal condition with respect to a cone Θ and 0 /∈ A, then A is
said to be an improvement set; see [9, Definition 2]. Clearly, if A is an improvement
set, then the set A ∪ {0} still satisfies the free disposal condition. However, this set is
not an improvement set.

Proposition 2.2 Suppose that Θ is a set containing 0 ∈ Z such that Θ\{0} is
nonempty. If Θ is starshaped at 0 and A satisfies the free disposal condition, then

E(A | Θ) ⊂ GE(A | Θ). (6)

Proof Let z̄ ∈ E(A | Θ). Suppose to the contrary that z̄ /∈ GE(A | Θ). Thanks to
Theorem 2.1, z̄ /∈ bd (A−Θ). This means that z̄ ∈ int (A−Θ). Consequently, by the
free disposal assumption, one has z̄ ∈ int A. Take θ ∈ Θ\{0}. By the starshapeness of
Θ at 0, we have tθ ∈ Θ for all t ∈ [0, 1]. Since z̄ ∈ int A, one has z̄+t0θ ∈ A for some
t0 > 0 small enough. Thus z̄ + t0θ ∈ [

A∩ (z̄ + Θ\{0})], contrary to z̄ ∈ E(A | Θ). �

Note that inclusion (6) may be strict, even when Θ is a closed convex pointed cone

with nonempty interior. For example, let A = IR2+ and Θ = IR2−. It is easy to see
that A satisfies the free disposal condition, Θ is a closed convex pointed cone with
nonempty interior, and

E(A | Θ) = {(0, 0)} � G(A | Θ) = {(x1, x2) : x1 ≥ 0, x2 ≥ 0 and x1x2 = 0}.

The following result shows that the concept of the generalized efficient point extends
our well known of weakly efficient one.

Proposition 2.3 If Θ is a convex cone with nonempty interior and A is a nonempty
subset in Z, then

GE(A | Θ) = Ew(A | Θ). (7)
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Proof By [23, Lemma 2.5], one has int (A − Θ) = A − intΘ. Thus

GE(A | Θ) = A ∩ bd (A − Θ) = A ∩ (int (A − Θ))c

= A ∩ (A − intΘ)c = Ew(A | Θ).

The proof is complete. �

Remark 2.5 (i) The above result is an extension of Lemma 2.3 in [24] without the

closedness of A. However, it is a special case of Proposition 2.11 in [12] with
respect to the generalized order optimization problem ( f,Θ) whenever f is an
identity function.

(ii) In [17], Jofré and Jourani wrote that, when Θ has an interior, the concepts of
weakly Pareto efficiency and generalized efficiency coincide. However, this fact
does not hold if Θ is a nonconvex cone. The following example shows that two
concepts can be very different.

Example 2.2 Let A and Θ be two sets defined as follows

A = {(x1, x2) ∈ IR2 : x2 = x1,−1 ≤ x1 ≤ 0}, Θ = {(θ1, θ2) : θ1θ2 ≤ 0}.

We have intΘ = {(θ1, θ2) : θ1θ2 < 0} and

A − Θ = {(x1, x2) : −1 ≤ x1, x2 ≤ 0} ∪ {(x1, x2) : x1 ≤ −1,−1 ≤ x2}
∪{(x1, x2) : −1 ≤ x1 ≤ 0, 0 ≤ x2}.

It is easily seen that Ew(A | Θ) = A and GE(A | Θ) = {(−1,−1), (0, 0)}. Clearly,
Eq. (7) does not hold true.

Remark 2.6 (i) We claim GE(A | Θ) ⊂ bd A. If not, then

z̄ ∈ int A ⊂ int (A − Θ)

for some z̄ ∈ GE(A | Θ). This makes a contradiction because of Theorem 2.1.
(ii) If A is a closed set satisfying the free disposal condition, then we have bd A =

GE(A | Θ); see [17, Theorem 2]. This fact does not hold unless A is closed. For
example, let A = {(x1, x2) ∈ IR2 : x1 > 0, x2 > 0} ∪ {0} and Θ = −A. It is
easy to see that A satisfies the free disposal condition and

GE(A | Θ) = {0} � bd A = {(x1, x2) ∈ IR2 : x1x2 = 0, x1 ≥ 0, x2 ≥ 0}.

3 Existence of Optimal Solutions

3.1 Optimality Conditions

In the following, we shall give several sufficient conditions for a generalized effi-
cient point of a set which satisfies the free disposal assumption. Firstly, we recall the
following notions: the Clarke tangent cone, the tangent cone.
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Definition 3.1 (see [25]) Let A be a nonempty set in Z and z̄ ∈ A.

(i) The Clarke’s tangent cone to A at z̄ is defined by

TC (A, z̄) := {h ∈ Z : ∀zn A−→ z̄,∀tn ↓ 0, ∃hn → h; zn + tnhn ∈ A ∀n ∈ IN}.

(ii) The tangent cone (or the adjacent cone) to A at z̄ is defined by

T0(A, z̄) := {h ∈ Z : ∀tn ↓ 0, ∃hn → h; z̄ + tnhn ∈ A ∀n ∈ IN}.

Remark 3.1 We always have the following inclusion:

TC (A, z̄) ⊂ T0(A, z̄).

Whenever A is given by a finite number ofC1-smooth inequality constraints under the
assumption that the gradients of active constraints are positively independent, then, as
it is well known [25, pp. 150–151],

TC (A, z̄) = T0(A, z̄) = {h ∈ Z : 〈∇gi (x̄), h〉 ≤ 0 ∀i ∈ I (z̄)},

where A := {z ∈ Z : gi (z) ≤ 0 ∀i ∈ I }, I (z̄) := {i ∈ I : gi (z̄) = 0}, and
I := {1, . . . , p}.

The following result gives some tangential sufficient conditions for a generalized
efficient point to a set satisfying the free disposal condition.

Theorem 3.1 Let Θ be a set containing 0 ∈ Z such that Θ\{0} is nonempty. Suppose
thatΘ is starshaped at 0, A satisfies the free disposal condition, and either the tangent
relation

TC (A, z̄) ∩ T0(Θ, 0) = {0} (8)

holds at z̄ ∈ A, or TC (A, z̄) is not the whole space. Then, z̄ is a generalized efficient
point of A with respect to Θ .

Proof Suppose to the contrary that z̄ /∈ GE(A | Θ). By Theorem 2.1 and the free
disposal assumption, z̄ /∈ bd A. This implies that z̄ ∈ int A. Therefore TC (A, z̄) =
Z . By the assumption of the theorem, we have TC (A, z̄) ∩ T0(Θ, 0) = {0}. Thus
T0(Θ, 0) = {0}. Let h be an arbitrary element in Z\{0}. We claim that h /∈ Θ .
Assuming the contrary and using the fact that h /∈ T0(Θ, 0), there exists a sequence
{tn} ⊂]0, 1] such that tn → 0 and for every sequence hn → h we have

tnhn /∈ Θ for some n ∈ IN. (9)

�
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Take hn := h for all n ∈ IN. By the starshapeness of Θ at 0, we have tnh ∈ Θ for all
n ∈ IN, contrary to (9). Thus Θ = {0}, contrary to Θ\{0} �= ∅. �


In [17], Jofré and Fourani introduced some conditions ensuring Pareto optimality
as follows.

Theorem 3.2 (see [17, Theorem 3]) Suppose that Θ is starshaped at 0, A satisfies
the free disposal condition and either the tangent relation

T0(A, z̄) ∩ T0(Θ, 0) = {0} (10)

holds at z̄ ∈ A, or T0(A, z̄) does not contain any line. Then z̄ is a Pareto efficient point
of A with respect to Θ .

Remark 3.2 If the conditions in Theorem 3.2 hold at z̄ and Θ\{0} �= ∅, then, thanks
to Proposition 2.2, z̄ is a generalized efficient point of A with respect to Θ . Since,
TC (A, z̄) ⊂ T0(A, z̄), condition (8), which guarantees that z̄ ∈ GE(A | Θ), is weaker
than condition (10). Furthermore, the condition “TC (A, z̄) is not the whole space” is
also weaker than the condition “T0(A, z̄) does not contain any line.”

3.2 Existence of Generalized Efficient Points

We next provide some sufficient conditions for the nonemptiness of the set of general-
ized efficient points. Firstly, we introduce a partial order in Z . Let Θ be a subset
in Z satisfying condition (T). Then, Θ induces a partial order in Z as follows:
z1, z2 ∈ Z , z2 ≥ z1 iff z1 − z2 ∈ Θ . We write z2 > z1 iff z1 − z2 ∈ Θ\{0}. A
net {xα}α∈I from Z is said to be a decreasing with respect to Θ iff xα > xβ for each
α, β ∈ I, β > α. For each x ∈ Z , put Ax := A ∩ (x + Θ). The set Ax is called a
section of A at x .

Definition 3.2 (see [26]) A set A ⊂ Z is said to be Θ-complete iff it has no covers of
the form {(xα + Θ)c}α∈I with {xα}α∈I being a decreasing net in A.

The following result gives a necessary and sufficient condition for the existence of
Pareto efficient points.

Theorem 3.3 Let A be a nonempty subset in Z. Assume that Θ satisfies condition
(T). Then, E(A | Θ) is nonempty if and only if A has a nonempty Θ-complete section.

Proof Suppose that E(A | Θ) is a nonempty set. Let z̄ ∈ E(A | Θ). Then A∩(z̄+Θ) =
{z̄}. Consequently, the section Az̄ is singleton. Thus, there is no decreasing net in there.

Conversely, assume that there exists z̄ ∈ A such that Az̄ is Θ-complete. We claim
that E(Az̄ | Θ) is nonempty. Indeed, thanks to [6, Corollary 2.1(i)], it suffices to prove
that every decreasing net {xα}α∈I of Az̄ is bounded from below in Az̄ . Since the
Θ-completeness of Az̄ , one has

Az̄ �
⋃
α∈I

(xα + Θ)c.
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Thus, there exists a ∈ Az̄ such that a ∈ (xα + Θ) for all α ∈ I . This means that
xα ≥ a for all α ∈ I . Thus, {xα}α∈I is bounded from below. By condition (T), it is
easy to check that E(Az̄ | Θ) ⊂ E(A | Θ) and the assertion follows. �

Remark 3.3 The proof of Theorem 3.3 follows the proof scheme of [9, Theorem 15].
In this paper, the authors established the existence of Pareto efficient points of a set
with respect to an improvement set of a given cone. Note that condition (T) does not
imply that Θ is convex or conical. Furthermore, an ordering set satisfying condition
(T) may not be an improvement of any nontrivial cone in Z , such as Θ := {(θ1, θ2) ∈
Q2 : θ1 ≥ 0, θ2 ≥ 0}. Thus, our result is slightly different from [9, Theorem 15] and
improves [26, Theorem 3.3].

The following results give sufficient conditions for the existence of generalized
efficient points. These results can easily be obtained from Theorem 3.3, so their proofs
are omitted.

Corollary 3.1 Let A be a nonempty subset in Z. Assume that Θ satisfies condition
(T). If A admits a nonempty Θ-complete section, then GE(A | Θ) is nonempty.

Corollary 3.2 Let A be a nonempty set in Z, andΘ ⊂ Z be a set satisfying 0 ∈ Z and
Θ\{0} �= ∅. If Θ̃ := conv coneΘ is pointed and A admits a nonempty Θ̃-complete
section, then GE (A | Θ) �= ∅.

The forthcoming example shows that the sufficient condition for the nonemptiness
of GE(A | Θ) given by Corollary 3.1 is not a necessary one.

Example 3.1 Let A = {(x1, x2) ∈ IR2 : x2 ≥ 0} and Θ = IR2−. It is clear that Θ is
a pointed closed convex cone. Thus, Θ satisfies condition (T). A trivial verification
shows that E(A | Θ) = ∅. By Theorem 3.3, the set A has no Θ-complete section.
However, we can see that A − Θ = A and

A ∩ bd (A − Θ) = bd A = {(x1, x2) ∈ IR2 : x2 = 0}.

Thus GE(A | Θ) = {(x1, x2) ∈ IR2 : x2 = 0}.
The next example shows that the condition l(Θ) = {0} cannot be dropped in

Corollary 3.1.

Example 3.2 (see [12]) Let A = {(x1, x2) ∈ IR2 : x1x2 = 0} and

Θ = {(θ1, θ2) ∈ IR2 : θ2 = −θ1}.

We see that A is Θ-complete and Θ satisfies all condition in Corollary 3.1 except the
requirement that l(Θ) = {0}. It is easily seen that E(A | Θ) = {0} and GE(A | Θ) =
A ∩ bd (A − Θ) = ∅.

The following result ensures the existence of generalized efficient points of a
nonempty compact subset A in an infinite-dimensional space.
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Corollary 3.3 Let A be a nonempty compact set in Z, and Θ ⊂ Z be a set satisfying
0 ∈ Z and Θ\{0} �= ∅. If Θ̂ := cl conv coneΘ is pointed, then GE (A | Θ) �= ∅.
Proof By the compactness of A and [26, Lemma 3.5], A is Θ̂-complete. Clearly,
the cone Θ̂ satisfies condition (T). Thanks to Corollary 3.1, the set GE

(
A | Θ̂)

is
nonempty. It is easily seen that GE

(
A | Θ̂) ⊂ GE (A | Θ) . Thus, GE (A | Θ) is

nonempty. �

Remark 3.4 In [26, Corollary 3.11], Luc shows that “ If Z is of finite-dimension, then
E(A | Θ) is nonempty whatever a nonempty compact set A and a convex cone Θ be.”
However, this fact does not hold true for an infinite-dimension space. Corollary 3.3
shows that a compact set in an infinite-dimension space admits a generalized efficient
point provided that the closed convex cone hull of the ordering set Θ is pointed.

Example 3.3 (see [26, Example 3.13] and [5]) Let Z be the vector space of all
sequences x = {xn} of real numbers such that xn = 0 for all but a finite number
of choices for n. It is a normed space, if we provide it with the norm

‖x‖ = max{|xn| : n = 1, 2, . . .}.

Let Θ be the cone composed of zero and of sequences, whose last nonzero term is
negative. Then, Θ is a convex pointed cone. It is called a ubiquitous cone because the
linear space spanned by Θ is the whole Z . Let en stay for the vector with the unique
nonzero component being −1 at the nth place. Consider the set

A = {x0} ∪
{ ∞⋃
n=1

n∑
i=1

xi : n = 1, 2, . . .

}
,

where

x0 = e1, xn =
n−1∑
i=1

ei
2n−1 − en

2n−1 , n ≥ 1.

Then, A is compact because lim
n→∞

n∑
i=1

xi = x0. Furthermore,

x0 >

n∑
i=1

xi >

n+1∑
i=1

xi ,

which shows that E(A | Θ) = ∅. However, GE(A | Θ) is a nonempty subset in Z .
Indeed, we have Θ̂ := cl conv coneΘ = {z = {zn} ∈ Z : zn ≤ 0} . Clearly, Θ̂ is a
closed pointed cone. Thanks to Corollary 3.3, GE(A | Θ) is nonempty.

When the sets are polyhedral, Luc [26, Theorem 3.18] introduced a necessary
and sufficient condition for the existence of nonempty complete sections in terms of
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recession cones. We recall that the recession cone of a nonempty set A is defined by

Rec (A) := {v ∈ Z : a + tv ∈ A ∀a ∈ A,∀t ≥ 0}.

The set A is said to be a polyhedral iff it is the sum of a polyhedron and a polyhedral
cone; see [26] for more details. Clearly, every polyhedral set is closed. The following
result ensures the existence for generalized efficient points of a polyhedral set in
an infinite-dimensional space. Its proof follows directly from [26, Theorem 3.18],
Theorem 3.3, and Proposition 2.1, so omitted.

Proposition 3.1 Let Z be a real Banach space, A � Z be a polyhedral set, and
Θ ⊂ Z be a pointed convex cone. If

Rec (A) ∩ Θ = {0},

then GE (A | Θ) �= ∅.
By using the coercive condition, we present some results on the existence of Pareto

(generalized) efficient points of unbounded sets in a reflexive Banach space with
respect to an arbitrary ordering set. The first result is an extension of Theorem 26 in
[9] without the improvement property of Θ\{0}, but the second one is a new result.

Theorem 3.4 Let Z bea reflexiveBanach space,Θ ⊂ Z beanarbitrary set containing
0 ∈ Z, and A ⊂ Z be an unbounded nonempty set. Moreover, suppose that the
following conditions hold:

(i) there exists z∗ ∈ Z∗ satisfying 〈z∗, θ〉 < 0 for all θ ∈ Θ\{0};
(ii) lim

a∈A‖a‖→∞
〈z∗, a〉 = +∞;

(iii) either A or A − Θ is weakly closed. Then, E(A | Θ) is nonempty.

Proof It follows from assumption (ii) that

λz∗(A) := inf
a∈A

〈z∗, a〉 > −∞.

For each k ∈ IN, let ak ∈ A such that

〈z∗, ak〉 < λz∗(A) + 1

k
.

Thanks to assumption (ii), the sequence {ak} is bounded. By the reflexivity of Z and
the weakly closedness of A−Θ (or A), without any loss of generality, we may assume
that ak weakly converges to z̄ − θ̄ , where z̄ ∈ A and θ̄ ∈ Θ . For each θ ∈ Θ\{0}, by
assumption (i), we have

〈z∗, z̄ + θ〉 < 〈z∗, z̄〉 = 〈z∗, (z̄ − θ̄ ) + θ̄〉 ≤ 〈z∗, z̄ − θ̄〉 = lim
k→∞〈z∗, ak〉 = λz∗(A).
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Thus z̄ + θ /∈ A. This implies that

A ∩ (z̄ + Θ\{0}) = ∅,

or, equivalently, z̄ ∈ E(A | Θ). �

The following example shows that Theorem 3.4 improves the corresponding result

in [9, Theorem 26].

Example 3.4 Let A and Θ be two subsets of IR2 defined as follows

A = {(x1, x2) ∈ IR2 : x1 ≥ 0,−1 ≤ x2 ≤ 0},Θ = {(θ1, θ2) : θ1θ2 = 0}.

Let z∗ = (1, 1). Then A, Θ , and z∗ satisfy all assumptions of Theorem 3.4. Thus
E(A | Θ) �= ∅. It is easy to check that E := Θ\{0} cannot be an improvement set
with respect to any nontrivial cone. Therefore, [9, Theorem 26] cannot be applied for
this example.

Theorem 3.5 Let Z bea reflexiveBanach space,Θ ⊂ Z beanarbitrary set containing
0 ∈ Z, and A ⊂ Z be an unbounded nonempty set. Suppose that the conditions
(i′) there exists z∗ ∈ Z∗\{0} satisfying 〈z∗, θ〉 ≤ 0 for all θ ∈ Θ ,
(ii), and (iii) of Theorem 3.4 are satisfied. Then, GE(A | Θ) is nonempty.

Proof Let {ak} ⊂ A be a sequence as in the proof of Theorem 3.4. Since z∗ �= 0,
there exists c ∈ Z such that 〈z∗, c〉 > 0. For each k ∈ IN, put zk := c

k . Then, for each
k ∈ IN and θ ∈ Θ , we have

〈z∗, z̄ + θ − zk〉 < 〈z∗, z̄〉 = 〈z∗, (z̄ − θ̄ ) + θ̄〉 ≤ 〈z∗, z̄ − θ̄〉 = lim
n→∞〈z∗, an〉 = λz∗(A).

This implies that z̄ + θ − zk /∈ A for all k ∈ IN and θ ∈ Θ , or, equivalently,

A ∩ (z̄ + Θ − zk) = ∅ ∀k ∈ IN.

Thus z̄ ∈ GE(A | Θ). �

Remark 3.5 (i) If A ⊂ Z is bounded, the same proof shows that E(A | Θ) (resp.,
GE(A | Θ)) is nonempty under the only assumptions (i) and (iii) (resp., (i′) and (iii)).
(ii) Clearly, assumption (i) of Theorem 3.4 implies assumption (i′) of Theorem 3.5.
Thus, if A and Θ satisfy assumptions (i)–(iii) of Theorem 3.4, then GE(A | Θ) �= ∅.
The following example shows that assumption (i) of Theorem 3.4 may be too strict
for the existence of generalized efficient points.

Example 3.5 Let A and Θ be two subsets of IR2 defined as follows

A = (] − ∞, 0] × {0}) ∪ ({0} × [0, 1]),Θ = {(θ1, θ2) ∈ IR2 : θ1 ≥ 0, θ2 ≥ −θ21 }.
Put z∗ := (−1, 0). It is easy to check that A, Θ , and z∗ satisfy all assumptions of
Theorem 3.5, and we therefore get GE(A | Θ) �= ∅. Moreover, an easy computation
shows that E(A | Θ) = ∅, and there is no z∗ ∈ IR2 satisfying assumption (i) of
Theorem 3.4.
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3.3 Applications to Set-Valued Optimization Problems

Let F : X ⇒ Z be a set-valued mapping between two Banach spaces. Denote by

dom F := {x ∈ X : F(x) �= ∅}, gph F := {(x, y) ∈ X × Z : y ∈ F(x)}

the domain and the graph of F .

Definition 3.3 (see [26, Definition 7.1]) Let Ω be a subset of dom F , and Θ ⊂ Z be
a set containing the zero vector. We say that F is upper Θ-continuous at x̄ ∈ Ω iff for
each neighborhood V of F(x̄) in Z , there is a neighborhood U of x̄ in X such that

F(x) ⊂ V − Θ ∀x ∈ U ∩ dom F.

We say that F is upper Θ-continuous on Ω iff it is upper Θ-continuous at every point
ofΩ .WhenΘ = {0}we say simply upper continuous instead of upper {0}-continuous.
Definition 3.4 (see [15, Definition 1.1]) Let F : X ⇒ Z be a set-valued mapping
between Banach spaces and let Θ ⊂ Z be a set containing the origin, and a set
constraint Ω ⊂ X . We say that a pair (x̄, z̄) ∈ gph F ∩ (Ω × Z) is a generalized
efficient (or extremal) solution to F with respect to the ordering setΘ overΩ iff there
is a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k → ∞ such that

F(Ω) ∩ (Θ + z̄ − zk) = ∅ ∀k ∈ IN.

The set of generalized efficient solutions to F with respect to Θ over Ω is denoted by
GE(F, Ω, Θ).

When F = f : X → Z is single-valued mapping, we omit z̄ in the notation of
generalized order efficient solutions and x̄ is called a ( f,Θ)-optimal point over Ω;
see [10, Definition 5.53].

Proposition 3.2 Assume that Ω ⊂ Z is a compact set and F is upper continuous
on Ω . Let Θ ⊂ Z be a set containing the origin and satisfying Θ\{0} �= ∅. If
Θ̂ := cl conv coneΘ is pointed, then GE(F, Ω, Θ) is nonempty.

Proof By the compactness of Ω and the upper continuity of F , thanks to [27,
Theorem 6.3], we have F(Ω) is a compact set. Thanks to Corollary 3.3, we have
GE(F(Ω) | Θ) �= ∅. Consequently, GE(F, Ω, Θ) �= ∅. �

Proposition 3.3 (cf. [26, Theorem 5.3]) Let Θ be a set satisfying condition (T).
Assume thatΩ is nonempty compact and F is upperΘ-continuous onΩ with F(x)−Θ

being closed Θ-complete for every x ∈ Ω . Then, GE(F, Ω, Θ) is nonempty.

Proof Thanks to Theorem 3.1, it is sufficient to verify that F(Ω) is Θ-complete. On
the contrary, suppose that F(Ω) is notΘ-complete. Then there exists a decreasing net
{aα}α∈I from F(Ω) such that {(aα + Θ)c}α∈I is a cover of F(Ω). For each α ∈ I , let
xα ∈ Ω such that aα ∈ F(xα). By the compactness of Ω , without loss of generality
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we can assume that lim xα = x ∈ Ω . For every neighborhood V of F(x), by the upper
Θ-continuity of F on Ω , there exists α0 ∈ I such that

aα ∈ V − Θ for all α ≥ α0. (11)

Furthermore, since {aα}α∈I is decreasing, one has aα ∈ aα0 − Θ for all α ≤ α0. This
and (11) imply that aα ∈ V − Θ for all α ∈ I. Consequently,

aα ∈ cl (F(x) − Θ) = F(x) − Θ for all α ∈ I.

Thus, {aα}α∈I is a decreasing net from F(x) − Θ . Note that {(aα + Θ)c}α∈I covers
F(Ω), so does F(x) − Θ . We arrive at the contradiction that F(x) − Θ is not Θ-
complete. �

Remark 3.6 From theproof ofProposition 3.3wealso see that the set of Pareto efficient
solutions to F with respect toΘ overΩ is nonempty. Thus, our result generalizes [26,
Theorem 5.3] to the ordering set, which may not be convex or conical.

Example 3.6 Let X = Z = IR2, Θ = {(θ1, θ2) ∈ IR2 | θ1 ≥ 0, θ2 ≥ −θ21 }, Ω =
{(x1, x2) ∈ IR2 : x2 = 1

2 x1,−1 ≤ x1 ≤ 0}, and F(x1, x2) = {(x1, x2)} for all
(x1, x2) ∈ Ω . We see that Θ is neither convex nor conical. It is a simple matter to
verify that all the conditions of Proposition 3.3 are satisfied. Thus, GE(F,Ω,Θ) is
nonempty. Moreover, an easy computation shows that

GE(F,Ω,Θ) = E(F,Ω,Θ) = {((0, 0), (0, 0))},

where E(F,Ω,Θ) := {(x, z) ∈ gph F : z ∈ E(F(Ω) | Θ)} is the set of all Pareto
efficient solutions to F with respect to Θ over Ω .

Remark 3.7 If condition (T) is not satisfied, then the conclusion of Proposition 3.3may
not hold. This means that condition (T) is an essential assumption of that proposition.

Example 3.7 Let X, Z ,Ω , F be as in Example 3.6, and

Θ = {(z1, z2) ∈ IR2 : z2 ≤ z1} ∪ {(z1, z2) ∈ IR2 : z2 ≤ −z1}.

Clearly, the coneΘ is neither convex, nor pointed. Thus,we see that all the assumptions
of Proposition 3.3 are satisfied except condition (T). We claim that GE(F, Ω, Θ) =
∅, or, equivalently, GE(A | Θ) = ∅, where A := F(Ω). Indeed, we have

A − Θ = {(z1, z2) ∈ IR2 : z2 ≥ z1} ∪
{
(z1, z2) ∈ IR2 : z2 ≥ −z1 − 3

2

}
,

and A ⊂ int(A − Θ). Thus A ∩ bd (A − Θ) = ∅, or, equivalently, GE(A | Θ) = ∅.

We finish this section by presenting a new sufficient condition for the existence of
generalized order optimal solutions to vector optimization problems with noncompact
feasible sets.
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Theorem 3.6 Let X, Z be two Banach spaces, f : X → Z be a single-valued map-
ping, andΘ ⊂ Z beanarbitrary set containing0. Assume that there exists z∗ ∈ Z∗\{0}
and λ ∈ IR such that

(i) 〈z∗, θ〉 ≤ 0 for all θ ∈ Θ;
(ii) D(λ) := {x ∈ X : 〈z∗, f (x)〉 ≤ λ} is a nonempty compact set;
(iii) the map x ∈ X �→ 〈z∗, f (x)〉 is lower semicontinuous. Then, GE( f, X,Θ) is

nonempty.

Proof By assumptions (ii), (iii) and Weierstrass theorem, there exists x̄ ∈ D(λ) such
that

〈z∗, f (x̄)〉 ≤ 〈z∗, f (x)〉 ∀x ∈ D(λ). (12)

We claim that x̄ ∈ GE( f, X,Θ). Since z∗ �= 0, there exists c ∈ Z satisfying 〈z∗, c〉 <

0. For each k ∈ IN, put zk := − c
k . Clearly, ‖zk‖ → 0 as k → ∞. For each θ ∈ Θ and

k ∈ IN, by assumption (i), we have

〈z∗, f (x̄) + θ − zk〉 ≤ 〈z∗, f (x̄) − zk〉 < 〈z∗, f (x̄)〉.

By (12), f (x̄) + θ − zk /∈ f (D(λ)). For each x ∈ X\D(λ), one has

〈z∗, f (x)〉 > λ ≥ 〈z∗, f (x̄)〉 > 〈z∗, f (x̄) + θ − zk〉.

This implies that f (x) �= f (x̄) + θ − zk . Thus

f (X) ∩ ( f (x̄) + Θ − zk) = ∅ ∀k ∈ IN,

or, equivalently, f (x̄) ∈ GE( f (X) | Θ). Consequently, x̄ ∈ GE( f, X,Θ). �

Remark 3.8 If the assumptions (ii), (iii) of Theorem 3.6 hold, and there exists z∗ ∈ Z∗
such that 〈z∗, θ〉 < 0 for all θ ∈ Θ\{0}, the same proof shows that E( f (X) | Θ) is
nonempty.

4 Conclusions

In this paper, we establish some results for the existence of generalized order optimal
solutions to vector optimization problems in infinite-dimensional spaces. The obtained
results are compared with the well-known results of vector optimization with convex
ordering cones. Some sufficient optimality conditions for a generalized efficient point
to a set satisfying the free disposal hypothesis are also examined.
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