
J Optim Theory Appl (2017) 174:858–874
DOI 10.1007/s10957-017-1145-9

Shortest Paths with Shortest Detours
A Biobjective Routing Problem

Carolin Torchiani1 · Jan Ohst1 ·
David Willems1 · Stefan Ruzika1

Received: 2 March 2016 / Accepted: 17 July 2017 / Published online: 25 July 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper is concernedwith a biobjective routing problem, called the short-
est path with shortest detour problem, in which the length of a route is minimized as
one criterion and, as second, the maximal length of a detour route if the chosen route is
blocked is minimized. Furthermore, the relation to robust optimization is pointed out,
andwe present a new polynomial time algorithm, which computes aminimal complete
set of efficient paths for the shortest path with shortest detour problem. Moreover, we
show that the number of nondominated points is bounded by the number of arcs in the
graph.

Keywords Networks · Shortest paths ·Biobjective programming ·Detours ·Recovery
robustness

Mathematics Subject Classification 90C27 · 90C29 · 90C35

B Carolin Torchiani
torchiani@uni-koblenz.de

Jan Ohst
ohst@uni-koblenz.de

David Willems
davidwillems@uni-koblenz.de

Stefan Ruzika
ruzika@uni-koblenz.de

1 Mathematisches Institut, Universität Koblenz-Landau, Universitätsstraße 1,
56070 Koblenz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-017-1145-9&domain=pdf
http://orcid.org/0000-0002-7696-344X

J Optim Theory Appl (2017) 174:858–874 859

1 Introduction

The article is motivated by an application situated in the poles of shortest paths,
robust optimization and biobjective optimization. Emergency service vehicles, such
as ambulances, want to reach their destination as fast as possible. At first glance, it
seems to be reasonable to use a quickest route to reach the destination. However,
it might happen that the chosen route is blocked by some unforeseen event, e.g., an
accident or traffic jam, and the emergency service vehicle has to adapt its route. Taking
into account the length (or, alternatively, temporal duration) of the worst-case detour
motivates a second criterion for choosing an optimal route in this decision context.

The concept of blocking also appears in the framework of production planning: A
production chain can be modeled as a graph, where each arc represents a production
substep and the arc costs stand for the money needed to perform the corresponding
substep. Again, it seems reasonable to choose the cheapest production path, unless
unforeseen blockings are taken into consideration.

The one-to-one shortest path problem in a (directed) graph is a well-studied opti-
mization problem both in the single- and in the multiobjective case. The classical
single-objective problem [1,2] can be solved in polynomial time, while the standard
multiobjective version of the shortest path problem [3–5] with a cost vector on each
arc and sum objective functions is NP-complete [6] and intractable [7].

In robust variants [8] of the shortest path problem [9–12], in which the cost of an
arc lies in an interval or in a discrete set, a shortest path with respect to a worst-case
scenario or a so-called maximum regret criterion is calculated. All these variants are
NP-hard, except for the worst-case interval scenario, which reduces to the single-
objective shortest path problem.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Not only shortest paths, but also detours have been studied extensively. Several authors
[13–15] deal with the calculation of the detour-critical arc of a graphG = (V, A)with
distinguished node t ∈ V : The detour of an arc (i, j) ∈ A with i, j ∈ V is defined
as the difference between the cost of a shortest path from i to t and the cost of a
shortest path from i to t that does not use the arc (i, j). The detour-critical arc of a
graph is the arc with the largest detour. Other authors compute the most vital arc or
the most vital node of a graph with distinguished nodes s, t ∈ V [16–18]: The most
vital arc (node) is the arc (node) whose removal maximizes the length of a path from s
to t . A generalization is the network interdiction problem [19,20]: Which set of arcs,
satisfying a limited interdiction budget, should be removed from the graph in order to
maximize the length of a shortest path from s to t?

Moreover, detours have been considered in the context of recoverable robustness
[21]. The recoverable robust shortest path problem that is most closely linked to
the shortest path with shortest detour problem is the k-Canadian Traveler Problem
[22,23], where k ∈ N is a natural number. Here, a strategy is sought that guarantees

123

860 J Optim Theory Appl (2017) 174:858–874

the shortest worst-case travel time between two fixed vertices if at most k roads turn
out to be blocked. This problem is shown to be PSPACE-complete if k is nonconstant
[23].

The problem studied in this article combines the classical single-objective shortest
path problem with the recoverable robust Canadian Traveler Problem, leading to a
biobjective shortest path problemminimizing both objectives. In contrast to the Cana-
dian Traveler Problem, not only the length of a worst-case detour of a path, but also
the length of the path itself is minimized.

The remainder of the article is structured as follows. In Sect. 2.2, we formally intro-
duce the biobjective shortest path with shortest detour problem (SPSDP). Moreover,
we motivate the choice of the second objective function measuring the detour cost of
a path. An algorithm for SPSDP is presented in Sect. 3. We show its correctness and
a polynomial running time. Furthermore, we prove that the number of nondominated
points is bounded by the number of arcs. We conclude the article by discussing further
research directions in Sect. 4.

2.2 Problem Formulation

Let G = (V, A) be a finite graph, directed or undirected, with set of vertices V and set
of arcs A. Since this problem originates from the application in street networks, in the
following, we assume that G does not have parallel arcs. In order to simplify notation,
we speak in both the directed and the undirected case of arcs and use the notation
(i, j) ∈ A. Let s, t ∈ V be two distinct vertices of G, which we want to link by a
shortest path with shortest detour. For i, j ∈ V , we denote byPi, j (G) the set of simple
paths in G from i ∈ V to j ∈ V , and we denote by P(G) the set of all simple paths in
G. A path P ∈ Pi, j (G) is called i- j-path. The travel costs on the arcs of G are given
by c : A → R≥0. We define the cost of a path P ∈ P(G) as c(P) := ∑

(i, j)∈P c(i, j).
In case that P ∈ Ps,t (G), we say that P is a shortest s-t-path if P is an s-t-path of
minimal cost. If i, j ∈ V are two vertices that lie on P and if i lies in front of j , we
define Pi, j as the path given by the subpath of P that starts at i and ends at j .

We introduce an additional cost function dc : A → [0,∞], which may depend on
c, and we call dc(i, j) the detour cost of (i, j) ∈ A. The function dc measures the
detour cost of an arc: The worst that can happen, when traveling on the arc (i, j), is
that the arc turns out to be blocked directly in front of its end vertex j . In this case, one
has already traveled all the way from i to j and has to traverse the whole arc back to i
in order to find an alternative route toward the destination t . The term dc(i, j) indicates
the cost of traveling back from j to i (even though the arc (j, i) /∈ Amight be missing
in G) and proceeding to t without traversing (i, j). Note that we allow dc(i, j) = ∞,
which models among others that it is impossible to traverse the arc (i, j) backward.

Now, let c′ : A → [0,∞] be a cost function. For (i, j) ∈ A, let c′(i, j) model
the cost of turning at j and traveling from j to i . If (i, j) is a one-way road, the arc
cost c′(i, j) might stand for the time that an ambulance needs to turn at j and to go
backward from j to i . We allow c′(i, j) = ∞, which models that it is impossible to go
back from j to i . Then, one of the most prominent examples of a detour cost function
dc : A → [0,∞] is given by

123

J Optim Theory Appl (2017) 174:858–874 861

d1c (i, j) := c′(i, j) + min
P∈Pi,t (G−(i, j))

c(P) (1)

for all (i, j) ∈ A, where we set minP∈Pi,t (G−(i, j)) c(P) := ∞ if the set Pi,t is empty.
The term d1c (i, j) stands for the cost of turning at j , traveling back to i and then

proceeding on the shortest path to t that does not use arc (i, j) ∈ A.

Example 2.1 We give a more general example for the detour function dc, which is
motivated by theCanadianTraveler Problem [22,23] and recovery robust optimization:

We consider the scenario that at most k ∈ N arcs of the graph may be blocked, but
it is a priori unknown which ones. The set of possible realization scenarios is hence
parametrized by the uncertainty set

U = {δ ∈ 2A : |δ| = k},

where 2A denotes the power set of A. By c′ : A → [0,∞] we denote, as above, the
turning cost of an arc, i.e., c′(i, j) denotes the cost of going backward from j to i . As
above, the tuple (j, i) is not necessarily an element of A.

When traveling on a path and encountering atmost k blockings,we use the following
recovery algorithm Ak in order to reach the destination regardless of the blockings:

– When encountering a blocking at the end of arc (i, j) ∈ A, go back to the last
junction spending the turning cost c′(i, j).

– Proceed, not using the arc (i, j), to t on a shortest path with shortest detour expect-
ing one blocking less.

– When having encountered k blockings, continue on the shortest path to the desti-
nation t .

Using the recovery algorithm Ak , the worst-case detour cost dkc (i, j) ∈ [0,∞] of an
arc (i, j) ∈ A is given by the cost of the path that minimizes the worst-case travel cost
when

– encountering a blocking at j ,
– using the recovery algorithm Ak−1 to reach the destination k and
– encountering on the way k − 1 more blockings.

The problem of calculating the detour costs dkc (i, j) is the k-Canadian Traveler
Problem, which is PSPACE-complete [23].

However, if k = 1, i.e., if only one blocking is expected, it holds for (i, j) ∈ A that

d1c (i, j) = c′(i, j) + min
P∈Pi,t (G−(i, j))

c(P),

and all values d1c (i, j) can be calculated in time O (|A| · (|V | log |V | + |A|)) using
Dijkstra’s algorithm [24].

The two objective functions that we consider are

f1 : Ps,t (G) → R

P �→ c(P)

123

862 J Optim Theory Appl (2017) 174:858–874

and

f2 : Ps,t (G) → R ∪ {∞}
P �→ max

(i, j)∈P

(
c(Ps, j) + dc(i, j)

)
.

The function f1 evaluates the travel cost of an s-t-path P . We interpret f2(P) as
follows: For (i, j) ∈ P , the term c(Ps, j) + dc(i, j) stands for the cost of the first part
Ps, j of P plus the cost of traveling from j back to i and further to t without using
arc (i, j). The value f2(P) hence stands for the maximal cost of an alternative path
if, traveling on P , the path P is blocked at some vertex v ∈ V and this blocking was
unknown before reaching v. (A blocking at a vertex is the worst that can happen – in
this case the whole edge has to be traversed backward.) We call f2(P) the detour cost
of P .

The shortest paths with shortest detours problem (SPSDP) is defined as

min(f1(P), f2(P)) s.t. P ∈ Ps,t (G).

SPSDP is a biobjective routing problem with solution set Ps,t (G) and with image set
im(f1, f2) ⊂ R × (R ∪ {∞}). Since we allow the detour cost f2(P) to be infinity, a
necessary and sufficient condition for the feasibility of SPSDP is the existence of an
s-t-path in G.

Since we consider more than one objective function, the optimality concept known
from single-objective problems, with only one optimal objective value, is not appli-
cable. Instead, we are interested in the set of efficient solutions P ∈ Ps,t (G) and the
set of nondominated points (l, u) ∈ im(f1, f2) in the Pareto-sense (e.g., [4]):

Definition 2.1 For two paths P1, P2 ∈ Ps,t (G), we say that the path P1 dominates
the path P2 iff the path P1 is at least as good as P2 in both criteria and better in
at least one of the criteria, i.e., it holds that fk(P1) ≤ fk(P2) for k ∈ {1, 2} and
(f1(P1), f2(P1)) �= (f1(P2), f2(P2)). If there does not exist an s-t-path that domi-
nates the path P1 ∈ Ps,t (G), the path P1 is called efficient. Similarly, we say that a
point (l1, u1) ∈ im(f1, f2) in the solution set dominates a point (l2, u2) ∈ im(f1, f2)
iff it holds that l1 ≤ l2, u1 ≤ u2 and (l1, u1) �= (l2, u2). The point (l1, u1) is called
nondominated iff it is the objective value of an efficient solution P1 ∈ Ps,t (G).

Remark 2.1 The SPSDP is strongly connected to the biobjective shortest path problem
(BSP) [7,25], which is defined as

min(f1(P), f2(P)) s.t. P ∈ Ps,t (G)

with bottleneck function f2(P) = max(i, j)∈P dc(i, j) as second criterion.
However, SPSDP differs structurally from BSP: In contrast to f2, the second objective
function f2 of SPSDP is given by the maximum over (i, j) ∈ P of c(Ps, j) + dc(i, j),
i.e., the terms of which the maximum is taken depend both on P and on (i, j) ∈ P .
Hence, the second objective function of SPSDP considers the cost of a path on a

123

J Optim Theory Appl (2017) 174:858–874 863

“global” level taking into account both arc and path costs, whereas the second objective
function of BSP operates on a “local” level considering only arc costs.
In order to deal with this global scope, an adapted solution algorithm is required: The
example graph in Fig. 1 shows that the minimal complete sets of efficient solutions
for BSP and SPSDP may indeed differ. It is easy to see that {P0, P1, P2} is a minimal
complete set of efficient solutions for BSP, while we will see later on that a minimal
complete set of efficient solution for SPSDP is given by {P0, P2}.

In this article, we present an algorithm that returns a minimal complete set of
efficient s-t-paths for SPSDP, i.e., a set of paths P ⊂ Ps,t (G) that contains precisely
one path P ∈ P with (f1(P), f2(P)) = (l, u) for each nondominated point (l, u) ∈
im(f1, f2) ⊂ R × (R ∪ {∞}). Moreover, we study the structure of the problem.

3 Solution Algorithm

In order to find a minimal complete set of efficient solutions for SPSDP, we use
the threshold algorithm presented below, which iteratively deletes arcs that imply
expensive detour costs. The idea of the algorithm is based on a solution algorithm
for the biobjective shortest path problem with the bottleneck function f2(P) =
max(i, j)∈P c(i, j) as second criterion [7,25]. The structural difference between this
biobjective shortest path problem with bottleneck function and the SPSDP is pointed
out in Remark 2.1. See [26] for multiobjective bottleneck problems in general.

An example illustrating the key features of the SPSDP algorithm is found in Fig. 1.
We choose to include parallel arcs in the example graph in order to keep it compre-
hensible. The steps in the algorithm are the following:

First, the algorithm initializes the candidate set of efficient paths P to be empty.
Second, the cost l−1 of a virtual starting path is set to be −∞ and its detour cost is set
to be ∞.

In the k-th iteration, calculate a shortest path Pk in the current version of the graph
G, its cost lk ← f1(Pk) and its detour cost uk ← f2(Pk).

If the cost lk is greater than the minimal detour cost uk′ of a previously calculated
path Pk′ , i.e., it holds that −1 ≤ k′ ≤ k, the algorithm terminates. We will show that,
in this case, the current version of the graph does not contain an efficient path for the
original problem.

If the detour cost uk of the path Pk is smaller than the detour cost of all previously
calculated paths, we add Pk to the candidate set of efficient paths P . If the cost lk of
Pk is equal to lk−1 and if it holds that Pk−1 ∈ P , we remove Pk−1 from the candidate
set P . We will see that Pk−1 is not efficient in this case.

Next, we update the graph by deleting arcs that produce expensive detour costs:
For every arc (i, j) ∈ A, we calculate the current estimated detour cost

d(i, j) =
(

min
P∈Ps, j (G)

c(P)

)

+ dc(i, j).

The term d(i, j) is a lower bound on the detour cost of a path (in the current graph)
that uses the arc (i, j). We delete all those arcs (i, j) ∈ A from G whose estimated

123

864 J Optim Theory Appl (2017) 174:858–874

s t

1(8)

1(8)

3(12)1(8)

2(10)

2(11)

2(11)

1(9)

2(10)

2(10)

2(11)

1(8)

2(11)

1(9)

1(9)

1(9) 1(9)

3(13)

2(11)

1(9)

1(9)

1(9)

s t

j

i

1(8)

1(8)

1(9)

2(10)

1(9)

2(11)

2(11)

1(8) 1(9)

1(9)

1(9) 1(9) 1(9)

1(9)

1(9)

s t

j

i

1(8)

1(8)

1(9)

2(10)

1(9)

1(8) 1(9)

1(9)

1(9) 1(9) 1(9)

1(9)

1(9)

s t

1(8)

1(8)

1(8)

(a)

(b)

(c)

(d)
Fig. 1 Example of SPSDP algorithm with turning cost c′ = c and detour cost dc = d1c , see Example 2.1.
For each arc, the arc cost and, in parentheses, the current estimated detour cost are indicated. a The thick
red path P0 of length l0 = 6 is a shortest path and added to P = {P0}. Delete all arcs with estimated
detour cost at least u0 = 11. b Now, the thick red path P1 is a shortest s-t-path with u1 = u0, which is
not added to P . Delete all arcs with estimated detour costs at least u1 = 11. Note: Some estimated detour
costs, e.g., on (i, j), have changed because the length of a shortest s-i-path has changed. c The thick red
path P2 is a shortest s-t-path with u2 = 9 < u1 of length l2 = 7 and is, therefore, added to P . Delete all
arcs with estimated detour costs at least u2 = 9. d No s-t-path exists and the algorithm terminates. Return
P = {P0, P2}

123

J Optim Theory Appl (2017) 174:858–874 865

Algorithm 1: SPSDP
Input : A finite directed graph G = (V, A), distinct vertices s, t ∈ V , a cost function

c : A → R≥0, a detour cost function dc : A → [0, ∞]
Output: A minimal complete set P ⊂ Ps,t (G) of efficient solutions for SPSDP

1 P ← ∅, l−1 ← −∞, u−1 ← ∞, k ← 0
2 while Ps,t (G) �= ∅ do
3 for i ∈ V do
4 calculate a shortest s-i-path in G if possible

5 denote the shortest s-t-path calculated in G by Pk , calculate f2(Pk)
6 lk ← f1(Pk), uk ← f2(Pk)
7 if lk > min

−1≤k′≤k
uk′ then

// the length of Pk is larger than the detour cost of all paths
// computed before

8 break

9 if uk < min
−1≤k′<k

uk′ or k = 0 then

// k = 0 or the detour cost of Pk is smaller than the detour
// cost of all paths computed before

10 add Pk to P
11 if lk = lk−1 then
12 if Pk−1 ∈ P then // k − 1 ≥ 0 since l−1 = −∞
13 remove Pk−1 from P

14 for (i, j) ∈ A do
// calculate an estimated detour cost of all arcs

15 d(i, j) ← min
P∈Ps, j (G)

c(P) + dc(i, j)

16 for (i, j) ∈ A do
17 if d(i, j) ≥ min

−1≤k′≤k
uk′ then

// the estimated detour cost of (i, j) is at least
// the detour cost of all previously calculated paths

18 remove (i, j) from A

19 k ← k + 1

20 return P

detour cost d(i, j) is at least the minimal detour cost min−1≤k′≤k uk′ of the previously
calculated paths.

The algorithm returns a set P ⊂ Ps,t (G) of paths, which will turn out to be a
minimal complete set of efficient solutions for SPSDP.

With respect to iteration k ≥ 0, we denote by

– Ak the set of arcs at the beginning of iteration k,
– Gk = (V, Ak) the graph at the beginning of iteration k,
– Pk the path that is calculated in iteration k,
– lk = f1(Pk) the cost and uk = f2(Pk) the detour cost of Pk ,
– dk(i, j) the estimated detour cost of arc (i, j) ∈ Ak , as computed in line 15 of
iteration k, and

– Pk−1 the candidate set of efficient paths at the beginning of iteration k.

123

866 J Optim Theory Appl (2017) 174:858–874

For proving termination of the presented algorithm,we need the following lemmata.
The first one states a lower and an upper bound on the detour cost.

Lemma 3.1 Let P ∈ Ps,t (G) be an s-t-path. Then:

(a) The cost of a path is always smaller than or equal to its detour cost, i.e.,

0 ≤ f1(P) ≤ f2(P).

(b) If it holds that f2(P) < ∞, the detour cost of P is bounded from above by

f2(P) ≤
∑

(i, j)∈A

c(i, j) + max
(i, j)∈A

dc(i, j).

Proof Part (a): Let (i ′, t) be the last arc on the s-t-path P . The detour cost f2(P) is
given by max

(i, j)∈P
c(Ps, j) + dc(i, j). In particular, it holds that

f2(P) ≥ c(Ps,t) + dc(i
′, t) ≥ c(Ps,t).

Part (b): The simple path P cannot use more than all arcs of G. ��
The following lemma shows that the calculation of the detour cost of a shortest

s-t-path in the graph Gk can be simplified.

Lemma 3.2 Let k ≥ 0, and let P ∈ Ps,t (Gk) be a shortest s-t-path in Gk. Then, it
holds that

f2(P) = max
(i, j)∈P

dk(i, j).

Proof Since P is a shortest s-t-path in Gk , the path Ps, j is a shortest s- j-path in Gk

for all (i, j) ∈ P , and we get

f2(P) = max
(i, j)∈P

((

min
P ′∈Ps, j (Gk)

c(P ′)
)

+ dc(i, j)

)

= max
(i, j)∈P

dk(i, j).

��
Next, we analyze how the length of a shortest path and its detour cost vary in

subsequent iterations. Moreover, we show that the number of arcs in the graph Gk

strictly decreases in each iteration.

Lemma 3.3 Let us assume that the while-loop in the SPSDP algorithm is in iteration
k ≥ 0. Then, it holds that

(a) lk−1 ≤ lk ,
(b) uk−1 > uk or lk−1 < lk ,
(c) |Ak | > |Ak+1|, i.e., the number of arcs in Gk decreases in each iteration.

123

J Optim Theory Appl (2017) 174:858–874 867

Proof It holds that l−1 = −∞ and, for k ≥ 0, lk is defined as the cost of a shortest
path in Gk . It follows that l−1 ≤ l0. For k − 1 ≥ 0, the graph Gk is a subgraph of
Gk−1, which implies that

lk−1 ≤ lk .

Assume that lk = lk−1, which means that Pk is not only a shortest path in Gk , but
also in Gk−1. Due to l−1 = −∞, it follows that k − 1 ≥ 0. In the construction of Ak

from Ak−1, precisely those arcs (i, j) ∈ Ak−1 are deleted that fulfill

dk−1(i, j) ≥ min
−1≤k′≤k−1

uk′ .

With Lemma 3.2 and since Pk is a shortest s-t-path in Gk−1, we
obtain

uk = f2(Pk) = max
(i, j)∈Pk

dk−1(i, j) ≤ max
(i, j)∈Ak

dk−1(i, j) < min
−1≤k′≤k−1

uk′ ≤ uk−1.

Finally, we show |Ak | < |Ak+1|: It holds that uk = max(i, j)∈Pk d
k(i, j) due to

Lemma 3.2. Hence, there exists an arc (i, j) ∈ Pk such that

dk(i, j) = uk ≥ min
−1≤k′≤k

uk′ ,

and this arc is being removed from Ak in the construction of Ak+1. ��
Proposition 3.1 The SPSDP algorithm terminates after at most |A| iterations in time
O (|A| · (|V | log |V | + |A|)) .

Proof Since the number of arcs in Gk strictly decreases in each iteration, see
Lemma 3.3, there exists 0 ≤ k̃ ≤ |A| such that Ak̃ = ∅ and Ps,t (Gk̃) = ∅. Then, the
while-loop breaks, and the SPSDP algorithm returns P .

The most time-consuming step in the while-loop is the shortest path calculation at
the beginning, which can be executed in time O(|V | log |V | + |A|), see [24], which
proves the claim. ��

For proving correctness of the SPSDP algorithm, we use the following lemma and
proposition. The lemma states that the “first” path Pk with the lowest detour cost up to
iteration k ≤ k is still contained in the candidate set of efficient paths Pk in iteration
k.

Lemma 3.4 Let k ≥ 0, and assume that the SPSDP algorithm proceeds to iteration
k + 1. Let 0 ≤ k ≤ k be the smallest number such that uk = min

−1≤k′≤k
uk′ . Then, the

path Pk, which is calculated in iteration k, is contained in Pk.

Proof It holds that either uk = ∞, and therefore k = 0, or

uk < min
−1≤k′<k−1

uk′ .

123

868 J Optim Theory Appl (2017) 174:858–874

In both cases Pk ∈ Pk is added to the candidate set of efficient solutions in iteration k,
see line 9 of the algorithm. If it holds that k = k, the claim follows. So let us assume that
k < k. Then, it holds that uk ≤ uk+1 and hence lk < lk+1, see Lemma 3.3. Therefore,
the path Pk is not being removed from the candidate set of efficient solutions in iteration
k + 1, which is the only possibility for removal. ��

The following loop invariants characterize the efficient solutions that are contained
in the candidate set Pk−1 in iteration k − 1 of the SPSDP algorithm.

Proposition 3.2 (Loop invariants)Let k ≥ 0. The following properties are loop invari-
ants for the while-loop in the SPSDP algorithm.

(a) For all nondominated points (l, u) ∈ im(f1, f2) ⊂ R × (R ∪ {∞}) with

l ≤ lk−1 and u ≥ min
−1≤k′≤k−1

uk′ ,

the set Pk−1 contains exactly one efficient s-t-path P ∈ Ps,t (G) such that

(f1(P), f2(P)) = (l, u).

The set Pk−1 may additionally contain Pk−1, but no further elements.
(b) For all remaining nondominated points (l, u) ∈ im(f1, f2), there exists an

efficient s-t-path P ∈ Ps,t (Gk) (and not only in G = G0) such that
(f1(P), f2(P)) = (l, u).

Proof It is easy to check that the loop invariants are fulfilled for k = 0. So let us
assume that k ≥ 0 and that loop invariant (a) is not fulfilled when iteration k+1 starts.

I. First, let us assume that there exists a nondominated point (l, u) ∈ im(f1, f2)
such that

l ≤ lk and u ≥ min
−1≤k′≤k

u′
k

and such that there does not exist a path P ∈ Pk with the property
(f1(P), f2(P)) = (l, u). There are two cases to consider.

i. A path P ∈ Pk−1 fulfills (f1(P), f2(P)) = (l, u): It follows that P is removed
from the candidate set of efficient solutions in iteration k, hence it holds that
P = Pk−1. This implies lk = lk−1 = l, see line 11 of the algorithm, and
uk < uk−1 = u with Lemma 3.3, which is a contradiction to (l, u) being
nondominated.

ii. Pk−1 does not contain a path P that fulfills (f1(P), f2(P)) = (l, u): It follows
from loop invariant (b) for iteration k that there exists an s-t-path P in Gk that
satisfies (f1(P), f2(P)) = (l, u). Since lk is the length of a shortest path in
Gk , we conclude l ≥ lk and, due to the assumption l ≤ lk , also l = lk .

Let 0 ≤ k ≤ k be the smallest number such that uk = min−1≤k′≤k uk′ .
Lemma 3.3 implies that the path Pk , calculated in iteration k, fulfills lk ≤ lk =

123

J Optim Theory Appl (2017) 174:858–874 869

l. This implies u ≤ uk because (l, u) is assumed to be nondominated. As we
assume u ≥ min−1≤k′≤k uk′ , we get

u = uk = min−1≤k′≤k u
′
k .

Since (l, u) is assumed to be nondominated, it follows l = lk ≤ lk . Hence,
the path Pk fulfills (f1(Pk), f2(Pk)) = (l, u), and, according to Lemma 3.4, it
holds that Pk ∈ Pk . This is a contradiction to the assumption in (i).

II. For each nondominated point (l, u) ∈ im(f1, f2) fulfilling

l ≤ lk−1 and u ≥ min−1≤k′≤k−1 uk′ ,

the set Pk−1 contains at most one efficient path P ∈ Ps,t (G) such that
(f1(P), f2(P)) = (l, u): This is true because different paths in P induce dif-
ferent values in the image im(f1, f2), see Lemma 3.3.

III. We assume next that there exists a path P ′ ∈ Pk that is not efficient and that
fulfills P ′ �= Pk . In particular, it holds that k ≥ 1. Since the set Pk is contained
in Pk−1 ∪ {Pk}, it follows from loop invariant (a) for k that P ′ ∈ {Pk−1, Pk} and,
hence, P ′ = Pk−1. Moreover, it follows from loop invariant (b) for k that there
exists a path P ∈ Ps,t (Gk) that dominates Pk−1. Since Pk−1 ∈ Pk is not removed
from Pk in the k-th iteration and since lk is the length of a shortest path in Gk , it
holds that lk−1 < lk ≤ f1(P). This contradicts the assumption that P dominates
Pk−1.

Now, let us assume that loop invariant (b) is not fulfilled for k+1. Then, there exists
a nondominated (l, u) ∈ im(f1, f2)with l > lk or u < min−1≤k′≤k uk′ such that there
does not exist a path P ∈ Ps,t (Gk+1) that fulfills the equality (f1(P), f2(P)) = (l, u).
With Lemma 3.3, it also holds that

u < min
−1≤k′≤k−1

uk′ or l > lk ≥ lk−1.

Hence, it follows from loop invariant (b) for k that there exist an s-t-path P in Gk

such that (f1(P), f2(P)) = (l, u). Since lk is the length of a shortest path in Gk , we
obtain lk ≤ l.

Let k ≥ 0 be the smallest number such that uk = min−1≤k′≤k uk′ . It holds that
(l, u) = (lk, uk): Due to Lemma 3.3, the equation l ≥ lk ≥ lk follows. Moreover, the
path P ∈ Ps,t (Gk) contains an arc (i, j) ∈ Ak that is not contained in Ak+1 since
otherwise P would be contained in Ps,t (Gk+1). Therefore, the arc (i, j) has been
deleted in iteration k, which implies

u ≥ max
(v,w)∈P

dk(v,w) ≥ dk(i, j) ≥ min
−1≤k′≤k

uk′ = uk .

Since (l, u) is assumed to be nondominated, we conclude (l, u) = (lk, uk). This is a
contradiction to l > lk ≥ lk or u < min−1≤k′≤k uk′ = uk . ��

123

870 J Optim Theory Appl (2017) 174:858–874

Theorem 3.1 The SPSDP algorithm described above returns a minimal complete set
P ⊂ Ps,t (G) of efficient solutions for SPSDP.

Proof Denote k ≥ 0 as the iteration in which the while-loop of the SPSDP algorithm
breaks, and assume that Pk is not a minimal complete set of efficient solutions.

I. Assume first that the while-loop breaks because there does not exist any s-t-path
in Gk . This means that there are no efficient paths in Gk , and we conclude, with
loop invariant (b), that there are no nondominated points (l, u) ∈ im(f1, f2) that
fulfill l > lk−1 or u < min

−1≤k′≤k−1
uk′ .

If it holds that Pk−1 /∈ Pk or if the path Pk−1 is efficient, it follows from loop
invariant (a) that P = Pk−1 is a minimal complete set of efficient solutions for
SPSDP.

So let us assume that Pk−1 ∈ Pk−1 and that the path Pk−1 is not efficient. Then,
it holds, due to Pk−1 ∈ Pk−1, that uk−1 < min−1≤k′≤k−2 uk′ and that none of the
paths P0, . . . , Pk−2 dominate Pk−1. It follows from loop invariant (b) that there
exists an efficient s-t-path P in Gk that dominates Pk−1, which is a contradiction
to the assumption that there are no efficient s-t-paths in Gk .

II. Now let us assume that the while-loop breaks because it holds that

lk > min
−1≤k′≤k

uk′ .

Let k be the smallest argument for which this minimum is attained. With
Lemma 3.1, the equation

f2(P) ≥ f1(P) ≥ lk > uk ≥ lk

follows for all s-t-paths P in Gk . Hence, Pk dominates all s-t-paths in Gk , and
there are no s-t-paths in Gk that are efficient for the original problem. Now, the
claim follows with the same argument as in case I. ��
Having proven the correctness and termination of the SPSDP algorithm, we state

additional results on the structure of SPSDP in the remainder of this section.

Corollary 3.1 The number of nondominated points for SPSDP is bounded by the
number of arcs.

Proof In each iteration at most one path is added to the candidate set of efficient
solutions Pk . Consequently, the claim

follows from Theorem 3.1 and Lemma 3.1. ��
Remark 3.1 Although the number of nondominated points for SPSDP is bounded by
|A|, there can be exponentially many efficient solutions, e.g., in the (quadratic) grid
graph, in which all arc lengths are equal.

123

J Optim Theory Appl (2017) 174:858–874 871

Example 3.1 Let k ∈ N, and let the detour cost function be given by dc = dkc , which
is being calculated from c′ : A → [0,∞] as in Example 2.1. Using the presented

algorithm, SPSDP can be solved in time O
(
|A| · (|V | log |V | + |A|)

)
.

Note that the solution of SPSDP does not include the calculation of dkc from the cost
function c′. So let us assume that we know c′, but not dkc . If it holds that k = 1, the
calculation of the detour cost function dkc = d1c , together with the solution of SPSDP,

can still be done in timeO
(
|A|·(|V | log |V |+|A|)

)
. For k > 1, this extended problem,

which includes both the calculation of dkc from c′ and the solution of SPSDP, turns
PSPACE-complete. Both statements follow from Example 2.1.

Theorem 3.1 says that the number of nondominated points is bounded by |A|. Its
proof is indirect and based on the correctness and termination of the SPSDP algorithm.
On one hand, the following proposition is the key to a direct proof of this statement.
On the other hand, the proposition provides more information about the structure of
the set of nondominated points.

Proposition 3.3 Let P1, P2 ∈ Ps,t (G) be two efficient paths and assume that there
exists an arc (i, j) ∈ P1 ∩ P2 such that both paths attain the maximum in the detour
function

f2 : Ps,t (G) → R ∪ {∞}
P �→ max

(k,l)∈P

(
c(Ps,l) + dc(k, l)

)
.

at arc (i, j). Then, both paths induce the same nondominated point in the image
im(f1, f2), i.e., (f1(P1), f2(P1)) = (f1(P2), f2(P2)).

Proof We assume that the paths P1 and P2 are efficient and that it holds f1(P1) �=
f1(P2) or f2(P1) �= f2(P2). We split the two paths into their first part Pk

s,i and their

second part Pk
j,t , k ∈ {1, 2}. By symmetry, only two cases occur:

I. c
(
P1
s,i

)
≥ c

(
P2
s,i

)
and c

(
P1
j,t

)
≥ c

(
P2
j,t

)
:

The cost f1(P1) is at least the cost of P2. Since themaximum in the detour function
f2 is attained at (i, j) ∈ A for both paths, we get

f2(P
1) = c

(
P1
s,i

)
+ c(i, j) + dc(i, j) ≥ c

(
P2
s,i

)
+ c(i, j) + dc(i, j)= f2(P

2).

This means that P2 dominates P1, which is a contradiction.
II. c

(
P1
s,i

)
≤ c

(
P2
s,i

)
and c

(
P1
j,t

)
≥ c

(
P2
j,t

)
:

We consider a third path

P3 = P1
s,i ◦ (i, j) ◦ P2

j,t ,

123

872 J Optim Theory Appl (2017) 174:858–874

which fulfills that f1(P3) ≤ f1(Pk), where k ∈ {1, 2}. We claim that P3 attains
the maximum in the detour function f2 at the arc (i, j):
Assume that there exists an arc (i, j) �= (v,w) ∈ P3 which fulfills that

c
(
P3
s,w

)
+ dc(v,w) > c

(
P3
s, j

)
+ dc(i, j).

If the arc (v,w) lies in front of the arc (i, j) on P3, it follows that

c
(
P3
s,w

)
= c

(
P1
s,w

)
and c

(
P3
s, j

)
= c

(
P1
s, j

)
.

Furthermore, the maximum in the detour function f2(P1) is not attained at (i, j)
either.

So assume that (v,w) lies behind (i, j) on P3. For all vertices w′ that lie behind
the vertex i on P3, it holds that

c
(
P2
s,w′

)
= c

(
P3
s,w′

)
+

(
c
(
P2
s,i

)
− c

(
P1
s,i

))
,

i.e., the travel costs of P2
s,w′ and P3

s,w′ differ only by a constant. It follows that

c
(
P2
s,w

)
+ dc(v,w) > c

(
P2
s, j

)
+ dc(i, j),

and the maximum in the detour function f2 of P2 is not attained at (i, j).

Hence, P1, P2 and P3 obtain the maximum in the detour function at (i, j), and it
follows that

f2(P
3) = f2(P

1) = c
(
P1
s,i

)
+ c(i, j) + dc(i, j)

≤ c
(
P2
s,i

)
+ c(i, j) + dc(i, j) = f2(P

2).

Weconclude that P3 is at least as good as P1 and P2 in both criteria f1 and f2. This
is a contradiction to the assumption that P1 and P2 are efficient, but correspond
to different nondominated points in the image im(f1, f2). ��

4 Conclusions

In this article, we introduce the biobjective routing problem SPSDP of finding shortest
paths with shortest detours and present an algorithm that solves SPSDP in polynomial
time. Moreover, we prove several structural statements. In particular, we show that the
number of nondominated points for SPSDP is bounded by the number of arcs in G.

123

J Optim Theory Appl (2017) 174:858–874 873

We studied the concept of arc failures in graphs. One could carry this idea and
the SPSDP algorithm over to combinatorial optimization and study the class of prob-
lems that are solvable with it. Another future research idea is to apply the concept
of blockings to multiobjective shortest paths with several arc costs ck : A → R≥0,
k = 1, . . . , q. Each cost function ck implies a detour cost function dck : A → R

on the arcs and hence also on the set of s-t-paths. One could, on one hand, scalarize
these detour functions to one objective function measuring the recovery cost. On the
other hand, it would be interesting to study the arising multiobjective problem with
one detour cost function for each arc cost ck .

Acknowledgements The authors are partly supported by the German Federal Ministry of Education and
Research (BMBF), Reference Number 13N12825.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Upper Saddle River (1993)

2. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem. Series in Discrete
Mathematics and Computer Science, vol. 74. American Mathematical Society, Providence (2009)

3. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16, 236–245 (1984)
4. Ehrgott, M.: Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol.

491, 2nd edn. Springer, Berlin (2005)
5. Ulungu, E., Teghem, J.: Multi-objective shortest path problem: a survey. In: Proceedings of the Inter-

national Workshop on Multicriteria Decision Making: Methods–Algorithms–Applications at Liblice,
Czechoslovakia, pp. 176–188 (1991)

6. Serafini, P.: Some considerations about computational complexity for multi objective combinatorial
problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Opti-
mization. Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 222–232. Springer,
Berlin (1986)

7. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Lecture Notes in Economics and
Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1980)

8. Goerigk, M., Schöbel, A.: Algorithm engineering in robust optimization. In: Kliemann, L., Sanders,
P. (eds.) Algorithm Engineering, pp. 245–279. Springer, Cham, Switzerland (2016)

9. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Nonconvex Optimization and
Its Applications. Springer, Dordrecht (1997)

10. Yu, G., Yang, J.: On the robust shortest path problem. Comput. Oper. Res. 25(6), 457–468 (1998)
11. Zielinski, P.: The computational complexity of the relative robust shortest path problem with interval

data. Eur. J. Oper. Res. 158, 570–576 (2004)
12. Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization problems. Discrete Appl.

Math. 138, 289–301 (2004)
13. Nardelli, E., Proietti, G., Widmayer, P.: Finding the detour-critical edge of a shortest path between two

nodes. Inf. Process. Lett. 67(1), 51–54 (1998)
14. Xu, Y., Yan, H.: Real time critical edge of the shortest path in transportation networks. In: Cai, J.Y.,

Cooper, S., Li, A. (eds.) Theory and Applications of Models of Computation. Lecture Notes in Com-
puter Science, vol. 3959, pp. 198–205. Springer, Berlin (2006)

15. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: What is an edge worth? In: Proceedings of
42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 252–259. IEEE (2001)

16. Corley,H., David,Y.S.:Most vital links and nodes inweighted networks. Oper. Res. Lett. 1(4), 157–160
(1982)

17. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theor. Comput.
Sci. 296, 167–177 (2003)

18. Malik, K., Mittal, A., Gupta, S.: The k most vital arcs in the shortest path problem. Oper. Res. Lett.
8(4), 223–227 (1989)

19. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)

123

874 J Optim Theory Appl (2017) 174:858–874

20. Rocco, C.M., Ramirez-Marquez, J.E.: A bi-objective approach for shortest-path network interdiction.
Comput. Indus. Eng. 59(2), 232–240 (2010)

21. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear
programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D.
(eds.) Robust and Online Large-Scale Optimization, vol. 5868. Springer, Berlin (2009)

22. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello, G., Dezani-
Ciancaglini, M., Della Rocca, S.R. (eds.) Automata, Languages and Programming, Lecture Notes
in Computer Science, vol. 372. Springer, Berlin (1989)

23. Bar-Noy, A., Schieber, B.: The Canadian traveller problem. In: Proceedings of the Second Annual
ACM-SIAM Symposium on Discrete Algorithms (1991)

24. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. J. ACM 34(3), 596–615 (1987)

25. Pelegrin, B., Fernandez, P.: On the sum-max bicriterion path problem. Comput. Oper. Res. 25(12),
1043–1054 (1998)

26. Gorski, J., Klamroth, K., Ruzika, S.: Generalized multiple objective bottleneck problems. Oper. Res.
Lett. 40(4), 276–281 (2012)

123

	Shortest Paths with Shortest Detours
	A Biobjective Routing Problem
	Abstract
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 Preliminaries
	2.2 Problem Formulation

	3 Solution Algorithm
	4 Conclusions
	Acknowledgements
	References

