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Abstract In this paper, we present higher-order analysis of necessary and sufficient
optimality conditions for problems with inequality constraints. The paper addresses
the case when the constraints are not assumed to be regular at a solution of the opti-
mization problems. In the first two theorems derived in the paper, we show how
Karush–Kuhn–Tucker necessary conditions reduce to a specific form containing the
objective function only. Then we present optimality conditions of the Karush–Kuhn–
Tucker type inBanach spaces under new regularity assumptions. After that, we analyze
problems for which the Karush–Kuhn–Tucker form of optimality conditions does not
hold and propose necessary and sufficient conditions for those problems. To formu-
late the optimality conditions, we introduce constraint qualifications for new classes of
nonregular nonlinear optimization. The approach of p-regularity used in the paper can
be applied to various degenerate nonlinear optimization problems due to its flexibility
and generality.
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1 Introduction

The primary focus of the paper is on Karush–Kuhn–Tucker-type (KKT) optimal-
ity conditions for optimization problems with inequality constraints for the cases
when regularity assumptions (constraint qualifications) known in the literature (see,
for example, [1]) are not satisfied at a solution. One goal of the paper is to present
KKT-type optimality conditions in Banach spaces under new regularity assumptions.
Another goal is to analyze problems for which the KKT form of optimality conditions
does not hold (see Example 7.1) and to propose necessary and sufficient conditions
for those problems.

The regularity assumptions proposed in the paper expand constraint qualifications
known in the literature (e.g., [1–4]) to new classes of optimization problems. While
work [1] gives a careful comparison and classification of the existing constraint quali-
fications, all of them are stated using at most the first derivatives of the constraints. The
regularity assumptions proposed in this paper expand considerations to new classes
of problems by using higher-order derivatives. As a result, our approach allows us to
analyze problems, where, for example, the first-order derivatives of all constraints are
equal to zero, which are not covered by any regularity assumptions given in [1–4].
Also, in addition to the classical KKT-type optimality conditions analyzed in [1–4],
our approach is applicable to cases when theKKTTheorem fails but generalized forms
of the KKT conditions can be derived.

There is the extended literature on generalizations of the KKT Theorem to an
infinite-dimensional setting (the relevant references can be found, for example, in
[5, p. 159] or in [6–8]). Our approach is based on the construction of p-regularity
introduced earlier in [9–12]. The main idea of the p-regularity is that it replaces
the operator of the first derivative, which is not surjective, by a special operator that
is onto. Various optimality conditions proposed for the degenerate case are given,
for example, in [13–18]. An approach similar to ours is used in [19–22]. The main
differences between optimality conditions proposed in this paper and those in [19–22]
are that we consider a more general case of p ≥ 2 and do not make some additional
assumptions introduced in [19–22]. We give a more detailed comparison in Sect. 8.

The paper is organized as follows.We formulate the problem inSect. 2.We startwith
an absolutely degenerate case in Sect. 3, when the Karush–Kuhn–Tucker necessary
conditions reduce to a specific form containing the objective function only. In Sect. 4.1,
we analyze some cases, when the KKT conditions hold for nonregular problemswith a
nonzero multiplier corresponding to the objective function and present new KKT-type
optimality conditions in Theorems 4.1 and 4.2. After that, in Sect. 4.2, we analyze
problems for which the Karush–Kuhn–Tucker form of optimality conditions does not
hold. Necessary and sufficient conditions derived in Theorem 4.4 can be viewed as
generalized KKT optimality conditions. As auxiliary results, we derive new geometric
necessary conditions in Lemmas 3.1 and 4.1. In Sect. 5, we consider a general case
of degeneracy, where we do not make assumption (10), which is one of the main
assumptions in Sect. 4. A new approach presented in Sect. 5 was briefly announced in
our paper [23] and is used to reduce degenerate optimization problems to new forms,
so that one can use simpler ways to analyze those problems. Some directions for future
work are briefly described in Sect. 6. We illustrate the optimality conditions by some
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examples in Sect. 7, give additional comparison with other results in Sect. 8, and
conclude the paper with Sect. 9.

2 Formulation of the Problem

We consider a nonlinear optimization problem with inequality constraints

min
x∈X f (x) s.t. g(x) = (g1(x), . . . , gm(x)) ≤ 0, (1)

where the functions f and gi are sufficiently smooth functions from the Banach space
X to R. In the case when the Linear Independence Constraint Qualification is not
satisfied at a solution x̄ of the problem (1), we call the problem degenerate (nonregular)
at x̄ . The Karush–Kuhn–Tucker (KKT) Theorem states that if x̄ is a local solution of
problem (1) and a regularity assumption holds, then there exist Lagrange multipliers
λ∗
1, . . . , λ

∗
m such that

f ′(x̄) +
m∑

j=1

λ∗
j g

′
j (x̄) = 0, g(x̄) ≤ 0, λ∗

j ≥ 0, λ∗
j g j (x̄) = 0, j = 1, . . . ,m.

(2)
It is interesting to note that, while the first equation in (2) holds, the requirement that the
Lagrange multipliers λ∗

j are nonnegative can be violated for degenerate optimization
problems. For example, note that x̄ = 0 is a local minimizer for the problem:

min
x∈X f (x) = −x2 s.t. g1(x) = −x21 − x2 ≤ 0, g2(x) = x121 + x32 ≤ 0.

Then, the first equation in (2) reduces to

(
0

−1

)
+ λ1

(
0

−1

)
+ λ2

(
0
0

)
=

(
0
0

)

and yields λ1 < 0, contradicting λ j ≥ 0 in (2). For problems of this type, Theorem
4.4 and Theorem 5.1 give necessary optimality conditions, which can be viewed as a
generalized form of the KKT conditions and guarantee that all Lagrange multipliers
are of the same sign. Example 7.1 illustrates this case.

Notation: For some set C , we denote the span of C by span(C), and the set
of all nonnegative combinations of vectors in C by coneC . We let g(p)

i (x) be the

pth derivative of gi : X → R
n at the point x ; the associated p-form is g(p)

i

(x)[h]p := g(p)
i (x)(h, h, . . . , h).Notation g(p)

i (x)[h]p−1 means
(
g(p−1)
i (x)[h]p−1

)′
x

(see [24] for additional details). The other notationwill be introduced below as needed.

3 New Optimality Conditions for an Absolutely Degenerate Case and an
Even p

Throughout this section, we assume that p is an even number and
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g( j)
i (x̄) = 0, j = 1, . . . , p − 1, ∀i ∈ I (x̄), (3)

where I (x̄) is the set of indices of active constraints at x̄ , I (x̄) := {i = 1, . . . ,m :
gi (x̄) = 0}. The case of an odd p was covered in our paper [25].

We need the following additional notation.
Let S := {x ∈ X : gi (x)≤ 0, i = 1, . . . ,m} denote the feasible set for problem (1),

Gp(x̄, h) := {d ∈ X : 〈g(p)
i (x̄)[h]p−1, d〉 ≤ 0, ∀i ∈ I (x̄)} for some h ∈ X , and

F0(x̄) := {d ∈ X : 〈 f ′(x̄), d〉 < 0}. (4)

The following theorem presents one of the main results of this section.

Theorem 3.1 Let x̄ be a local minimizer of problem (1), f (x) ∈ C2(X), and
gi (x) ∈ C p+1(X), i = 1 . . .m. Assume that (3) holds with some even p and that
there exist vectors h ∈ X, ‖h‖ = 1, and ξ ∈ X, ‖ξ‖ = 1, such that for all i ∈ I (x̄),

g(p)
i (x̄)[h]p = 0 and 〈g(p)

i (x̄)[h]p−1, ξ 〉 < 0. (5)

Then f ′(x̄) = 0.

Note that assumption (5) can be viewed as a newgeneralization of theMangasarian–
Fromovitz constraint qualification.

Without loss of generality, we may assume that I (x̄) = {1, . . . ,m} throughout
the paper, because the continuity of gi (x) for i /∈ I (x̄) prevents gi (x̄) from taking
the value 0 on some neighborhood of x̄ . We need the following lemmas to prove
Theorem 3.1.

Lemma 3.1 (Geometric Necessary Condition) Let the assumptions of Theorem 3.1
hold. Then

F0(x̄) ∩ Gp(x̄, h) = ∅. (6)

Proof Assume on the contrary that there exists d ∈ F0(x̄) ∩ Gp(x̄, h). Without loss
of generality, let ‖d‖ = 1. Since d ∈ Gp(x̄, h),

〈g(p)
i (x̄)[h]p−1, d〉 ≤ 0 ∀ i ∈ I (x̄). (7)

First, we will prove that 〈 f ′(x̄), h〉 = 0. Assume on the contrary that 〈 f ′(x̄), h〉 �= 0.
Let ξ ∈ X satisfy (5) and consider x̄ + th + t3/2ξ and x̄ − th − t3/2ξ for some
sufficiently small t . Then, for i ∈ I (x̄), we get the following inequalities with r̄i (t)
and r̃i (t), ‖r̄i (t)‖ = o(t p+1/2), ‖r̃i (t)‖ = o(t p+1/2),

gi (x̄ + th + t3/2ξ) = 1

p!
(
gp
i (x̄)[th]p + t p+1/2〈gp

i (x̄)[h]p−1, ξ 〉
)

+ r̄i (t) ≤ 0,

gi (x̄ − th − t3/2ξ) = 1

p!
(
gp
i (x̄)[th]p + t p+1/2〈gp

i (x̄)[−h]p−1,−ξ 〉
)

+ r̃i (t) ≤ 0.

123



J Optim Theory Appl (2017) 174:367–387 371

The inequalities imply that x̄ + th + t3/2ξ ∈ S and x̄ − th − t3/2ξ ∈ S for all
sufficiently small t . Then 〈 f ′(x̄), h〉 �= 0 yields f (x̄ + th + t3/2ξ) < f (x̄) or
f (x̄−th−t3/2ξ) < f (x̄), which contradicts the assumption that x̄ is a localminimizer
and proves 〈 f ′(x̄), h〉 = 0.

Now, consider x(t) = x̄ + th + t3/2d + t7/4ξ . For every i = 1, . . . ,m, by
assumptions i ∈ I (x̄) and (3), there exist δi > 0 and ri :]0, δi [→ R such that
‖ri (t)‖ = o(t p+3/4) and

gi (x(t)) = gi (x̄ + th + t3/2d + t7/4ξ)

= 1

p!
(
gp
i (x̄)[th]p + t p+1/2〈gp

i (x̄)[h]p−1, d〉 + t p+3/4〈gp
i (x̄)[h]p−1, ξ 〉

)

+ri (t), ∀t ∈]0, δi [.

Hence, by (5) and (7), there exists εi ∈]0, δi [ such that gi (x(t)) ≤ 0 for all t ∈]0, εi [.
Taking ε = min

i=1,...,m
εi , we get gi (x(t)) ≤ 0 for all i = 1, . . . ,m, and, therefore, x(t)

is feasible for problem (1) for any t ∈]0, ε[. Then d ∈ F0(x̄) and 〈 f ′(x̄), h〉 = 0 yield
f (x(t)) < f (x̄) for all t ∈]0, ε[, which contradicts the assumption that x̄ is a local
minimizer and proves (6). ��
Lemma 3.2 Let X be a Banach space and X∗ be its dual space. Given a set of vectors
ηi ∈ X∗, i = 1, . . . r , let z ∈ X be a vector such that 〈z, ηi 〉 < 0, i = 1, . . . , r .
Assume also that for some vector η ∈ X∗, there exist numbers αi ≥ 0 and βi ≤ 0,

i = 1, . . . , r , such that η =
r∑

i=1
αiηi and η =

r∑
i=1

βiηi . Then η = 0.

Proof By assumptions of the lemma,
r∑

i=1
αiηi =

r∑
i=1

βiηi and

0 ≥
r∑

i=1

αi 〈z, ηi 〉 =
r∑

i=1

βi 〈z, ηi 〉 ≥ 0,

since 〈z, ηi 〉 < 0, αi ≥ 0, and βi ≤ 0, i = 1, . . . , r. Therefore, αi = βi = 0,
i = 1, . . . , r, and η = 0, which proves the lemma. ��

We will need the following generalization of the Farkas Lemma in Banach spaces.

Lemma 3.3 (Farkas) Consider c, η1, . . . , ηr ∈ X∗. Exactly one of the following
holds:

(*) there exists x ∈ X with 〈ηi , x〉 ≤ 0 ∀i = 1, . . . , r , and 〈c, x〉 > 0.
(**) there exists nonnegative scalars μ1, . . . , μr such that c = μ1η1 + . . . + μrηr .

Now we are ready to prove Theorem 3.1.

Proof (Theorem 3.1) Let ηi = g(p)
i (x̄)[h]p−1, i ∈ I (x̄), and c = − f ′(x̄). Then, by

Lemma 3.1, part (*) in Lemma 3.3 does not hold, so, by part (**), there exist scalars
βi ≤ 0, i ∈ I (x̄), such that
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f ′(x̄) =
∑

i∈I (x̄)
βi g

(p)
i (x̄)[h]p−1. (8)

Note that the assumptions of the theorem also hold with the vector −h. Indeed, (5)
can be written as g(p)

i (x̄)[−h]p = 0 and 〈g(p)
i (x̄)[−h]p−1,−ξ 〉 < 0. Then, similar to

considerations above, by Lemma 3.3, there exist γi ≤ 0, i ∈ I (x̄), such that

f ′(x̄) =
∑

i∈I (x̄)
γi g

(p)
i (x̄)[−h]p−1 =

∑

i∈I (x̄)
(−γi )g

(p)
i (x̄)[h]p−1. (9)

Introducing αi = −γi ≥ 0 and using Lemma 3.2 with ηi defined above, η = f ′(x̄),
and z = −ξ , we get f ′(x̄) = 0, which finishes the proof of the theorem. ��

Note that conditions (8) and (9) can be viewed as generalizations of the KKT-type
optimality conditions. However, the constraint qualification in the form (5) implies
f ′(x̄) = 0. The following theorem is a simple corollary of Theorem 3.1.

Theorem 3.2 Let x̄ be a local minimizer of problem (1), f (x) ∈ C2(X), and
gi (x) ∈ C p+1(X), i = 1 . . .m. Assume that (3) holds with some even p and that
the vectors g(p)

i (x̄)[h]p−1, i ∈ I (x̄), are linearly independent for some h satisfying

g(p)
i (x̄)[h]p = 0, i ∈ I (x̄). Then f ′(x̄) = 0.

4 Optimality Conditions in the General Case of Degeneracy with p = 2

In this section, we analyze some cases when the KKT Theorem holds for nonregular
problems. Then, we introduce generalizations of the KKT conditions for some cases
when the KKT Theorem does not hold. For now, we assume that there exists a number
r ∈ {1, . . . ,m − 1} such that

g′
i (x̄) �= 0, i = 1, . . . , r, g′

i (x̄) = 0, i = r + 1, . . . ,m. (10)

A more general case without assumption (10) is considered in Sect. 5 of the paper.

4.1 When the KKT Theorem Holds

We start with a special case when there exists a vector h ∈ X , h �= 0, such that

〈g′
i (x̄), h〉 = 0, i = 1, . . . , r, 〈g′′

i (x̄)h, h〉 = 0, i = r + 1, . . . ,m. (11)

We use the following notation and assumptions in this section:

G2(x̄, h) := {d ∈ X : 〈g′
i (x̄), d〉 ≤ 0, i = 1, . . . , r;

〈g′′
i (x̄)[h], d〉 ≤ 0, i = r + 1, . . . ,m}. (12)

Assumption 1 (A generalized MFCQ-type 2-regularity assumption) For a vector h
satisfying (11), assume the following
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Part A. There exists a vector ξ ∈ X , ‖ξ‖ = 1, such that

〈g′
i (x̄), ξ 〉 < 0, i = 1, . . . , r, 〈g′′

i (x̄)h, ξ 〉 < 0, i = r + 1, . . . ,m. (13)

Part B. There exists a vector η ∈ X , ‖η‖ = 1, such that

〈g′
i (x̄), η〉 < 0, i = 1, . . . , r, 〈g′′

i (x̄)h, η〉 > 0, i = r + 1, . . . ,m.

Assumption 2 For some h, satisfying (11), assume that C1 ∩ C2 = {0}, where
C1 := span{g′

1(x̄), . . . , g
′
r (x̄)} and C2 := cone{g′′

r+1(x̄)[h], . . . , g′′
m(x̄)[h]}.

The following theorem can be viewed as a generalization of the KKT Theorem.

Theorem 4.1 (Necessary optimality conditions) Assume that x̄ is a local minimizer
of problem (1), f (x) ∈ C1(X), and gi (x) ∈ C2(X), i = 1, . . . ,m. Assume that (10)
holds and that there exists a vector h ∈ X, h �= 0, such that (11) holds. Suppose that
Assumptions 1 and 2 hold for problem (1). Then there exist λ∗

i ≥ 0, i = 1, . . . , r , such
that

f ′(x̄) +
r∑

i=1

λ∗
i g

′
i (x̄) = 0. (14)

Remark 4.1 Note the following:

1. The multipliers λ∗
i in Theorem 4.1 do not depend on the vector h.

2. Only g1(x̄), . . . , gr (x̄) are used in equation (14).
3. In the case when g′

i (x̄) = 0, i = 1, . . . , r , equation (14) reduces to f ′(x̄) = 0.
4. The generalized MFCQ-type 2-regularity assumption (Assumption 1) is a new

constraint qualification.

We will need the following lemma to prove Theorem 4.1. Recall that the sets F0(x̄)
and G2(x̄, h) are introduced in (4) and (12), respectively.

Lemma 4.1 (Geometric Necessary Condition) Let the assumptions of Theorem 4.1
hold. Then

F0(x̄) ∩ G2(x̄, h) = ∅. (15)

Proof First, we will prove that 〈 f ′(x̄), h〉 = 0 for h that satisfies Assumption 1 and
‖h‖ = 1. Assume on the contrary that 〈 f ′(x̄), h〉 �= 0.

1. If i ∈ {1, . . . , r}, then gi (x̄) = 0 and, by Assumption 1, (11), and Tay-
lor’s expansion, there exist vectors ξ and η, ‖ξ‖ = 1, ‖η‖ = 1, a sufficiently
small δ > 0 and ωi j :]0, δ[→ R such that |ωi j (t)| = o(t3/2), j = 1, 2, and
gi (x̄+th+t3/2ξ) = 〈g′

i (x̄), th〉+〈g′
i (x̄), t

3/2ξ 〉+ωi1(t)= 〈g′
i (x̄), t

3/2ξ 〉+ωi1(t) < 0,
gi (x̄−th+t3/2η)=−〈g′

i (x̄), th〉+〈g′
i (x̄), t

3/2η〉+ωi2(t)=〈g′
i (x̄), t

3/2η〉+ωi2(t) < 0
for all t ∈]0, δ[.

2. If i ∈ {r + 1, . . . ,m}, then gi (x̄) = 0, g′
i (x̄) = 0, and similarly to

the above, there exist functions ωi j :]0, δ[→ R such that |ωi j (t)| = O(t3),

j = 3, 4, and gi (x̄ + th + t3/2ξ) = gi (x̄) + 1
2 〈g′′

i (x̄)th, t3/2ξ 〉 + ωi3(t) < 0,
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gi (x̄ − th + t3/2η) = gi (x̄) − 1
2 〈g′′

i (x̄)th, t3/2η〉 + ωi4(t) < 0 for all t ∈]0, δ[.
Thus, x̄+ th+ t3/2ξ ∈ S and x̄− th+ t3/2η ∈ S for all t ∈]0, δ[. Then the assumption
〈 f ′(x̄), h〉 �= 0 above implies that either f (x̄ + th + t3/2ξ) < f (x̄) or f (x̄ − th +
t3/2η) < f (x̄), which contradicts the minimality of x̄ and proves 〈 f ′(x̄), h〉 = 0.

To prove (15), assume on the contrary that there exists d ∈ F0(x̄)∩G2(x̄, h). Then
similarly to the above and by using Assumption 1, there exists a sufficiently small
δ > 0 such that x(t) = x̄ + th + t3/2d + t7/4ξ ∈ S for all t ∈]0, δ[. This inclusion,
together with d ∈ F0(x̄) and 〈 f ′(x∗), h〉 = 0, yields f (x(t)) < f (x̄) for all t ∈]0, δ[,
which contradicts the minimality of x̄ and proves (15). ��

Now we are ready to prove Theorem 4.1.

Proof (Theorem 4.1) Let η1 = g′
1(x̄), . . . , ηr = g′

r (x̄), ηr+1 = g′′
r+1(x̄)[h], . . . ,

ηm = g′′
m(x̄)[h], and c = − f ′(x̄). Then, by Lemma 4.1, part (*) in Lemma 3.3 does

not hold, so by part (**), there exist scalars λ∗
i ≥ 0, i = 1, . . . , r , and γ ∗

i ≥ 0,
i = r + 1, . . . ,m, such that

f ′(x̄) = −
r∑

i=1

λ∗
i g

′
i (x̄) −

m∑

i=r+1

γ ∗
i g

′′
i (x̄)[h]. (16)

Note that the assumptions of Theorem 4.1 also hold with the vector −h. Then, using
similar arguments, there exist λ̄∗

i ≥ 0, i = 1, . . . , r , and γ̄ ∗
i ≥ 0, i = r + 1, . . . ,m,

such that

f ′(x̄) = −
r∑

i=1

λ̄∗
i g

′
i (x̄) −

m∑

i=r+1

γ̄ ∗
i g

′′
i (x̄)(−h). (17)

Equations (16) and (17) imply

r∑

i=1

λ̄∗
i g

′
i (x̄) −

r∑

i=1

λ∗
i g

′
i (x̄) =

m∑

i=r+1

γ̄ ∗
i g

′′
i (x̄)[h] +

m∑

i=r+1

γ ∗
i g

′′
i (x̄)[h]. (18)

Consider two cases. In the first case, we assume that

r∑

i=1

λ∗
i g

′
i (x̄) =

r∑

i=1

λ̄∗
i g

′
i (x̄). (19)

Then by Lemma 3.2, γ ∗
i = γ̄ ∗

i = 0, i = r + 1, . . . ,m, so (14) holds and we are done.
In the second case, suppose that (19) does not hold and recall that the setsC1 andC2

are defined inAssumption 2. In this case, equation (18) implies that there exists a vector

d ∈ C1 ∩ C2 such that d =
r∑

i=1
(λ̄∗

i − λ∗
i )g

′
i (x̄) =

m∑
i=r+1

(γ̄ ∗
i + γ ∗

i )g′′
i (x̄)[h]. Hence,

Assumption 2 is violated and (19) holds, which finishes the proof of the theorem. ��
In the following theorem, we propose necessary conditions for optimality without

using Assumption 2. Instead, without loss of generality, we assume that the vectors
g′
1(x̄), . . . , g

′
r (x̄), g

′′
r+1(x̄)[h], . . ., g′′

m(x̄)[h] are the extreme directions for the cone

123



J Optim Theory Appl (2017) 174:367–387 375

K (x̄) := cone{g′
1(x̄), . . . , g

′
r (x̄), g

′′
r+1(x̄)[h], . . . g′′

m(x̄)[h]}. (20)

(Recall that an extreme direction is the direction of a ray that cannot be expressed as
a conic combination of any ray directions in the cone distinct from it.)

Theorem 4.2 (Necessary optimality conditions) Assume that x̄ is a local minimizer
of problem (1), f (x) ∈ C1(X), and gi (x) ∈ C2(X), i = 1, . . . ,m. Assume that
(10) holds and that there exists a vector h ∈ X, h �= 0, such that relations (11) and
Assumption 1 hold. Then there exist λ∗

i ≥ 0, i = 1, . . . , r , such that

f ′(x̄) +
r∑

i=1

λ∗
i g

′
i (x̄) = 0. (21)

Proof Let h, h �= 0, satisfy (11) and (13). Note that since Assumption 1 holds, the
proof of Lemma 4.1 implies 〈 f ′(x̄), h〉 = 0. Also, (16) was proved using Assumption
1 only; hence, there exist scalars λ∗

i ≥ 0, i = 1, . . . , r , and γ ∗
i ≥ 0, i = r +1, . . . ,m,

such that
f ′(x̄) = −

r∑

i=1

λ∗
i g

′
i (x̄) −

m∑

i=r+1

γ ∗
i g

′′
i (x̄)[h]. (22)

Assume on the contrary that (21) does not hold.
Then − f ′(x̄) /∈ cone{g′

1(x̄), . . . , g
′
r (x̄)}. Also, by (20) and (22), − f ′(x̄) ∈ K (x̄)

and there exists an index j such that γ ∗
j > 0 in (22). Then by Part B of Assumption 1,

there exists a vector h̄ �= 0 such that

〈 f ′(x̄), h̄〉>0, 〈g′
i (x̄), h̄〉>0, i = 1, . . . , r, 〈g′′

j (x̄)[h], h̄〉 < 0, j = r+1, . . . ,m.

(23)
Hence, by (11) and (23), for i = 1, . . . , r , there exists a sufficiently small 0 < ε < 1
and α > 0 such that

gi (x̄ − αh − α1+ε h̄) = −〈g′
i (x̄), αh〉 − 〈g′

i (x̄), α
1+ε h̄〉 + ωi (α) < 0,

where |ωi (α)| = O(α2). Similarly, by (10), (11), and (23), for i = r + 1, . . . ,m,

gi (x̄ − αh − α1+ε h̄) = 1

2
〈g′′

i (x̄)α
1+ε h̄, α1+ε h̄〉 + 1

2
〈g′′

i (x̄)αh, α1+ε h̄〉 + ξi (α) < 0,

where |ξi (α)| = O(α3). Therefore, x̄ − αh − α1+ε h̄ ∈ S,and, by using (23) and
〈 f ′(x̄), h〉 = 0, we get

f (x̄ − αh − α1+ε h̄) = f (x̄) − 〈 f ′(x̄), αh〉 − 〈 f ′(x̄), α1+ε h̄〉 + η(α) < f (x̄),

where |η(α)| = O(α2), which contradicts the assumption that x̄ is a local minimizer.
Hence, (21) holds. ��

In the following theorem, we present sufficient conditions for optimality. To sim-
plify the consideration, we derive the sufficient conditions for problem (1) in the case
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when X is a finite dimensional space. However, a similar result will also be true in
Banach space X under an assumption of strong p-regularity (see [26]).

To formulate the next theorem, we introduce a Lagrange function,

L(x, λ) := f (x) +
r∑

i=1
λi gi (x), and a set

H2(x̄) :={h ∈ X : 〈g′
i (x̄), h〉≤0, i = 1, . . . , r, 〈g′′

i (x̄)h, h〉≤0, i=r+1, . . . ,m}.
(24)

Remark 4.2 Note that we do not make Assumption 1 or any regularity assumption in
Theorem 4.3.

Theorem 4.3 (Sufficient optimality conditions) Let X = R
n and f (x),

gi (x) ∈ C2(X), i = 1, . . . ,m. Assume that there exist λ∗
i ≥ 0, i = 1, . . . , r , such that

L′
x (x̄, λ

∗) = f ′(x̄) +
r∑

i=1
λ∗
i g

′
i (x̄) = 0. Assume also that there exists β > 0 such that,

for any h ∈ H2(x̄), the following holds: 〈L′′
xx (x̄, λ

∗)h, h〉 ≥ β‖h‖2. Then x̄ is a strict
local minimizer of problem (1).

Proof Assume on the contrary that x̄ is not a strict local minimizer of problem (1).
Then there exists a sequence {xk}∞k=1 such that xk ∈ S ∩ U (x̄), f (xk) ≤ f (x̄), and
xk → x̄ as k → ∞. Since xk ∈ S, it can be represented as xk = x̄ + αkh + ω(αk),

where h ∈ H2(x̄), ‖h‖ = 1, ‖ω(αk)‖ = o(αk), and αk → 0 as k → ∞. Indeed, xk can
be written as xk = x̄+hk,where hk/‖hk‖ → h as k → ∞, so that hk = αkh+ω(αk)

and ‖hk‖ = αk . Then the inclusion h ∈ H2(x̄) follows from x̄ + hk ∈ S and we get

f (xk) ≥ f (xk) +
r∑

i=1

λ∗
i gi (xk) = L(xk , λ

∗)

= L(x̄, λ∗) + 〈L′
x (x̄, λ

∗), xk − x̄〉 + 1

2
〈L′′

xx (x̄, λ
∗)(xk − x̄), (xk − x̄)〉 + o(α2

k )

≥ f (x̄) + β

2
‖αkh + ω(αk)‖2 + o(α2

k ) > f (x̄).

Getting the contradiction finishes the proof. ��

4.2 When the KKT Theorem Fails

In this section, we consider some classes of problems, for which either the KKT con-
ditions do not hold or there is no h satisfying (11) (see Example 7.1), and present
generalized KKT conditions for those problems. We assume that (10) holds and
introduce additional sets: I1(h) := {i ∈ {1, . . . , r} : 〈g′

i (x̄), h〉 = 0}, I2(h) :=
{i ∈ {r + 1, . . . ,m} : 〈g′′

i (x̄)h, h〉 = 0}, and H f (x̄) := {h ∈ X : 〈 f ′(x̄), h〉 ≥ 0},
where h ∈ H2(x̄) and H2(x̄) is defined in (24).

Definition 4.1 We say that a mapping g(x) is 2-regular at the point x̄ ∈ X along
a vector h ∈ H2(x̄) if either I1(h) = ∅ and I2(h) = ∅, or there exists an element
ξ = ξ(h) ∈ X such that
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〈g′
i (x̄), ξ 〉 < 0, ∀ i ∈ I1(h), 〈g′′

i (x̄)h, ξ 〉 < 0, ∀ i ∈ I2(h). (25)

Note that Definition 4.1 introduces a new 2-regularity constraint qualification,
which can be viewed as another generalization of the MFCQ. Note that Assumption 1
given in the previous section is a special case of Definition 4.1 for I1(h) = {1, . . . , r}
and I2(h) = {r + 1, . . . ,m}.
Definition 4.2 We say that a mapping g(x) is 2-regular at the point x̄ ∈ X if, for every
h ∈ H2(x̄), either I1(h) = ∅ and I2(h) = ∅, or there exists ξ = ξ(h) ∈ X , such that
(25) holds.

We illustrate Definition 4.2 in Example 7.1.
For x, h ∈ X , ‖h‖ = 1, and λ(h) = (λi (h))i∈I1(h)∪I2(h), introduce a 2-factor-

Lagrange function as

L2(x, λ(h), h) := f (x) +
∑

i∈I1(h)

λi (h)gi (x) +
∑

i∈I2(h)

λi (h)g′
i (x)h. (26)

Now we are ready to present necessary and sufficient conditions for problem (1).

Theorem 4.4 Let X = R
n, f (x) ∈ C1(X), and gi (x) ∈ C2(X), i = 1, . . . ,m.

Assume that (10) holds and that mapping g(x) is 2-regular at the point x̄ along
h ∈ H2(x̄).

Necessary conditions: If x̄ is a minimizer to (1), then either

〈 f ′(x̄), h〉 > 0 (27)

or there exists λ∗(h) = (λ∗
i (h))i∈I1(h)∪I2(h) such that

L2
′
x (x̄, λ

∗(h), h) = 0, λ∗(h) ≥ 0. (28)

Sufficient conditions: If, in addition, g(x) is 2-regular at x̄ and, for any h ∈ H2(x̄),
either (27) holds or there exists β > 0 such that (28) holds and

L2
′′
xx (x̄, λ̃

∗(h), h)[h]2 ≥ β‖h‖2, λ̃∗
i (h) =

{
λ∗
i (h), if i ∈ I1(h)

λ∗
i (h)

3 , if i ∈ I2(h),
(29)

then x̄ is a strict local minimizer of (1).

Proof Necessary conditions. Consider an element h ∈ H2(x̄) such that g(x) is 2-
regular at the point x̄ along the vector h and divide our consideration into two following
cases:

Case 1: If I1(h) = I2(h) = ∅, then 〈g′
i (x̄), h〉 < 0 for all i = 1, . . . , r and

〈g′′
i (x̄)h, h〉 < 0 for all i = r + 1, . . . ,m. First, we will prove that 〈 f ′(x̄), h〉 ≥ 0.

Assume on the contrary that 〈 f ′(x̄), h〉 < 0.
Then, by Taylor expansion, f (x̄ + th) < f (x̄) and gi (x̄ + th) < 0, i = 1, . . . ,m,

for all sufficiently small t > 0, which contradicts the assumption that x̄ is a local
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minimizer and proves 〈 f ′(x̄), h〉 ≥ 0. If 〈 f ′(x̄), h〉 > 0, then (27) holds and we are
done with the proof in Case 1. Otherwise, 〈 f ′(x̄), h〉 = 0.

If f ′(x̄) �= 0, there exists ξ̄ such that 〈 f ′(x̄), ξ̄ 〉 < 0. Then gi (x̄ + th+ t3/2ξ̄ ) < 0,
i = 1, . . . ,m, and f (x̄ + th + t3/2ξ̄ ) < f (x̄), which contradicts the assumption
that x̄ is a local minimizer, so f ′(x̄) = 0, and, hence, (28) holds with λ∗

i (h) = 0,
i = 1, . . . ,m. Thus, in Case 1, either (27) or (28) holds.

Case 2: Consider the case when I1(h) ∪ I2(h) �= ∅. First, we will prove that
〈 f ′(x̄), h〉 ≥ 0. Assume on the contrary that 〈 f ′(x̄), h〉 < 0. By (25), there exists
ξ = ξ(h) such that 〈g′

i (x̄), ξ 〉 < 0, i ∈ I1(h), and 〈g′′
i (x̄)h, ξ 〉 < 0, i ∈ I2(h).

Hence, gi (x̄ + th + t3/2ξ) < 0, i = 1, . . . ,m, and f (x̄ + th + t3/2ξ) < f (x̄)
for all sufficiently small t > 0, which contradicts the assumption that x̄ is a local
minimizer. Hence, 〈 f ′(x̄), h〉 ≥ 0. If 〈 f ′(x̄), h〉 > 0, then (27) holds, and we are done
with the proof in Case 2. If not, then 〈 f ′(x̄), h〉 = 0. In this case, we will prove that
〈 f ′(x̄), d〉 ≥ 0 for every d such that

〈g′
i (x̄), d〉 ≤ 0, i ∈ I1(h), 〈g′′

i (x̄)h, d〉 ≤ 0, i ∈ I2(h). (30)

Assume on the contrary that there exists d satisfying (30) such that 〈 f ′(x̄), d〉 < 0.
Then by (25), there exists ξ = ξ(h) such that gi (x̄ + th + t3/2d̄ + t7/4ξ) ≤ 0,
i = 1, . . . ,m, and f (x̄+th+t3/2d̄+t7/4ξ) < f (x̄), which contradicts the assumption
that x̄ is a local minimizer. Hence, 〈 f ′(x̄), d〉 ≥ 0 for every d satisfying (30). Then,
similarly to the proof of Theorems 4.1, we get (28) by using Lemma 3.3, which finishes
the proof in the second case.

Sufficient conditions. Assume on the contrary that x̄ is not a strict local minimizer.
Then there exists a sequence {xk} → x̄ such that f (xk) ≤ f (x̄) and g(xk) ≤ 0. Using

the same notation for a convergent subsequence, let
{

xk−x̄
‖xk−x̄‖

}
converge to some h̃.

Then xk = x̄+‖xk − x̄‖h̃+w(xk) = x̄+ tk h̃+w(xk), where ‖w(xk)‖ = o(‖xk − x̄‖)
and tk = ‖xk − x̄‖. Note that h̃ = xk−x̄−w(xk )

tk
satisfies the following:

〈g′
i (x̄), h̃〉 = 1

tk
〈g′

i (x̄), xk − x̄ − w(xk)〉

= 1

tk
(gi (xk) − gi (x̄)) + o(tk)/tk, i = 1, . . . , r,

so that, when k → ∞, 〈g′
i (x̄), h̃〉 ≤ 0, i = 1, . . . , r, and similarly, 〈g′′

i (x̄)h̃, h̃〉 ≤ 0,
i = r + 1, . . . ,m. Hence, h̃ ∈ H2(x̄) and, by the assumption of the theorem, either
(27) holds or there exists β > 0 such that (28) and (29) hold. Consider two cases.

Case 1. If (27) holds, that is 〈 f ′(x̄), h̃〉 > 0,

then f (xk) = f (x̄) +
〈
f ′(x̄), tk h̃ + w(xk)

〉
> f (x̄). However, this is a contradiction,

so this case does not hold.
Case 2. If (28) holds,

then 0 = 〈 f ′(x̄), h̃〉+ ∑

i∈I1(h̃)

λ∗
i (h̃)〈g′

i (x̄), h̃〉+ ∑

i∈I2(h̃)

λ∗
i (h̃)〈g′′

i (x̄)h̃, h̃〉 = 〈 f ′(x̄), h̃〉,

so that 〈 f ′(x̄), h̃〉 = 0. To simplify the notation, we let w = w(xk), hk = tk h̃ + w,
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I1 = I1(h̃), and I2 = I2(h̃). By the consideration above, gi (xk) ≤ 0 and since there
exists λ∗(h̃) ≥ 0 such that (28) holds, we get

f (xk) − f (x̄) ≥ f (xk) − f (x̄) +
∑

i∈I1
λ∗
i (h̃)gi (xk) +

∑

i∈I2

λ∗
i (h̃)gi (xk)

tk

= 〈 f ′(x̄), hk〉 + 1

2
〈 f ′′(x̄)hk, hk〉

+
∑

i∈I1
λ∗
i (h̃)

(
〈g′

i (x̄), hk〉 + 1

2
〈g′′

i (x̄)hk, hk〉
)

+
∑

i∈I2
λ∗
i (h̃)

(
1

2
g′′
i (x̄)

[hk]2
tk

+ 1

3!g
′′′
i (x̄)

[hk]3
tk

+ o(t3k )

tk

)
+ o(t2k ).

Then 〈 f ′(x̄), h̃〉 = 0, 〈g′
i (x̄), h̃〉 = 0, i ∈ I1, and g′′

i (x̄)[h̃]2 = 0, i ∈ I2, yield

f (xk) − f (x̄) ≥
〈
f ′(x̄) +

∑

i∈I1
λ∗
i (h̃)g′

i (x̄) +
∑

i∈I2
λ∗
i (h̃)g′′

i (x̄)h̃, w

〉

+ t2k
2

⎛

⎝ f ′′(x̄)[h̃]2 +
∑

i∈I1
λ∗
i (h̃)g′′

i (x̄)[h̃]2 +
∑

i∈I2

λ∗
i (h̃)

3
g′′′
i (x̄)[h̃]3

⎞

⎠

+o(t2k ).

The assumptions of the theorem and the last inequalities imply

f (xk) − f (x̄) ≥ 〈L2
′
x (x̄, λ

∗(h̃), h̃), w〉
+ t2k

2
L2

′′
xx (x̄, λ̃

∗(h̃), h̃) [h̃]2 + o(t2k ) ≥ β

2
t2k ‖h̃‖2 + o(t2k ) > 0,

which contradicts the assumption f (xk) ≤ f (x̄). Hence, x̄ is a strict local minimizer.
��

Corollary 4.1 If (28) holds and I1(h) ∪ I2(h) = ∅, the equation (28) reduces to
f ′(x̄) = 0 in the necessary conditions of Theorem 4.4.

The proof of the corollary follows from the proof of necessary conditions in The-
orem 4.4.

5 Optimality Conditions in the General Case of Degeneracy without
Assumption (10)

To simplify considerations in this part of the paper, assume that X = R
n . In this

section, we consider a general case of degeneracy without assumption (10).
We need the following additional notation.
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Let Hg(x̄) := {h ∈ R
n : 〈g′

i (x̄), h〉 ≤ 0, i ∈ I (x̄)}. For some fixed element h ∈
Hg(x̄), we define a set of indices: I1(x̄, h) := {i ∈ I (x̄) : 〈g′

i (x̄), h〉 = 0} and assume
that |I1(x̄, h)| = m1(h) = m1 �= 0.We start with construction of l ≤ m1 proper cones
generated by vectors g′

j (x̄) with indices j from the set I1(x̄, h). The cones are deter-
mined in such a way that, for every j ∈ I1(x̄, h), the corresponding g′

j (x̄) is used
in defining at least one cone and all cones are different. For constructing a cone with
number k, k = 1, . . . , l, indices k1, . . . , krk ∈ I1(x̄, h) are used so that the correspond-
ing vectors g′

k1
(x̄), . . . , g′

krk
(x̄) generate the largest proper cone and k j �= kl if j �= l.

As a result, there exists an element γi ∈ R
n such that 〈g′

j (x̄), γi 〉 < 0, j = k1, . . . krk ,
and, for every j ∈ Jk(x̄, h), where Jk(x̄, h) := I1(x̄, h)\{k1, . . . , krk }, the following
holds: −g′

j (x̄) = α jk1g
′
k1

(x̄) + . . . + α jkrk
g′
krk

(x̄), where α jk1 ≥ 0, . . . , α jkrk
≥ 0.

For each j ∈ Jk(x̄, h), introduce g̃ j (x) := g j (x) + α jk1gk1(x) + . . . + α jkrk
gkrk (x),

and get l sets consisting of functions gk1(x), . . . , gkrk (x), g̃ j (x), j ∈ Jk(x̄, h), such
that

g̃′
j (x̄) = 0, j ∈ Jk(x̄, h). (31)

Note that conditions (31) resemble conditions (10). For every k = 1, . . . , l, define a
set Sk as follows:

Sk := {x ∈ R
n : gk1(x) ≤ 0, . . . , gkrk (x) ≤ 0, g̃ j (x) ≤ 0, j ∈ Jk(x̄, h),

gi (x) ≤ 0, i ∈ I (x̄)\I1(x̄, h)}. (32)

Consider an example.

Example 5.1 Let X = R
3, g1(x) = −x1, g2(x) = −x2, g3(x) = x2 − x21 + x22 + x23 ,

and x̄ = (0, 0, 0)T . In this example, h = (1, 0, 1)T , m = 3, m1 = 2, l = 2,
and I1(0, h) = {2, 3}. For k = 1, we have g11(x) = g2(x), r1 = 1, and
g̃3(x) = g3(x) + g2(x) = −x21 + x22 + x23 . For k = 2, we get r2 = 1, g21(x) = g3(x),
and g̃2(x) = g2(x) + g3(x) = −x21 + x22 + x23 . As a result, there are two following
systems of inequalities, (A) and (B), that define the sets S1 and S2, respectively:

(A)

⎧
⎨

⎩

g1(x) = −x1 ≤ 0
g2(x) = −x2 ≤ 0
g̃3(x) = −x21 + x22 + x23 ≤ 0.

(B)

⎧
⎨

⎩

g1(x) = −x1 ≤ 0
g3(x) = x2 − x21 + x22 + x23 ≤ 0
g̃2(x) = −x21 + x22 + x23 ≤ 0.

We will need the following lemma.

Lemma 5.1 S =
l⋂

k=1
Sk, where Sk are defined in (32).

Proof The proof of the lemma follows from the property that, for any k = 1, . . . , l,
the definition of the cone with number k + 1 implies that at least one function g j (x),
j ∈ I1(x̄, h), is used in the definition of the set Sk and is not in Sk+1. Also, at least
one function g j (x), j ∈ I1(x̄, h), is used in defining Sk+1 and is not in Sk . The
process of defining the cones also implies that each index j from the set I1(x̄, h)

is used at least once. Then, by the definition of Sk ,
l⋂

k=1
Sk ⊆

m⋂
k=1

Ai = S, where
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Ai = {x ∈ R
n : gi (x) ≤ 0}, i = 1, . . . ,m. At the same time, for every k = 1, . . . , l,

S ⊆ Sk , and, hence, S ⊆
l⋂

k=1
Sk . Thus S =

l⋂
k=1

Sk holds. ��

Note that the functions used in the definition of the sets Sk satisfy conditions (31)
and 〈g′

j (x̄), h〉 < 0, j ∈ I (x̄)\I1(x̄, h). Since Lemma 5.1 implies that problem (1)
can be written as

min f (x), s.t. x ∈
l⋂

k=1

Sk,

optimality conditions for problem (1), given below in Theorem 5.1, are formulated in
terms of the functions used in the definition of the sets Sk under an assumption that

guarantees
l⋂

k=1
Sk �= x̄ . To state the theorem, we need to introduce some additional

notation and definitions.
Assume that there exists a vector h ∈ Hg(x̄), satisfying the following inequalities,

〈g̃′′
j (x̄)h, h〉 ≤ 0, j ∈ Jk(x̄, h), k = 1, . . . , l.

If such h is not found, then x̄ is an isolated feasible point for problem (1). Recall that
we consider indices k j from the set I1(x̄, h) and, for every k = 1, . . . , l, define

I 1 k0 (x̄, h) := {k1, . . . , krk }, I 2 k0 (x̄, h) := {i ∈ Jk(x̄, h) : 〈g̃′′
i (x̄)h, h〉 = 0},

I 10 (x̄, h) :=
l⋃

k=1

I 1 k0 (x̄, h), I 20 (x̄, h) :=
l⋃

k=1

I 2 k0 (x̄, h).

Definition 5.1 We say that a mapping g(x) : R
n → R

m is 2–regular at the point
x̄ ∈ R

n along a vector h ∈ Hg(x̄) if there exists an element ξ ∈ R
n satisfying the

following inequalities,

〈g′
k1(x̄), ξ 〉 < 0, . . . , 〈g′

krk
(x̄), ξ 〉 < 0,

〈g̃′′
j (x̄)h, ξ 〉 < 0, j ∈ I 20 (x̄, h), k = 1, . . . , l.

Note that Definition 5.1 introduces another 2-regularity constraint qualification,
which can be viewed as a generalization of the MFCQ.

Definition 5.2 We say that a mapping g(x) : Rn → R
m is tangent 2–regular at the

point x̄ ∈ R
n along a vector h ∈ Hg(x̄) if, for any ξ ∈ R

n , satisfying the following
inequalities,

〈g′
k1(x̄), ξ 〉 ≤ 0, . . . , 〈g′

krk
(x̄), ξ 〉 ≤ 0,

〈g̃′′
j (x̄)h, ξ 〉 ≤ 0, j ∈ I 20 (x̄, h), k = 1, . . . , l, (33)
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there exists a set of feasible points x(α) ∈ S in the form x(α) = x̄+αh+ω(α)ξ+η(α),
where α > 0 is sufficiently small, ω(α) = o(α), α2/ω(α) → 0 as α → 0+, and
‖η(α)‖ = o(ω(α)).

An example of ω(α) in Definition 5.2 is ω(α) = α1+ε with ε ∈]0, 1[.
To formulate the next theorem, we introduce a generalized 2-factor-Lagrange func-

tion in the form:
L2(x, λ(h), h) := f (x) + ∑

i∈I 10 (x,h)

λi (h)gi (x) + ∑

i∈I 20 (x,h)

λ̃i (h)〈g̃′
i (x), h〉.

Theorem 5.1 Assume that x̄ is a local minimizer of the problem (1), f ∈ C1(Rn),
and g ∈ C2(Rn). Assume that g(x) is tangent 2-regular at the point x̄ along a vector
h ∈ Hg(x̄) and 〈 f ′(x̄), h〉 = 0. Then there exist coefficients λ∗

i (h) ≥ 0, i ∈ I 10 (x̄, h),
λ̃∗
i (h) ≥ 0, i ∈ I 20 (x̄, h), such that

L2
′
x (x̄, λ

∗(h), h) = f ′(x̄) +
∑

i∈I 10 (x̄,h)

λ∗
i (h)g′

i (x̄) +
∑

i∈I 20 (x̄,h)

λ̃∗
i (h)g̃′′

i (x̄)[h] = 0.

(34)

The proof of Theorem 5.1 is similar to the proof of necessary conditions in Theorem
4.4 with an assumption that g(x) is tangent 2-regular at the point x̄ along a vector
h ∈ Hg(x̄) and an additional property:

(TS(x̄))∗ =
(

l⋂
k=1

TSk (x̄)

)∗
= cone

{
g′
i (x̄), g̃

′′
j (x̄)[h], i ∈ I 10 (x̄, h), j ∈ I 20 (x̄, h)

}
,

where TM (x̄) is a tangent cone to the set M at x̄ , and (TM (x̄))∗ is its conjugate.

Remark 5.1 Note that I 10 (x̄, h) ⊆ I1(x̄, h) and I 20 (x̄, h) ⊆ I1(x̄, h), and recall the
definition of functions g̃ j (x) = g j (x)+α jk1gk1(x)+. . .+α jkrk

gkrk (x), j ∈ Jk(x̄, h),
where α jk1 ≥ 0, . . . , α jkrk

≥ 0. Then the statement of Theorem 5.1 can be written
in the form: f ′(x̄) + ∑

i∈I1(x̄,h)

λ∗
i g

′
i (x̄) + ∑

i∈I1(x̄,h)

γ ∗
i g

′′
i (x̄)[h] = 0, where λ∗

i ≥ 0 and

γ ∗
i ≥ 0.

Example 5.1. (continued). Let f = x1 + x2 − x3. In this example, we have x̄ = 0,
h = (1, 0, 1)T , 〈 f ′(x̄), h〉 = 0, and g̃′′

2 (x̄)[h] = g̃′′
3 (x̄)[h] = (−2, 0, 2)T . Also, using

the introduced notation, we get the following sets: I 1 10 (x̄, h) = {2}, I 1 20 (x̄, h) = {3},
I 2 10 (x̄, h) = {3}, I 2 20 (x̄, h) = {2}, I 10 (x̄, h) = {2, 3}, and I 20 (x̄, h) = {3, 2}. Note
that mapping g(x) is tangent 2-regular at the point x̄ along the vector h; hence, all
conditions of Theorem 5.1 are satisfied. Then, there exist multipliers λ∗

2(h) = 1 and
λ∗
3(h) = 0 for i ∈ I 10 (x̄, h), and there exist multipliers λ̃∗

3(h) = 0 and λ̃∗
2(h) = 1

2 for
i ∈ I 20 (x̄, h), such that condition (34) holds in the following form:

f ′(0) + λ∗
2(h)g′

2(0) + λ∗
3(h)g′

3(0) + λ̃∗
3(h)g̃′′

3 (0)[h] + λ̃2(h)g̃′′
2 (0)[h] = 0.
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6 Future Work for p > 2

Similar to the approach described in Sect. 4.2, the constraints of Problem (1) can
be reduced to equivalent ones that satisfy the following relations (without notation
change):

g′
i (x̄) �= 0, i = 1, . . . , r1, g′

i (x̄) = 0, i = r1 + 1, . . . ,m,

g′′
i (x̄) �= 0, i = r1 + 1, . . . , r2, g′′

i (x̄) = 0, i = r2 + 1, . . . ,m,

· · · · · ·
g(p−1)
i (x̄) �= 0, i = rp−2 + 1, . . . , rp−1, g

(p−1)
i (x̄) = 0, i = rp−1 + 1, . . . ,m

g(p)
i (x̄) �= 0, i = rp−1 + 1, . . . ,m.

Introduce the sets:
I1(x̄) :={1, . . . , r1}, I2(x̄) :={r1+1, . . . , r2}, . . . , and Ip(x̄) :={rp−1+1, . . . ,m}.

Definition 6.1 Assume that there exists h such that 〈g′
i (x̄), h〉 = 0 for all i ∈ I1(x̄),

g′′
i (x̄)[h]2 = 0 for all i ∈ I2(x̄), . . ., and g(p)

i (x̄)[h]p = 0 for all i ∈ Ip(x̄). We say
that mapping g(x) : Rn → R

m is p–regular at the point x̄ ∈ R
n along the vector h, if

there exists ξ ∈ R
n , which satisfies the following inequalities: 〈g′

i (x̄), ξ 〉 < 0 for all

i ∈ I1(x̄), 〈g′′
i (x̄)h, ξ 〉 < 0 for all i ∈ I2(x̄), . . ., and 〈g(p)

i (x̄)[h]p−1, ξ 〉 < 0 for all
i ∈ Ip(x̄).

Theorem 6.1 Assume that x̄ is a local minimizer of problem (1), f ∈ C1(Rn), and
g ∈ C p+1(Rn). Assume that mapping g(x) is p–regular at x̄ along a vector h ∈ Hg(x̄)
and 〈 f ′(x̄), h〉 = 0. Then there exists
λ∗(h) = (

λ∗
i (h)

)
i∈I1(x̄) ⋃

I2(x̄)
⋃···⋃ Ip(x̄)

such that λ∗(h) ≥ 0 and

f ′(x̄) +
∑

i∈I1(x̄)
λ∗
i (h)g′

i (x̄) +
∑

i∈I2(x̄)
λ∗
i (h)g′′

i (x̄)h

+ · · · +
∑

i∈Ip(x̄)
λ∗
i (h)g(p)

i (x̄)[h]p−1 = 0.

The proof of Theorem 6.1 is similar to the proof of necessary conditions in Theorem
4.4 with an additional property:

(TS(x̄))∗ =cone

{
g′
i (x̄), i ∈ I1(x̄), g′′

i (x̄)h, i ∈ I2(x̄), . . . , g
(p)
i (x̄)[h]p−1, i ∈ Ip(x̄)

}
.

A more general version of optimality conditions given in Theorem 6.1 can be
derived under an assumption that g(x) : R

n → R
m is tangent p–regular (p > 2)

at x̄ ∈ R
n along a vector h ∈ Hg(x̄), which is a generalization of Definition 5.2.

Optimality conditions given in Theorem 4.2 can also be expanded to the case p > 2
under a generalized version of Assumption 1:
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There exist vectors ξ, η∈ X ,‖ξ‖=‖η‖=1, such that 〈g′
i (x̄), ξ 〉<0, 〈g′

i (x̄), η〉 < 0,

i ∈ I1(x̄); 〈g′′
i (x̄)h, ξ 〉<0, 〈g′′

i (x̄)h, η〉 > 0, i ∈ I2(x̄); . . . , 〈g(p)
i (x̄)[h]p−1, ξ 〉 < 0,

and 〈g(p)
i (x̄)h p−1, η〉 < 0, if p is odd, or 〈g(p)

i (x̄)h p−1, η〉 > 0, if p is even, i ∈ Ip(x̄).

7 Examples

Example 7.1. This example illustrates Theorem 4.4. Consider the following problem:

min
x∈R3

3x1 − 3x3 + x21 + x22 s.t. g1(x) = −x1 − x2 + 2x3 + |x1|5/2 ≤ 0,

g2(x) = −2x21 + x22 + x23 + |x2|7/2 ≤ 0, g3(x) = x21 − 2x22 + x23 + |x3|7/2 ≤ 0.
(35)

Necessary conditions. Note that x̄ = 0 is a minimizer in Problem (35). To verify
assumptions of Theorem 4.4, notice that r = 1 in (10) and vectors h = (h1, h2, h3)
in the set H2(0) satisfy the following inequalities: 〈g′

1(0), h〉 = −h1 − h2 + 2h3 ≤ 0,
〈g′′

2 (0)h, h〉 = −4h21 + 2h22 + 2h23 ≤ 0, and 〈g′′
3 (0)h, h〉 = 2h21 − 4h22 + 2h23 ≤ 0.

Consider an element h = (a, a, a), a �= 0, which is in the set H2(0) and sat-
isfies 〈 f ′(0), h〉 = 0, 〈g′

1(0), h〉 = 0, and 〈g′′
2 (0)h, h〉 = 〈g′′

3 (0)h, h〉 = 0.
Otherwise, necessary optimality conditions hold in the form (27). The mapping
g(x) = (g1(x), g2(x), g3(x)) is 2-regular at x̄ = 0 along the vector h because there
exists a vector ξ , for example, ξ = (2, 2, 1), such that 〈g′

1(x̄), ξ 〉 = −ξ1−ξ2+2ξ3 < 0,
〈g′′

2 (x̄)h, ξ 〉 = −4aξ1+2aξ2+2aξ3 < 0, and 〈g′′
3 (x̄)h, ξ 〉 = 2aξ1−4aξ2+2aξ3 < 0,

where a > 0. Therefore, all assumptions of Theorem 4.4 hold. Hence, for
h = (a, a, a) ∈ H f (0), there exist multipliers λ∗

i (h) ≥ 0, i ∈ I1(h) ∪ I2(h) =
{1, 2, 3}, such that (28) holds. Indeed, taking λ∗

1(h) = 1, λ∗
2(h) = 1/2a, λ∗

3(h) = 0,
we get f ′(0) + (1)g′

1(0) + (1/2a)g′′
2 (0)[h] = 0.

Sufficient conditions. For x̄ = 0, consider h = (a, a, a) ∈ H f (0), where a is a
fixed real number, a �= 0, and, using (26), define a 2-factor-Lagrange function with
λ̃∗
1(h) = 1, λ̃∗

2(h) = 1/6a, and λ̃∗
3(h) = 0 as L2(0, λ̃∗(h), h) = 3x1 − 3x3 + x21 + x22

+ (1)(−x1 − x2 + 2x3 + |x1|5/2) + 1
6a (−4x1 + 2x2 + 2x3 + 7/2|x2|5/2)a. Note that,

by the above, (28) holds and there exists β > 0 such that
L2

′′
xx (0, λ̃

∗(h), h)[h]2 = 4a2 ≥ β‖h‖2, so (29) is satisfied. Then, by Theorem 4.4,
x̄ = 0 is a strict local minimizer in Problem (35).
Example 7.2. Consider the following problem that illustrates Theorem 5.1:

min
x∈R3

x1 + x2 − x3 + x21 + x22 + x23 s.t. g1(x) = −x1 − |x2|5/2 ≤ 0, g2(x) = −x2 − |x3|5/2 ≤ 0,

g3(x) = x2 − x21 + x22 + x23 − |x1|5/2 ≤ 0, g4(x) = x1 − x3 ≤ 0.

Results presented in [16] cannot be applied here since there is no p > 1 such that the
constraints are 2p–times continuously differentiable. Optimality conditions given in
[19,22] are also not applicable to this problem since their assumptions are not satisfied
at x̄ = (0, 0, 0)T . Consider h = (1, 0, 1)T ∈ Hg(0). Then I1(0, h) = {2, 3, 4}, so
m1 = |I1(0, h)| = 3. For k = 1, we get r1 = 2, g11(x) = g2(x), g12(x) = g4(x), and
g̃3(x) = g3(x)+g2(x) = −x21 +x22 +x23 −|x1|5/2−|x3|5/2. For k = 2, we get r2 = 2,
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g21(x) = g3(x), g22(x) = g4(x), and g̃2(x) = −x21 + x22 + x23 − |x1|5/2 − |x3|5/2.
Note that 〈 f ′(x̄), h〉 = 0, g̃′′

3 (x̄)[h] = g̃′′
2 (x̄)[h] = (−2, 0, 2)T , and I 20 (0, h) = {2, 3}.

To verify Definition 5.2, consider ξ = (ξ1, ξ2, ξ3). The inequalities (33) in this
example, 〈g′

11
(0), ξ 〉 ≤ 0, 〈g′

12
(0), ξ 〉 ≤ 0, 〈g′

21
(0), ξ 〉 ≤ 0, 〈g̃′′

3 (0)h, ξ 〉 ≤ 0, and

〈g̃′′
2 (0)h, ξ 〉 ≤ 0, reduce to ξ2 = 0, ξ1 = ξ3. Now let ξ = (ξ1, 0, ξ1), ω(α) = α3/2,

and η(α) = 0 to define x(α) = x̄+αh+ω(α)ξ +η(α) = (α+α3/2ξ1, 0, α+α3/2ξ1)

and get

g1(x(α)) = −α − α3/2ξ1 ≤ 0, g2(x(α)) = −|α + α3/2ξ1|5/2 ≤ 0,
g3(x(α)) = −|α + α3/2ξ1|5/2 ≤ 0, g4(x(α)) = 0,

for all sufficiently small α > 0. Therefore, g(x) is tangent 2-regular at a point x̄ along
the vector h. Since all conditions of Theorem 5.1 are satisfied, there exist λ∗

i (h) ≥ 0,
i ∈ I 10 (0, h) = {2, 3, 4}, and λ̃∗

i (h) ≥ 0, i ∈ I 20 (0, h) = {3, 2}, such that (34) holds:

f ′(0) + λ∗
2(h)g′

2(0) + λ∗
3(h)g′

3(0) + λ∗
4(h)g′

4(0) + λ̃∗
3(h)g̃′′

3 (0)[h]
+λ̃∗

2(h)g̃′′
2 (0)[h] = 0.

Indeed, the last equation is satisfied, for example, with λ∗
2(h) = 1, λ∗

3(h) = 0,
λ∗
4(h) = 0, λ̃∗

3(h) = 1/2, and λ̃∗
2(h) = 0.

8 Comparison with Other Results

We start this section comparing our results with Fritz John-type conditions proposed
in [19]. The main difference is in the coefficient λ0 of the objective function that is
not guaranteed to be nonzero in [19], while optimality conditions presented in this
paper have λ0 = 1. If λ0 = 0, then optimality conditions do not provide qualitative
information about the optimization problem. Moreover, the authors in [19] make an
additional assumption that a vector h used in the statements of their results belongs to
the set:
H2(x̄) := {h ∈ X : 〈g′

i (x̄), h〉 ≤ 0 ∀i ∈ I (x̄) and ∃x such that 〈g′
i (x̄), x〉+ g′′

i (x̄)[h, h] ≤ 0 ∀i ∈ I (x̄, h)}, where I (x̄, h) := {i ∈ I (x̄) : 〈g′
i (x̄), h〉 = 0}.

However, there is no similar requirement in the classical case. For the case when
λ0 �= 0 in [19], there is an additional requirement that there exist ξ and ξ̂ such that
〈g′

i (x̄), ξ 〉 + g′′
i (x̄)[h, ξ̂ ] < 0. This restricts the class of problems, where the optimal-

ity conditions from [19] can be applied and give λ0 �= 0. Example 7.2 illustrates the
case, when the above assumptions do not hold, but optimality conditions presented
in the paper are satisfied. Another difference between optimality conditions given in
[19] and in Theorem 4.1 is in the last term in the generalized Lagrange function,

L(x, λ) := λ0 f (x) +
r∑
j=1

λ j g j (x) +
m∑

j=r+1
λ j g′

j (x)h. Namely, Theorem 4.1 yields

λ∗
j = 0, j = r + 1, . . . ,m; and hence, the optimality conditions derived in Theo-

rem 4.1 reduce to the classical form of the KKT conditions. Note that Theorem 4.1
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also implies that either λ0 = 0 or λ j = 0, j = r + 1, . . . ,m, in optimality conditions
presented in [19] in terms of the function L(x, λ),

Results in [22] are KKT-type optimality conditions. However, the main assump-
tion in [22] is stronger than regularity conditions proposed in this paper. There
is also an additional requirement on a vector h from some special set in [22],
〈 f ′(x̄), h〉 = 0, where x̄ is a local minimizer of problem (1). In our paper, we
prove that 〈 f ′(x̄), h〉 = 0 holds in some relevant results without making it an
assumption. Moreover, a regularity assumption in [22] has the form: ∃ h, h̄ such
that 〈g′

i (x̄), h〉 ≤ 0 ∀i ∈ I (x̄) and g′′
i (x̄)[h, h̄] < 0 ∀i ∈ I (x̄, h). It restricts

the class of problems where optimality conditions given in [22] hold and λ0 �= 0
is guaranteed. Example 7.2 illustrates a case when this assumption does not hold,
but optimality conditions presented in the paper are satisfied. All results derived in
[19–22] are given for the case of p = 2 only, while we consider a more general
case of p ≥ 2. The results presented in [16] are different from ones given in this
paper, since [16] requires that the constraints are 2p–times continuously differen-
tiable.

9 Conclusions

We showed that the Karush–Kuhn–Tucker necessary conditions can reduce to a spe-
cific form containing the objective function only in an absolutely degenerate casewhen
(3) holds with an even p. Then we analyzed classes of nonregular problems, when
the KKT conditions hold with a nonzero multiplier corresponding to the objective
function. After that, we turned our attention to the degenerate optimization problems
for which the KKT Theorem fails. We presented necessary and sufficient condi-
tions that can be viewed as generalized KKT-type optimality conditions. As auxiliary
results, we derived new geometric necessary conditions. A new approach presented
in Sect. 5 can be used to reduce degenerate optimization problems to new forms
to simplify analysis of nonregular optimization problems. The proposed optimality
conditions were illustrated by some examples and compared to existing optimality
conditions.

Most of the constraint qualifications (CQs) proposed in the paper can be viewed as
generalizations of either MFCQ or LICQ. The main difference between CQs known
in the literature (see, for example, [1–4] and references therein) and ones presented
in the paper is that our regularity assumptions allowed us to derive not only classical
KKT-type optimality conditions but also generalized forms of the KKT conditions.

Some directions for future research are described in Sect. 6. It would be interesting
to extend the results presented in the paper to the case of p > 2. It remains open
to determine a generalization for the approach described in Sect. 5 to new classes of
optimization problems and to the case of p > 2.
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