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Abstract We show that, under appropriate regularity conditions, a finite horizon opti-
mal control problem exhibits the turnpike property, if and only if its infinite horizon
counterpart does. We prove the result for both undiscounted and discounted prob-
lems and also provide a version which incorporates quantitative information about the
convergence rates.
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1 Introduction

The turnpike phenomenon is a property of trajectories of optimally controlled systems
that has long been observed in optimal control, even back to early work by von Neu-
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mann [1]. The turnpike property describes the fact that an optimal trajectory “most of
the time” stays close to an equilibrium point, as illustrated in Fig. 1, for finite hori-
zon optimal trajectories. This property attracted significant interest, particularly in the
field of mathematical economics [2], because it directly leads to the concept of optimal
economic equilibria and thus provides a natural economic interpretation of optimality.
The name “turnpike property” was coined in 1958 in the book by Dorfman et al. [3],
who compared the phenomenon to the optimal way of driving by car from a point A
to a point B using a turnpike or highway, which consists of three phases: driving to the
highway (i.e., approaching the equilibrium), driving on the highway (i.e., staying near
the equilibrium) and leaving the highway (i.e., moving away from the equilibrium).

Recently, the turnpike property has also attracted interest in areas different from
mathematical economics; see, e.g., [4–9]. This interest stems from the fact that this
property considerably simplifies the computation of (approximately) optimal trajecto-
ries in all areas of optimal control, either directly by constructive synthesis techniques,
as in [10], or indirectly via a receding horizon approach, as in economic model
predictive control [11,12].1 Moreover, the turnpike property can also be rigorously
established in control systems governed by partial differential equations [13], signif-
icantly enlarging the classes of systems for which these methods are applicable. In
the context of economic model predictive control, strict dissipativity can be used as
an alternative to assuming the turnpike property [14]. However, as [9] shows, these
two properties are almost equivalent, in the sense that under a controllability and a
reachability condition, strict dissipativity holds if and only if a robust version of the
turnpike property holds. “Robust” here refers to the fact that not only optimal but
also approximately optimal trajectories exhibit the turnpike phenomenon, though in
a relaxed form. This robust version of the turnpike property has additional structure,
making it more suitable for rigorous mathematical proofs, which is why we also use
it in this paper. We will, however, use neither strict dissipativity nor controllability
assumptions in this paper.

Many of the papers and books discussed above provide sufficient (and sometimes
also necessary) conditions for the occurrence of turnpike behavior. However, most
results apply to either finite horizon or infinite horizon optimal control problems. In
contrast to this, in this paperwe study the relation between turnpike properties for these
two classes of optimal control problems. More precisely, we show that under suitable
regularity conditions, the turnpike phenomenon occurs in the finite horizon problem
if and only if it occurs in the infinite horizon problem with the same stage cost. The
study is carried out for discrete-time systems, mainly because this somewhat reduces
the analytic overhead and simplifies somearguments.However,we expect that a similar
reasoning is also possible in the continuous-time setting. Related results can be found
in the work of Zaslavski, where, for continuous-time systems [5, Theorem 3.1.4] and
[6, Theorem 3], provide conditions whereby finite horizon turnpikes imply, and are
implied by infinite horizon turnpikes. In the discrete-time setting of this paper [7,
Theorem 2.2] provides sufficient conditions for an infinite horizon turnpike property
to imply a finite horizon turnpike property. In contrast to [7], in this paper we do

1 Despite its name, economic model predictive control was developed in control engineering rather than in
mathematical economics.
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not require that the underlying state space be compact, nor even finite dimensional,
nor do we require explicit regularity assumptions on the stage cost in the optimal
control problem, and we do not impose any endpoint constraints. Moreover, we also
present results for discounted optimal control problems with arbitrary discount rate
β ∈ ]0, 1[ as well as quantitative bounds on the convergence rate of the trajectories to
the equilibrium.

The paper is organized as follows. In Sect. 2, we describe the optimal control
problem we are considering. In Sect. 3, we show the relation between the finite and
the infinite horizon property for undiscounted problems. In Sect. 4 we repeat the
analysis for discounted problems since these problems require significantly different
assumptions and proof techniques. In Sect. 5, we discuss turnpike properties which
also include quantitative bounds on the convergence rate of the trajectories to the
equilibrium. Section 6 concludes the paper.

2 Setting and Preliminaries

We consider possibly discounted discrete-time optimal control problems

minimize
u∈UN (x0)

JN (x0, u) (1)

where

JN (x0, u) :=
N−1∑

k=0

βk�(x(k), u(k)),

x(k + 1) = f (x(k), u(k)), x(0) = x0, (2)

N ∈ N or N = ∞, β ∈ ]0, 1], f : X × U → X , and � : X × U → R for metric
spaces X and U , state and input constraints X ⊆ X , U ⊆ U , and admissible control
sets

U
N (x0) :=

{
u(·) ∈ UN : x(n) ∈ X ∀n = 0, . . . , N and

u(n) ∈ U ∀n = 0, . . . , N − 1

}
.

In what follows, for simplicity of exposition we assume UN (x0) �= ∅ for all x0 ∈ X

and all N ∈ N (which implies U∞(x0) �= ∅). If this is not the case, all results remain
true if we restrict ourselves to initial conditions x0 for which U

∞(x0) �= ∅ and to
control functions from U

∞(x0). We define the optimal value function

VN (x0) := inf
u∈UN (x0)

JN (x0, u).

As we will see, both the proofs and the assumptions on the problem differ consid-
erably between the undiscounted case β = 1 and the discounted case β ∈ ]0, 1[. We
therefore treat these two cases in two separate sections and start with the undiscounted
case. In what follows, we denote the cardinality of a set S ⊂ N by card S.
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3 The Undiscounted Case

In this section, we consider the undiscounted case; i.e., the case β = 1. In this case, it
is not guaranteed that

∑∞
k=0 �(x(k), u(k)) = limK→∞ JK (x0, u) exists for all trajec-

tories and controls. In order to avoid the introduction of complicated constraints on the
set of controls over which we minimize, we use J∞(x0, u) = lim supK→∞ JK (x0, u)

in this case. Still, in order to obtain a meaningful optimal control problem, we need
to ensure that |V∞(x)| is finite for all x ∈ X. A class of optimal control problems
for which this can be achieved are dissipative optimal control problems satisfying a
certain controllability property.

Definition 3.1 The optimal control problem is called strictly dissipative at an equilib-
rium (xe, ue) ∈ X × U if there exists a so-called storage function λ : X → R, which
is bounded from below, and a function2 ρ ∈ K such that, for all x ∈ X and u ∈ U

with f (x, u) ∈ X, the inequality

�(x, u) − �(xe, ue) + λ(x) − λ( f (x, u)) ≥ ρ(d(x, xe)) (3)

holds. The optimal control problem is called dissipative if the same condition holds
with ρ ≡ 0.

While we will not explicitly use strict dissipativity in our subsequent considerations
(particularly, we do not require knowledge of a storage function λ), we will see that
our results only apply to strictly dissipative systems; cf. Remark 3.1, below. Hence, it
is not restrictive to assume this property. Many examples can be found in the literature
of dissipative and strictly dissipative optimal control problems; see for instance the
discussions and examples in [14–17]. Hence, there are many examples to which the
following considerations apply.

Dissipativity implies V∞(x) > −∞ for all x ∈ X, providedwe assume �(xe, ue) =
0. This assumption can be made without loss of generality by replacing �(x, u) with
�(x, u) − �(xe, ue). Then (3) with ρ ≡ 0 implies

JK (x0, u) =
K−1∑

k=0

�(x(k), u(k)) ≥ −λ(x(0)) + λ(x(K )),

and since λ is bounded from below we obtain the existence of a constant M ∈ R such
that JK (x0, u) ≥ −λ(x0) + M for all K ∈ N and u ∈ U

∞(x), implying V∞(x0) ≥
−λ(x0) + M .

For the converse inequality V∞(x) < ∞—again under the assumption �(xe, ue) =
0 and assuming that � is continuous—it is sufficient to ensure that, for each initial
condition x(0) = x0 ∈ X, we can find a control which yields sufficiently fast con-
vergence x(k) → xe and u(k) → ue as k → ∞. Clearly, this convergence and the
continuity of � imply �(x(k), u(k)) → �(xe, ue) = 0 and “sufficiently fast” means
that, additionally, lim supK→∞

∑K−1
k=0 �(x(k), u(k)) < ∞ holds. For instance, if the

2 K is the space of functions α : R+
0 → R

+
0 which are continuous and strictly increasing with α(0) = 0.
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cost � is a polynomial (or at least bounded from above near (xe, ue) by a polynomial p
with p(xe, ue) = 0), then exponential convergence x(k) → xe and u(k) → ue would
suffice. This is an exponential controllability condition that is a standard condition
satisfied by many examples in the literature. In finite dimensions it is guaranteed by
stabilizability of the linearization of f at (xe, ue).

In summary, there are many examples in which the infinite horizon undiscounted
optimal control problem is well defined and, in what follows, we will restrict ourselves
to such problems.

We now precisely define the turnpike properties under consideration.

Definition 3.2 (Finite horizon turnpike property) Optimal control problem (1) has the
finite horizon robust turnpike property at an equilibrium xe ∈ X if, for each δ > 0,
each ε > 0, and each bounded setXb ⊂ X, there is a constantCfin

δ,ε,Xb
∈ N such that all

trajectories (x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U
N (x0) and arbitrary N ∈ N satisfying

JN (x0, u) ≤ VN (x0) + δ satisfy

card
{
k ∈ {0, . . . , N } : d(x(k), xe) ≥ ε

}
≤ Cfin

δ,ε,Xb
. (4)

In words, this definition demands that, given ε > 0 and δ > 0, for every δ-optimal
trajectory starting in Xb, all but at most Cfin

δ,ε,Xb
points on the trajectory lie in an ε-

neighborhood of xe. The important property of the constant Cfin
δ,ε,Xb

is that it does not
depend on N ; i.e., the bound on the number of points outside of the ε-neighborhood of
xe is independent of N . Figure 1 shows finite horizon optimal trajectories on different
horizons N which exhibit the turnpike property. For the details of the optimal control
problems behind these figures we refer to [12].

Definition 3.3 (Infinite horizon turnpike property) Consider optimal control problem
(1) with N = ∞ and |V∞(x)| < ∞ for all x ∈ X. Then problem (1) has the infinite
horizon robust turnpike property at an equilibrium xe ∈ X if, for each δ > 0, each
ε > 0, and each bounded set Xb ⊂ X, there is a constant C∞

δ,ε,Xb
∈ N such that

k
0 5 10 15 20 25 30

x
(k
)

0

0.1

0.2

0.3

0.4

0.5

0.6

k
0 2 4 6 8 10 12 14 16 18 20

x
(k
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1 Finite horizon optimal trajectories x(·) (dashed) for different optimization horizons N =
2, 4, . . . , 30 (left) and N = 2, 4, . . . , 20 (right) for two examples from [12]
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all trajectories (x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U
∞(x0) satisfying J∞(x0, u) ≤

V∞(x0) + δ satisfy

card
{
k ∈ N : d(x(k), xe) ≥ ε

}
≤ C∞

δ,ε,Xb
. (5)

Note that Definition 3.3 implies limk→∞ d(x(k), xe) = 0, because otherwise there
are ε > 0 and k j → ∞ with d(x(k j ), xe) ≥ ε for all j ∈ N. But this implies

card
{
k ∈ N : d(x(k), xe) ≥ ε

}
= ∞, and hence the property from Definition 3.3

cannot hold. Therefore, the infinite horizon turnpike property implies convergence of
the respective trajectories to the equilibrium xe. However, the rate of convergence can
be arbitrarily slow, since we do not make any assumption about the size of the time

instant k in card
{
k ∈ N : d(x(k), xe) ≥ ε

}
. We will address this issue in Sect. 5.

In order to establish a relation between Definitions 3.2 and 3.3, we make the fol-
lowing regularity assumptions on the problem.

Assumption 3.1 We assume the following for optimal control problem (1).

(i) For each bounded subset Xb ⊆ X there exists C > 0 such that |VN (x)| ≤ C
holds for all x ∈ Xb and all N ∈ N ∪ {∞}; and

(ii) for each Θ > 0 there is a bounded set XΘ ⊆ X such that for all N ∈ N ∪ {∞}
the inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N .

Part (i) of Assumption 3.1 is a boundedness condition which demands that the
optimal value functions are uniformly (with respect to N and including N = ∞)
bounded on bounded sets, both from above and from below. It is needed to rule out
degenerate behavior caused by unbounded accumulated cost. This assumption can be
seen as a finite horizon variant of the assumption |V∞(x)| < ∞, and just like this
inequality, it can, for example, be guaranteed by dissipativity and (sufficiently fast)
controllability with respect to an equilibrium point (xe, ue); cf. the discussion after
Definition 3.1. Similar to the discussion there, the condition �(xe, ue) = 0 is necessary
for (i) to hold. If this is undesirable, we could replace the condition by “there exists
C > 0 and D ∈ R such that |VN (x) − ND| ≤ C holds for all x ∈ Xb and all
N ∈ N ∪ {∞},” because then (i) holds if we replace �(x, u) by �(x, u) − D, which
does not change the optimal trajectories of the problem.

Part (ii) effectively states that trajectories with bounded values stay in bounded
sets. There are (at least) two easy ways to ensure that this condition holds: On the one
hand, we may assume that X itself is bounded, in which case we can always choose
XΘ = X. Alternatively, we may assume the existence of constants C1,C2,C3 ∈ R

with C2 > 0 and a point x̂ ∈ X such that the inequalities �(x, u) ≥ C1 + C2d(x, x̂)
and VN (x) ≥ C3 hold for all x ∈ X, all u ∈ U, and all N ∈ N∪ {∞}. In this case, the
existence of k ∈ N with k ≤ N with d(x(k), x̂) > Δ implies

JN (x, u) = Jk(x, u) + �(x(k), u(k)) + JN−k−1(x(k + 1), u(· + k + 1))

> C3 + C1 + C2Δ + C3.
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Hence, JN (x, u) ≤ Θ implies Δ ≤ (Θ −C1 − 2C3)/C2, and thus XΘ can be chosen
as the closed ball with radius (Θ − C1 − 2C3)/C2 around x̂ .

The following theorem now gives the main result of this section.

Theorem 3.1 Consider optimal control problem (1) satisfying Assumption 3.1. Then
the finite horizon turnpike property from Definition 3.2 holds if and only if the infinite
horizon turnpike property from Definition 3.3 holds.

Proof “Definition 3.2 ⇒ Definition 3.3”: Assume that the problem has the finite
horizon turnpike property from Definition 3.2. We show that the problem then also
has the infinite horizon turnpike property fromDefinition 3.3. To this end, we consider
a trajectory satisfying the conditions from Definition 3.3. That is, we pick δ > 0,
ε > 0, a bounded subset Xb ⊆ X, and an infinite trajectory with x0 ∈ Xb satisfying
J∞(x0, u) ≤ V∞(x0) + δ.

Next we verify that the trajectory also satisfies the conditions from Definition 3.2.
For this purpose, let C denote the bound from Assumption 3.1(i), which implies
|VN (x) − V∞(x)| ≤ K = 2C for x ∈ Xb. Then Assumption 3.1(ii) implies that
x(k) ∈ XΘ for all k ∈ N and a bounded set XΘ with Θ = K + δ which, by
Assumption 3.1(i), yields the existence of K̃ > 0 with V∞(x(k)) ≥ −K̃ for all k ∈ N.
For all N ∈ N we have

V∞(x0) + δ ≥ J∞(x0, u) = JN (x0, u) + βN J∞(x(N ), u(N + ·))
≥ JN (x0, u) − βN K̃

implying

JN (x0, u) ≤ V∞(x0) + δ + βN K̃ ≤ VN (x0) + K + δ + K̃ .

Thus, the conditions from Definition 3.2 are satisfied, and since by assumption the
problem has the finite horizon robust turnpike property, from (4) we obtain

card
{
k ∈ {0, . . . , N } : d(x(k), xe) ≥ ε

}
≤ Cfin

δ+K+K̃ ,ε,Xb

for all N ∈ N, which implies (5) with

C∞
δ,ε,Xb

= Cfin
δ+K+K̃ ,ε,Xb

,

and thus the infinite horizon robust turnpike property according to Definition 3.3.
“Definition 3.3 ⇒ Definition 3.2”: We proceed similarly as above for the converse

direction and consider a trajectory satisfying the conditions from Definition 3.2. To
this end, fix δ > 0, ε > 0, N ∈ N, a bounded subset Xb ⊆ X, and a trajectory of
length N with x0 ∈ Xb satisfying JN (x0, u) ≤ VN (x0) + δ.

Now we construct an extended trajectory which satisfies the conditions from Defi-
nition 3.2. Letting K = 2C denote the bound on the difference |VN (x)−V∞(x)| from
Assumption 3.1(i), by Assumption 3.1(ii) we can conclude the existence of a bounded
set XΘ with x(N ) ∈ XΘ and hence, again by Assumption 3.1(i), of a constant K̃ with
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V∞(x(N )) ≤ K̃ . Picking a control function ũ satisfying J∞(x(N ), ũ) ≤ K̃ + δ and
defining

û(k) :=
{
u(k), k = 0, . . . , N − 1,
ũ(k − N ), k = N , N + 1, . . . ,

we thus obtain

J∞(x0, û) = JN (x0, u) + βN J∞(x(N ), ũ) ≤ VN (x0) + δ + K̃ + δ

≤ V∞(x0) + K + K̃ + 2δ.

Hence, by (5) the extended trajectory satisfies

card
{
k ∈ N : d(x(k), xe) ≥ ε

}
≤ C∞

2δ+K+K̃ ,ε,Xb
,

which implies finite horizon turnpike (4) with Cfin
δ,ε,Xb

= C∞
2δ+K+K̃ ,ε,Xb

. ��

Remark 3.1 (i) Using [9, Lemma 3.9(a) and the implication “(b)⇒(c)” of Theorem
4.1], one sees that Assumption 3.1(i) together with the finite horizon turnpike property
implies strict dissipativity. Thus, there is a close connection between our result and
dissipativity theory. Particularly, in conjunction with Theorem 3.1 this observation
immediately implies that Assumption 3.1 together with the infinite horizon turnpike
property also implies strict dissipativity, an implication which to the best of our knowl-
edge has not previously been observed in the literature.

(ii) We emphasize that despite the fact that there is a close connection between
strict dissipativity and Theorem 3.1, we do not explicitly use strict dissipativity in our
assumptions. Particularly, neither an explicit expression for the storage function λ nor
of the lower bound ρ in Definition 3.1 is needed. If the finite or the infinite horizon
turnpike property is established by another sufficient condition (see, e.g., [7] for a
variety of such methods), we can apply our results without having to construct the
functions involved in the strict dissipativity inequality.

4 The Discounted Case

We now turn our attention to the discounted case with β ∈ ]0, 1[. For our analysis, the
decisive difference with the undiscounted case is that the discount factor βk tends to
0 as k tends to infinity. This means that if a trajectory has a large deviation from the
optimal trajectory, then this large deviation may nevertheless be barely visible in the
cost functional, provided it happens sufficiently late. For this reason, it is unreasonable
to expect that one can see the turnpike behavior for trajectories satisfying JN (x, u) ≤
VN (x) + δ. In order to fix this problem, we need make two changes to the robust
turnpike Definitions 3.2 and 3.3. First, we need to restrict the time interval on which
we can expect to see the turnpike phenomenon and second, we need to limit the
difference δ between the value of the trajectory under consideration and the optimal
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value. In the following definitions, the first will be taken care of by introducing the
discrete-time interval {0, . . . , M} and the second by defining the bound δfin

ε,M,Xb
.

Definition 4.1 (Finite horizon turnpike property) Optimal control problem (1) has the
finite horizon near-optimal approximate turnpike property if, for each ε > 0 and each
bounded set Xb ⊂ X, there is a constant Cfin

ε,Xb
> 0 such that for each M ∈ N there

is a constant δ = δfin
ε,M,Xb

> 0 such that for all N ∈ N with N ≥ M , all trajectories

(x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U
N (x0) and JN (x0, u) ≤ VN (x0) + δ satisfy

card
{
k ∈ {0, . . . , M} : d(x(k), xe) ≥ ε

}
≤ Cfin

ε,Xb
. (6)

Definition 4.2 (Infinite horizon turnpike property) Optimal control problem (1) has
the infinite horizon near-optimal approximate turnpike property if, for each ε > 0 and
each bounded set Xb ⊂ X, there is a constant C∞

ε,Xb
> 0 such that for each M ∈ N

there is a constant δ = δ∞
ε,M,Xb

> 0 such that all trajectories (x(k), u(k))with x0 ∈ Xb,
u(·) ∈ U

∞(x0) and J∞(x0, u) ≤ V∞(x0) + δ satisfy

card
{
k ∈ {0, . . . , M} : d(x(k), xe) ≥ ε

}
≤ C∞

ε,Xb
. (7)

We note that in both definitions the level δ which measures the deviation from opti-
mality depends on M . In both definitions, δ → 0 may be required if M → ∞.
It is, however, easily seen that the definitions imply (5) for the optimal trajecto-
ries (i.e., for δ = 0), provided they exist. We also note that Definition 4.2 implies
limk→∞ d(x∗(k), xe) = 0 for the optimal trajectory, again provided it exists.

Similar to the definitions of the turnpike property, we also need to adapt Assump-
tion 3.1 to the discounted case.

Assumption 4.1 We assume the following for optimal control problem (1).

1. VN → V∞ as N → ∞ uniformly on bounded subsets of X; and
2. for each ε̃ > 0 and each bounded set Xb ⊆ X there is N0 ∈ N with the following

property: For each N ′ ≥ N0 there is δ̃ > 0 such that for all x0 ∈ Xb, all N ∈
N∪ {∞} with N ≥ N ′, and all u ∈ U

N (x0) satisfying the inequality JN (x0, u) ≤
VN (x0) + δ̃, the inequality βN ′ |VN ′′(x(N ′))| ≤ ε̃ holds for all N ′′ ∈ N ∪ {∞}.
Assumption 4.1(i) states that the two operations “taking the infimum of JN (x, u)

with respect to u” and “passing to the limit for N → ∞” can be interchanged without
changing the value. While this would be a rather strong assumption for undiscounted
problems, for discounted problems it is always satisfied if, e.g., the stage cost is
bounded along the optimal trajectories. In this case, due to the exponential decay of
βk , the value of a tail of an optimal trajectory becomes arbitrarily small, and hence also
the difference between minimizing JN and J∞ becomes arbitrarily small. Therefore,
Assumption 4.1(i) is always satisfied if, e.g., � is bounded on X or at least on a set
containing the optimal trajectories starting in a bounded set.

Assumption 4.1(ii) is relatively technical, but, again, since βk → 0 as k → ∞, if
we know that the modulus of the optimal value functions |VN | for N ∈ N ∪ {∞} is

123



736 J Optim Theory Appl (2017) 173:727–745

bounded along the trajectories x(·), say by a constant C , then it suffices to choose N ′
sufficiently large that βN ′

C ≤ ε̃ holds. Again, this boundedness holds, e.g., if the |VN |
are uniformly bounded on the whole set X or if they are bounded on bounded sets and
the near-optimal trajectories x(·) stay in bounded sets up to the time N ′. Since the last
two properties are implied by Assumption 3.1(i) and (ii), Part (ii) of Assumption 4.1
can be seen as a relaxation of Assumption 3.1.

The counterpart of Theorem 3.1 for the discounted case now reads as follows.

Theorem 4.1 Consider optimal control problem (1) satisfying Assumption 4.1. Then
the finite horizon turnpike property from Definition 4.1 holds if and only if the infinite
horizon turnpike property from Definition 4.2 holds.

Proof “Definition 4.1 ⇒ Definition 4.2”: Similar to the first part of the proof of
Theorem 3.1 we consider a trajectory satisfying the conditions of Definition 4.2 and
show that it also satisfies the conditions ofDefinition 4.1, fromwhichwe then conclude
(7). However, we require some preliminary considerations in order to determine the
bound on δ in Definition 4.2. To this end, fix ε > 0, a bounded setXb ⊆ X, andM ∈ N,
and let δfin = δfin

ε,M,Xb
> 0 be the level of accuracy needed in Definition 4.1. We set

δ̃ := δfin/4 and pick N0 ∈ N fromAssumption 4.1(ii), and fromAssumption 4.1(i) we
choose N ≥ max{N0, M} sufficiently large that |VN (x0) − V∞(x0)| ≤ δ̃ for all x0 ∈
Xb. For this N , we take ε̃ > 0 from Assumption 4.1(ii) and set δ := min{ε̃, δfin/2}.
Now we consider a trajectory satisfying J∞(x0, u) ≤ V∞(x0) + δ.

Then, using Assumption 4.1(ii) with N = N ′ and N ′′ = ∞ we obtain

VN (x0) + δ + δ̃ ≥ V∞(x0) + δ ≥ J∞(x0, u)

= JN (x0, u) + βN J∞(x(N ), u(N + ·))
≥ JN (x0, u) + βNV∞(x(N )) ≥ JN (x0, u) − δ̃ ;

i.e.,

JN (x0, u) ≤ VN (x0) + δ + 2δ̃ ≤ VN (x0) + δfin.

This implies the condition for the finite horizon near-optimal approximate turnpike
property in Definition 4.1, and thus (6) yields the inequality

card
{
k ∈ {0, . . . , M} : d(x(k), xe) ≥ ε

}
≤ Cfin

ε,Xb

for all sufficiently large N ∈ N. From this we obtain the infinite horizon near-optimal
approximate turnpike property (7) with C∞

ε,Xb
= Cfin

ε,Xb
and δ∞

ε,M,Xb
= δ.

“Definition 4.2 ⇒ Definition 4.1”: Similar to the second part of the proof of Theo-
rem 3.1, we consider a trajectory satisfying the conditions ofDefinition 4.1 fromwhich
we construct an extended trajectory satisfying the conditions of Definition 4.2. As in
the first part of the proof, we need to take care of the bounds of δ in these definitions.

Fix again ε > 0, a bounded set Xb ⊆ X, and M ∈ N, and let δ∞ = δ∞
ε,M,Xb

> 0
be the level of accuracy needed in Definition 4.2. We set δ := δ∞/8 and pick N0 ∈ N
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from Assumption 4.1(ii). From Assumption 4.1(i) we can find N1 ≥ N0 such that
|VN ′(x0)−VN (x0)| ≤ δ and |VN ′(x0)−V∞(x0)| ≤ δ for all x0 ∈ Xb and all N , N ′ ≥
N1. Moreover, we may pick N1 sufficiently large that ε̃ from Assumption 4.1(ii)
satisfies ε̃ < δ∞/4. Finally, we set N ′ = max{M, N1}.

Then, for arbitrary N ≥ N ′ we pick a control sequence satisfying the conditions of
Definition 4.1; i.e., with JN (x0, u) ≤ VN (x0) + δ. This implies

VN ′(x0) + 2δ ≥ VN (x0) + δ ≥ JN (x0, u)

= JN ′(x0, u) + βN ′
JN−N ′(x(N ′), u(N ′ + ·))

≥ JN ′(x0, u) + βN ′
VN−N ′(x(N ′)) ≥ JN ′(x0, u) − ε̃,

and thus JN ′(x0, u) ≤ VN ′(x0)+2δ+ ε̃. Picking another control sequence ũ satisfying
J∞(x(N ′), ũ) ≤ V∞(x(N ′)) + δ, and defining

û(k) :=
{
u(k), k = 0, . . . , N ′ − 1
ũ(k − N ′), k = N ′, N ′ + 1, . . . ,

we thus obtain

J∞(x0, û) = JN ′(x0, u) + βN ′
J∞(x(N ′), ũ)

≤ VN ′(x0) + 2δ + ε̃ + βN ′
V∞(x(N ′)) + δ

≤ V∞(x0) + 4δ + 2ε̃ = V∞(x0) + δ∞.

Hence, the extended trajectory satisfies the condition of Definition 4.2 and thus (7)
yields

card
{
k ∈ {0, . . . , M} : d(x(k), xe) ≥ ε

}
≤ C∞

ε,Xb
.

This implies (6) and thus the finite horizon near-optimal approximate turnpike property
from Definition 4.2 for N ≥ N ′ with Cfin

ε,Xb
= C∞

ε,Xb
and δfin

ε,M,Xb
= δ. For arbitrary

N we thus obtain (6) with Cfin
ε,Xb

= max{N ′, C∞
ε,Xb

}. ��
Remark 4.1 For discounted problems, all sufficient conditions for turnpike properties
of which we are aware work only for β sufficiently close to 1; see, e.g., [18,19] and
also the discussion and references in Remark 3.1 in [18]. In contrast to this, our result
holds for all discount factors β ∈ ]0, 1[.
Example 4.1 We consider a basic growth model in discrete time, which goes back to
[20]. The problem is originally a maximization problem which can be written as a
minimization problem of the form (1), (2) with X =]0,∞[ and

x(k + 1) = u(k), �(x, u) = − ln(Axα − u).

Here, Axα is a production function with constants A > 0, 0 < α < 1, capital stock x ,
and control variable u > 0. The difference between output and next period’s capital
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stock (given by u) is consumption. For discount factor β ∈ ]0, 1[ the exact solution to
the infinite horizon problem is known (see [21]) and is given by

V∞(x) = −B − C ln x

with

C = α

1 − αβ
and B = ln((1 − αβ)A) + βα

1−βα
ln(αβA)

1 − β
.

The unique optimal equilibrium for this example is given by xe = 1/ α−1
√

βαA, and
using dynamic programming, one easily identifies the infinite horizon optimal control
u∗∞ in feedback form u∗(k) = F(x(k)) with

F(x) = argmin
u∈]0,∞[

{− ln(Axα − u) + βV (u)
} = βACxα

βC − 1
. (8)

To the best of our knowledge, explicit solutions for the corresponding finite horizon
problem are not known. However, using the explicit formulas for the infinite horizon
problem, one checks that the problemhas the infinite horizon turnpike property accord-
ing to Definition (4.1) for all β ∈ ]0, 1[. Indeed, one easily checks that F(x) < x for
x > xe and F(x) > x for x < xe, from which convergence of the optimal solution
to xe follows. Due to the fact that the expression to be minimized in (8) is strictly
convex in u, near-optimal controls u(k) are close to optimal controls u∗(k), which
implies the turnpike property for near-optimal trajectories. The other assumptions of
Theorem 4.1 are checked in a similar way. Hence, we can conclude the finite horizon
turnpike property.

5 Turnpike with Transient Estimates

As already mentioned, the turnpike definitions so far do not allow for estimating
how fast the trajectories approach the equilibrium xe. They also do not allow for
bounds on the trajectories during the time in which they are not close to xe. In this
section, we propose definitions for finite and infinite horizon turnpike properties that
provide this information. Here, the infinite horizon definition was inspired by the usual
notion of asymptotic stability (in its formulation viaKL-functions, which has become
standard in nonlinear control, see [22]), while the finite horizon definition can be seen
as an extension of the exponential turnpike property established in [15] under a strict
dissipativity condition. Like in the previous sections, we will then be able to show that
these two conditions are equivalent under suitable regularity conditions on optimal
control problem (1). In order to streamline the presentation, we limit ourselves to a
set of assumptions suitable for the undiscounted setting from Sect. 3; i.e., to β = 1.

For the following definitions, we recall (cf. Footnote 2) that K is the space of
functions α : R+

0 → R
+
0 which are continuous and strictly increasing with α(0) = 0

and that KL is the space of functions φ : R+
0 × R

+
0 → R

+
0 which are continuous,
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r �→ φ(r, t) is aK-function for each t ≥ 0, and t �→ φ(r, t) is strictly decreasing to 0
for each r > 0. The space LN0 denotes all functions γ : N0 → R

+
0 which are strictly

decreasing to 0.

Definition 5.1 (Finite horizon) Optimal control problem (1) has the finite horizon
robustKL-turnpike property at an equilibrium xe ∈ X if, for each bounded setXb ⊂ X,
there are φ ∈ KL, ω ∈ K, and γ ∈ LN0 such that for each δ > 0, N ∈ N, and all
trajectories (x(k), u(k)) with x0 ∈ Xb, u(·) ∈ U

N (x0), and satisfying JN (x0, u) ≤
VN (x0) + δ the inequality

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω

(
δ + γ (N ) + γ (N − j)

)
(9)

holds for all j = 0, . . . , N and all k = 0, . . . , j .

Definition 5.2 (Infinite horizon) Consider optimal control problem (1) with N = ∞
and |V∞(x)| < ∞ for all x ∈ X. Then problem (1) has the infinite horizon robust
KL-turnpike property at an equilibrium xe ∈ X if, for each bounded set Xb ⊂ X,
there are φ ∈ KL and ω ∈ K such that for each δ > 0 and all trajectories (x(k), u(k))
with x0 ∈ Xb, u(·) ∈ U

∞(x0), and satisfying J∞(x0, u) ≤ V∞(x0)+ δ, the inequality

d(x(k), xe) ≤ φ(d(x0, x
e), k) + ω(δ) (10)

holds.

We note that (10) implies that optimal trajectories x�(k) starting at x = xe sat-
isfy x�(k) = xe. Hence, in order to ensure that V∞(xe) is finite, we need that
minu∈U, f (xe,u)=xe �(xe, u) = 0, which implies V∞(xe) = 0. We may thus assume
V∞(xe) = 0 without loss of generality in the remainder of this section. We note that
this assumption does not imply VN (xe) ≈ 0, even for large N .

In order to show equivalence of Definitions 5.1 and 5.2, in addition to Assump-
tion 3.1 we need the following assumption.

Assumption 5.1 For optimal control problem (1) we assume that there is K ∈ R

such that for any bounded set Xb ⊆ X there is ρ ∈ LN0 such that for all x ∈ Xb the
inequality

|V∞(x) − VN (x) + K | ≤ ρ(N )

holds.

The intuition behind Assumption 5.1 is as follows: assume the infinite horizon
problem has an optimal equilibrium (xe, ue) with �(xe, ue) = 0. Then we have
V∞(xe) = 0, but since on finite horizons (xe, ue) will typically not be an optimal
equilibrium, in general limN→∞ VN (xe) = 0 will not hold. In this case, this limit
value is the candidate for the value K for which Assumption 5.1 holds. The following
lemma shows that this reasoning can be made precise under rather mild conditions if
the turnpike property holds.
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Lemma 5.1 Consider optimal control problem (1) and assume that the problem
exhibits the turnpike property according to Definitions 3.2 and 3.3 and V∞(xe) = 0.
Assume moreover that the limit limN→∞ VN (xe) exists and that the optimal value
functions VN are continuous at xe uniformly in N ∈ N ∪ {∞} in the following sense:
There exists σ ∈ K and ν ∈ LN0 such that the inequality

|VN (x) − VN (xe)| ≤ σ(d(x, xe)) + ν(N )

holds for all x ∈ X and N ∈ N ∪ {∞}, with the convention ν(∞) = 0. Then
Assumption 5.1 is satisfied.

Proof We show that the assertion follows for K = limN→∞ VN (xe). We choose
η ∈ LN0 such that |VN (xe)−K | ≤ η(N ) for all N ∈ N and fix a bounded setXb ⊆ X.
Moreover, we note that it is sufficient to prove the assertion for sufficiently large N ,
because the continuity assumption implies boundedness of VN and V∞ on bounded
sets, which ensures existence of ρ(N ) for finitely many N .

We start by showing that there exists ρ1 ∈ LN0 for which the inequality V∞(x) ≤
VN (xe) − K + ρ1(N ) holds for all x ∈ Xb. To this end, fix δ0 > 0, let δ ∈ ]0, δ0[,
x ∈ Xb, and consider a control uδ with JN (x, uδ) ≤ VN (x) + δ.

Then, for sufficiently large N ∈ N and ε > 0 the constant Cfin
δ0,ε,Xb

from Defini-

tion 3.2 satisfies Cfin
δ0,ε,Xb

≥ N/2. We pick ε = ε(N ) > 0 minimal such that this

inequality holds. Then, since for each ε > 0 there is N ∈ N such that Cfin
δ0,ε,Xb

≥ N/2
holds, it follows that ε(N ) → 0 as N → ∞. Hence, there is ε̃(·) ∈ LN0 with
ε(N ) ≤ ε̃(N ); e.g., ε̃(N ) = supK≥N ε(K ) + 2−N . For each N we now pick
the minimal k∗ ∈ {0, . . . , N } satisfying d(xuδ (k∗), xe) < ε(N ), which because
of Cfin

δ0,ε,Xb
≥ N/2 satisfies N − k∗ ≥ �N/2�. We pick a control ûδ satisfying

J∞(xuδ (k∗), ûδ) ≤ V∞(xuδ (k∗)) + δ and set u(k) = uδ(k), k = 0, . . . , k∗ − 1
and u(k) = ûδ(k + k∗), k ≥ k∗. Then we can estimate

V∞(x) ≤ J∞(x, u)

= Jk∗(x, uδ) + J∞
(
xuδ (k∗), ûδ

)

≤ JN (x, uδ) − JN−k∗
(
xuδ (k∗), uδ(k∗ + ·)) + V∞

(
xuδ (k∗)

) + δ

≤ VN (x) + δ − VN−k∗
(
xuδ (k∗)

) + V∞
(
xuδ (k∗)

) + δ

≤ VN (x) − K + V∞(xe) + 2σ(ε(N )) + ν(N − k∗) + η(N ) + 2δ.

Since δ > 0 was arbitrary, N − k∗ ≥ �N/2�, and V∞(xe) = 0, this shows the claim
with ρ1(N ) = 2σ(ε̃(N )) + ν(�N/2�) + η(N ).

The converse inequality VN (x) ≤ V∞(xe) + K + ρ2(N ) is obtained similarly,
starting from a δ-optimal trajectory for the ∞-horizon problem and extending it after
the “turnpike time” k∗ by a δ-optimal trajectory for the problem with horizon N − k∗.
Together this yields the assertion with ρ = max{ρ1, ρ2}. ��

The first equivalence theorem for Definitions 5.1 and 5.2 now uses Assumption 5.1.
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Theorem 5.1 Consider optimal control problem (1) and assume that

1. |V∞| is bounded on bounded subsets of X;
2. Assumption 5.1 holds; and
3. for each Θ > 0 there is a bounded set XΘ ⊆ X such that for each N ∈ N ∪ {∞}

the inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N.

Then Definition 5.1 holds if and only if Definition 5.2 holds.

Proof “Definition 5.1 ⇒ Definition 5.2”: Consider a trajectory x(·) with control u(·)
and initial value x0 satisfying the conditions of Definition 5.2. Then for all j ∈ N we
obtain

J j (x0, u) + V∞(x( j)) ≤ J∞(x0, u) ≤ V∞(x0) + δ.

Then from (ii) with Xb = XΘ from (iii), for arbitrary N ∈ N with j ≤ N we obtain

J j (x0, u) ≤ V∞(x0) − V∞(x( j)) + δ ≤ VN (x0) − VN− j (x( j))

+ δ + ρ(N ) + ρ(N − j).

Now taking the control u(k) for k = 0, . . . , j − 1 and extending it with an ε-optimal
control for horizon N − k, arbitrary ε > 0 and initial value x( j) yields a control ũ
satisfying

JN (x0, ũ) ≤ J j (x0, u) + VN− j (x( j)) + ε ≤ VN (x0) + δ + ρ(N ) + ρ(N − j) + ε.

Hence, Definition 5.1 with δ+ρ(N )+ρ(N + j)+ε in place of δ implies the estimate

d(x(k), xe) ≤ φ
(
d(x0, x

e) , k)

+ω
(
δ + ρ(N ) + γ (N ) + ρ(N − j) + γ (N − j) + ε

)

for all k = 0, . . . , j . Fixing k and letting ε → 0, N → ∞ and j := �N/2� → ∞,
continuity of φ and ω and the fact that ρ ∈ LN0 and γ ∈ LN0 yield the desired
inequality

d(x(k), xe) ≤ φ
(
d

(
x0, x

e) , k
) + ω(δ).

“Definition 5.2 ⇒ Definition 5.1”: Consider a trajectory x(·) of length N with
control u(·) and initial value x0 satisfying the conditions of Definition 5.1. Then for
all j = 0, . . . , N we obtain

J j (x0, u) + VN− j (x( j)) ≤ JN (x0, u) ≤ VN (x0) + δ.

Then from (ii) with Xb = XΘ from (iii) we obtain

J j (x0, u) ≤ VN (x0) − VN− j (x( j)) + δ ≤ V∞(x0)

−V∞(x( j)) + δ + ρ(N ) + ρ(N − j).
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Now taking the control u(k) for k = 0, . . . , j − 1 and extending it with an ε-optimal
control for infinite horizon for arbitrary ε > 0 and initial value x( j) yields a control
ũ satisfying

J∞(x0, ũ) ≤ J j (x0, u) + V∞(x( j)) + ε ≤ V∞(x0) + δ + ρ(N ) + ρ(N − j) + ε.

Hence, using Definition 5.2 with δ + ρ(N ) + ρ(N + j) + ε in place of δ yields the
estimate

d(x(k), xe) ≤ φ
(
d

(
x0, x

e) , k
) + ω

(
δ + ρ(N ) + ρ(N − j) + ε

)

for all k = 0, . . . , j . For ε → 0, continuity of ω yields the desired inequality for
γ = ρ ∈ LN0 . ��

Using Lemma 5.1 we can obtain a variant of Theorem 5.1 avoiding the use of
Assumption 5.1.

Corollary 5.1 Consider optimal control problem (1) and assume that

1. V∞(xe) = 0 and limN→∞ VN (xe) exists;
2. the optimal value functions VN are continuous at xe uniformly in the horizon

N ∈ N ∪ {∞} in the following sense: There exists γ ∈ K and ν ∈ LN0 such that
the inequality

|VN (x) − VN (xe)| ≤ γ (d(x, xe)) + ν(N )

holds for all x ∈ X and N ∈ N ∪ {∞} with the convention ν(∞) = 0; and
3. for each Θ > 0 there is a bounded set XΘ ⊆ X such that for all N ∈ N ∪ {∞}

the inequality JN (x0, u) ≤ Θ implies x(k) ∈ XΘ for all k = 0, . . . , N.

Then Definition 5.1 holds if and only if Definition 5.2 holds.

Proof We note that (i) and (ii) imply boundedness of V∞ and VN on bounded sets.
Moreover, we note that the turnpike property from Definition 5.1 implies that of
Definition 3.2 and that the property from Definition 5.2 implies that of Definition 3.3.
Since by Theorem 3.1 the properties from Definitions 3.2 and 3.3 are equivalent under
the conditions of the corollary, we obtain that if either Definition 5.1 or Definition 5.2
holds, then bothDefinitions 3.2 and 3.3 follow.Hencewe can applyLemma5.1 in order
to conclude that Assumption 5.1 holds. The assertion then follows from Theorem 5.1.

��
We illustrate the use of Theorem 5.1 by the following well-known class of optimal

control problems.

Example 5.1 Consider an undiscounted linear quadratic optimal control problemwith

f (x, u) = Ax + Bu and �(x, u) = (xT , uT )G

(
x
u

)
,
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where (A, B) is stabilizable and the matrix G is symmetric and positive definite. It
is well known that for such a problem the optimal trajectories converge to the origin
exponentially fast and that the infinite horizon optimal value function is of the form
V∞(x) = xT Q∞x for a symmetric and positive definite matrix Q∞. Moreover, the
optimal control is available in linear feedback form; i.e., u∗ = Fx and V∞ is a
quadratic Lyapunov function. More precisely, the inequality

V (Ax + BFx) ≤ V (x) − �(x, Fx)

holds for all x ∈ R
n . For all trajectories (x(k), u(k)) satisfying the inequality

J∞(x0, u) ≤ V∞(x0) + δ and all k ∈ N it holds that

J∞(x(k), u(k + ·)) ≤ V∞(x(k)) + δ,

which implies

V∞(x(k + 1)) ≤ J∞(x(k + 1), u(k + 1 + ·))
= J∞(x(k), u(k + ·)) − �(x(k), u(k))

≤ V∞(x(k)) − �(x(k), u(k)) + δ.

From this inequality a standard Lyapunov argument yields the existence ofC1,C2 > 0
and a ∈ ]0, 1[ such that

V∞(x(k)) ≤ max
{
C1a

kV∞(x(0)), C2δ
}

for all k ∈ N, which implies

‖x(k)‖ ≤ φ(‖x(0)‖, k) + ω(δ)

with φ(r, k) = C
√
akr and ω(r) = C

√
δ for an appropriate constant C > 0. Hence,

the problem has the infinite horizon robust KL-turnpike property according to Defi-
nition 5.2.

In order to show that the problem also has the finite horizon robust KL-turnpike
property according to Definition 5.1, we now check that the problem satisfies the
conditions of Theorem 5.1. Condition (i) is obviously satisfied, since V∞ is a quadratic
function. Condition (ii) follows with K = 0 from the fact that VN (x) = xT QN x
and the matrices QN are defined via the Riccati difference equation and converge
exponentially fast toward Q∞, which is the solution of the discrete-time algebraic
Riccati equation. The exponential convergence moreover implies that ρ can be chosen
to be of the form ρ(N ) = DbN with D > 0 and b ∈ ]0, 1[. Condition (iii) follows
immediately from the fact thatG is positive definite, implying the existence ofCΘ > 0
such that �(x, u) > Θ whenever ‖x‖ ≥ CΘ . From this condition (iii) follows with
XΘ = {x ∈ R

n : ‖x‖ ≤ CΘ }.
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Thus, all conditions ofTheorem5.1 hold andwe can conclude thefinite horizonKL-
turnpike property with functions φ(r, k) = C

√
akr ,ω(r) = C

√
r , and ρ(N ) = DbN ;

i.e., bothφ and ρ are exponentially decaying in time k or in the horizon N , respectively.
Since our results hold on arbitrarymetric spaces, we can extend the reasoning of this

example to infinite-dimensional systems; for instance, to discrete-time linear quadratic
optimal control problems whose state dynamics are described by a linear semigroup of
operators on an infinite-dimensional Hilbert space. For such problems, the properties
used above hold in an analogous way (see, e.g., [23,24]), and thus our results allow
one to conclude the finite horizon robust KL-turnpike property with exponentially
decaying φ and ρ for this class of infinite-dimensional systems.

6 Conclusions

In this paper, we have investigated the relationship between turnpike properties for
finite and infinite horizon optimal control problems with the same stage cost. Specif-
ically, we have shown that, under mild technical assumptions, these properties are
equivalent. Furthermore, this relationship has been demonstrated for optimal control
problems involving both undiscounted and discounted stage costs, making the results
applicable to commonly studied problems in both engineering and mathematical eco-
nomics.

Furthermore, we have proposed a definition of a turnpike property that incorporates
information about the rate of convergence for optimal trajectories approaching an
optimal equilibrium, as well as a bound on how far such trajectories can be from
this equilibrium during the time when they are not close. This robust KL-turnpike
property provides a potential route to sharper quantitative results in problems involving
turnpikes, similar to the modern use of comparison functions in stability theory.
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