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Abstract Using an augmented Lagrangian approach, we study the existence of aug-
mented Lagrange multipliers of a semi-infinite programming problem and discuss
their characterizations in terms of saddle points. In the case of a sharp Lagrangian, we
obtain a first-order necessary condition for the existence of an augmented Lagrange
multiplier for the semi-infinite programming problem and some first-order suffi-
cient conditions by assuming inf-compactness of the data functions and the extended
Mangasarian–Fromovitz constraint qualification. Using a valley at 0 augmenting func-
tion and assuming suitable second-order sufficient conditions, we obtain the existence
of an augmented Lagrange multiplier for the semi-infinite programming problem.
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1 Introduction

The semi-infinite programmingproblem (SIP in short) has attractedmuch attention due
to its various applications in engineering design, optimal control, economic equilibria,
etc. It has become an active field of research in applied mathematics. For example,
see Fiacco and Kortanek [1], Goberna and López [2], Polak [3], Polak and Wuu [4],
Polak [5] and the references therein. The main difficulty in solving (SIP) comes from
the fact that it has an infinite number of constraints, and hence it is hard to design
algorithms for solving it. However, in recent years, many effective methods have been
proposed for solving semi-infinite programming, such as discretization methods (see
Hettich [6], Still [7]), reduction methods (see Hettich and Kortanek [8], Reemsten and
Görner [9]) and exchange methods (see Goberna and López [2], Hettich and Kortanek
[8], Reemsten and Görner [9], Zhang et al. [10]).

For studying duality properties of (SIP), we will use an augmented Lagrangian
approach, which is crucial for dealing with nonconvex and constrained optimization
problems. The augmented Lagrangian function was first proposed independently by
Hestenes [11] and Powell [12] to solve an optimization problem with equality con-
straints. This was extended to solve an inequality constrained optimization problem
by Buys [13]. The augmented Lagrangian method has been used to solve an optimiza-
tion problem with both equality and inequality constraints in Rockafellar [14]. Under
a growth condition, one can relate the value of the dual problem to the behavior of
the perturbation function. In Rockafellar [14], the definition of a quadratic growth
condition was introduced and a necessary and sufficient condition for a zero duality
gap between a constrained optimization problem and its augmented Lagrangian dual
problemwas obtained. In Rockafellar andWets [15, 11K*], an augmented Lagrangian
with a convex augmenting function was introduced and the corresponding zero duality
property was established. The definitions of several growth conditions were delineated
by Penot [16]. By assuming that the augmenting function satisfies the level coercivity
condition and the perturbation function satisfies some growth condition, several zero
duality gap results between the primal problem and its augmented Lagrangian dual
problemwere obtained in Penot [16]. A level-bounded augmenting function was given
in Huang and Yang [17], where the convexity of augmenting functions in Rockafellar
and Wets [15] was replaced by a level-boundedness condition. A valley at 0 augment-
ing function was given in Zhou and Yang [18], where the level-boundedness condition
of the augmenting functions in Huang and Yang [17] was replaced by the valley at 0
property. The latter property allows one to introduce a duality scheme with zero dual-
ity gap. More general frameworks for establishing zero duality gap and the existence
of exact penalty parameters were introduced in [19–21]. Optimization problems in
which the constraints are given in terms of a set inclusion were considered by Shapiro
and Sun [22]. Using a quadratic growth condition (a property originally introduced by
Rockafellar [14]), and a quadratic augmentedLagrangian, Shapiro and Sun established
strong duality and second-order conditions ensuring existence of Lagrange multipliers
(see [22, Theorems 2.4 and 3.4]). The concept of augmented Lagrange multiplier is
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related with that of a global saddle point of augmented Lagrangian functions. This
connection was exploited by Sun et al. [23], who considered four classes of augmented
Lagrangian functions. Under second-order sufficient conditions and certain additional
conditions, Sun et al. [23] established the existence of local and global saddle points
of these four kinds of augmented Lagrangian functions. Rückmann and Shapiro [24]
studied the (SIP) via an augmented Lagrangian approach with a nonnegative convex
augmenting function and a reduction approach method. They obtained some neces-
sary and sufficient conditions for the existence of an augmented Lagrange multiplier.
Furthermore, they discussed two particular cases: the proximal Lagrangian and the
sharp Lagrangian.

Sufficient conditions for the existence of an augmented multiplier of an augmented
Lagrangian with a valley at 0 augmenting function of a cone constrained optimization
problem were obtained in Zhou et al. [25] by using local saddle point conditions and
bounded conditions of a perturbed constraint set. In the present paper, we will use the
augmented Lagrangian to study (SIP). Firstly, we use the sharp Lagrangian to derive
first-order necessary conditions and first-order sufficient conditions for the existence
of an augmented Lagrange multiplier for (SIP) (see Theorems 3.1 and 3.2). Secondly,
we consider an augmented Lagrangian with an augmenting function having a valley at
0 property. This allows us to obtain the existence of an augmented Lagrange multiplier
for (SIP) under two possible assumptions: (i) that (SIP) has a unique global optimal
solution, and (ii) that the objective and the constraint functions satisfy a generalized
representation condition originally introduced in [26].

Since the augmenting function used in this paper may be nonconvex and non-
quadratic, standard techniques such as those used in Rückmann and Shapiro [24]
and in Shapiro and Sun [22] to show the existence of augmented Lagrange multipliers
cannot be applied here. For the same reasons, the saddle point results we derive cannot
make use of the techniques used in Sun et al [23]. As a result, both the results and the
proof techniques we use in the present paper are different from those in the last three
references.

The structure of the paper is outlined as follows: in Sect. 2, we introduce some nota-
tions and preliminary results needed in the sequel of this article. In Sect. 3, we obtain
some first-order optimality conditions for the existence of an augmented Lagrange
multiplier of the sharp Lagrangian problem. In Sect. 4, we obtain some second-order
conditions for the existence of an augmented Lagrange multiplier of a valley at 0
augmented Lagrangian for (SIP). The last section, Sect. 5, contains some concluding
remarks and an open question.

2 Preliminaries

We consider a semi-infinite programming problem (SIP, in short) in the following
form

min
x∈Rn

f (x) subject to g(x, ω) ≤ 0, ω ∈ Ω, (SIP)

where Ω is a (possibly infinite) nonempty set, f : Rn → R and g : Rn ×Ω → R are
real-valued functions. (SIP) is said to be convex if f and g(·, ω)(ω ∈ Ω) are convex.
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Let R+ := [0,+∞[ ,R++ := (0,+∞[,R±∞ := ] − ∞,+∞[ and the indi-
cator function of a set Z ⊂ Y be defined by δZ (y) = 0, if y ∈ Z , and δZ (y) =
+∞, otherwise.

Let Ω be a nonempty set and R
Ω be the set of all functions from Ω to R. Denote

by R(Ω) the subset of RΩ consisting of all functions from Ω to R which are nonzero
in at most a finite subset of Ω . More precisely, R(Ω) is defined as follows.

R
(Ω) := {λ : Ω → R : λ(ω) = 0, for all ω ∈ Ω except for a finite number},

and R
(Ω)
+ := {λ ∈ R

(Ω) : λ(ω) ≥ 0,∀ω ∈ Ω}. For λ ∈ R
(Ω), let

supp(λ) := {ω ∈ Ω : λ(ω) 	= 0}.
Therefore, we say that R(Ω) is the subset of RΩ consisting of all functions with finite
support. The set R(Ω) will play the role of the dual space, and hence will contain the
Lagrange multipliers.

For λ ∈ R
(Ω) and y ∈ R

Ω , we can define a scalar product in a natural way:

〈λ, y〉 :=
∑

ω∈supp(λ)

λ(ω)y(ω).

For a finite set Γ = {ω1, . . . , ωm} ⊂ Ω and y ∈ R
Ω , denote by yΓ (·) the restriction

of function y(·) to Γ , i.e.,

yΓ (ω) :=
{
y(ω), if ω ∈ Γ,

0, otherwise.
(1)

By abuse of notation, wemay use the same symbol yΓ to denote the finite dimensional
vector that has for coordinates yΓ = (y(ω1), . . . , y(ωm))T .

Let σ : R(Ω) → R+ be a function with σ(0) = 0. We refer to the function σ as an
augmenting function.

For a given x ∈ R
n , we define the set

D(x) := {y ∈ R
Ω : g(x, ω) + y(ω) ≤ 0 ∀ω ∈ Ω},

which is the set of “admissible” perturbations at the point x .
We will now use all these elements to define the augmented Lagrangian for (SIP).

Definition 2.1 Fix λ ∈ R
(Ω), r > 0, a penalty parameter. The augmented Lagrangian

for the problem (SIP) is the function LΩ : Rn × R
(Ω) × R++ → R±∞ defined by

LΩ(x, λ, r) := inf y∈RΩ { f (x) − 〈λ, y〉 + rσ(yΓ ) : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω}
= inf y∈RΩ { f (x) − 〈λ, y〉 + rσ(yΓ ) + δD(x)(y)}. (2)

Denote by val (SIP) the optimal value of the problem (SIP), and denote by X0 the
set of feasible solutions of (SIP), i.e.,
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X0 := {x ∈ R
n : g(x, ω) ≤ 0, ω ∈ Ω}.

Let x∗ ∈ X0. Denote the active constraint index set at x∗ by

I (x∗) := {ω ∈ Ω : g(x∗, ω) = 0}.

We assume throughout the paper that the optimal value of problem (SIP) is finite.
Fix y ∈ R

Ω and denote by val (Py) the optimal value of the following parameterized
problem of (SIP):

min f (x) subject to x ∈ R
n, g(x, ω) + y(ω) ≤ 0, ω ∈ Ω. (Py)

With this notation, for y = 0 we naturally obtain val (P0) = val (SIP).
Let λ ∈ R

(Ω), Γ = supp(λ) and r > 0. Define vΩ
r : RΩ → R±∞ as

vΩ
r (y) := val (Py) + rσ(yΓ ), y ∈ R

Ω. (3)

The assumption that σ(0) = 0 implies that vΩ
r (0) = val (SIP) for every r > 0. By

(2)–(3), we always have that

vΩ
r (0) ≥ inf y∈RΩ {vΩ

r (y) − 〈λ, y〉} = inf y∈RΩ {val (Py) − 〈λ, y〉 + rσ(yΓ )}
= inf y∈RΩ infx∈Rn { f (x) − 〈λ, y〉 + rσ(yΓ ) : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω}
= infx∈Rn inf y∈RΩ { f (x) − 〈λ, y〉 + rσ(yΓ ) : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω}
= infx∈Rn LΩ(x, λ, r). (4)

When there exists r > 0 such that the above expression holds as an equality, we say
that λ is an augmented Lagrange multiplier with penalty parameter r . We make this
precise in the next definition.

Definition 2.2 λ ∈ R
(Ω) is said to be an augmented Lagrange multiplier for (SIP) if

val (SIP) is finite and there exists r ≥ 0 such that

vΩ
r (y) ≥ vΩ

r (0) + 〈λ, y〉, ∀y ∈ R
Ω. (5)

If (5) holds for r , then we say that the augmented Lagrange multiplier λ has a penalty
parameter r .

Remark 2.1 (i) If (5) holds for a given r > 0, then λ is an augmented Lagrange
multiplier for (SIP) for every r ′ > r . This is a direct consequence of (3) and the
fact that σ is nonnegative.

(ii) It follows from (5) that λ is an augmented Lagrange multiplier for (SIP) if and
only if it satisfies an inequality resembling the subgradient inequality for convex
functions. That is,λ ∈ ∂vΩ

r (y1) if and only if vΩ
r (y)−vΩ

r (y1) ≥ 〈λ, y−y1〉,∀y ∈
R

Ω . Note that ∂vΩ
r (0) is well-defined only if vΩ

r (0) = val (SIP) is finite.
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2.1 Discretizations and Lagrangian Functions for (SIP)

A finite set Γ := {ω1, . . . , ωm} ⊂ Ω naturally induces a discretized version of (SIP),
inwhich only the constraints corresponding to the elements ofΓ are taken into account.
This discretized problem is denoted (PΓ ), and defined as:

min f (x) subject to x ∈ R
n, g(x, ω j ) ≤ 0, j = 1, . . . ,m. (PΓ )

Denote by SΓ the set of optimal solutions of (PΓ ). As in (Py), we can perturb the dis-
cretized problem (PΓ ), this time with ȳ = (ȳ1, . . . , ȳm)T ∈ R

m . This parameterized
problem becomes:

min f (x) subject to x ∈ R
n, g(x, ω j ) + ȳ j ≤ 0, j = 1, . . . ,m. (PΓ

ȳ )

We denote by vΓ (ȳ) the optimal value of (PΓ
ȳ ). Recall that yΓ (·) is the restriction of

the function y(·) to Γ [cf. (1)]. Define σΓ (ȳ) := σ(yΓ ). This allows us to define, as
in (3):

vΓ
r (ȳ) := vΓ (ȳ) + rσΓ (ȳ).

We define next the Lagrangians associated with the discretized problem (PΓ
ȳ ).

Definition 2.3 Given a finite set Γ := {ω1, . . . , ωm} ⊂ Ω , the augmented
Lagrangian and the classical Lagrangian for problem (PΓ ) are defined respectively
by

LΓ (x, λ̄, r) : = inf
ȳ∈Rm

{ f (x) − 〈λ̄, ȳ〉 + rσΓ (ȳ) : g(x, ω j ) + ȳ j ≤ 0, ω j ∈ Γ },

LΓ
0 (x, λ̄) : = f (x) +

∑

w∈Γ

λ̄(ω)g(x, ω), (6)

where x ∈ R
n, λ̄ ∈ R

m and r ∈ R+.

Remark 2.2 Consider Problem (PΓ
ȳ ), and let y ∈ R

(Ω) be such that y(ω j ) =: ȳ j , for
all ω j ∈ Γ . In this situation, the discretized problem (PΓ

ȳ ) is a relaxation of problem

(Py), in the sense that the constraint set in (PΓ
ȳ ) is larger than the one in (Py). Namely,

If yΓ = ȳ ∈ R
m, then val (Py) ≥ vΓ (ȳ).

This fact and (3) yield

vΩ
r (y) = val (Py) + rσ(yΓ ) ≥ vΓ

r (ȳ), (7)

where ȳ is the restriction of y ∈ R
(Ω) to the set Γ .

We define next an augmented Lagrangian multiplier for the discretized problems.
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Definition 2.4 Fix Γ := {ω1, . . . , ωm} ⊂ Ω , a vector λ ∈ R
m is said to be an

augmented Lagrange multiplier for (PΓ ) if val (PΓ ) is finite and there exists r ≥ 0
such that

vΓ
r (y) ≥ vΩ(0) + 〈λ, y〉, ∀y ∈ R

m . (8)

If (8) holds for r , then we say that the augmented Lagrange multiplier λ has a penalty
parameter r .

The following is an example where the augmented Lagrangian for (PΓ ) with a
separable augmenting function is computed explicitly.

Example 2.1 If σΓ is separable, i.e., σΓ (ȳ) = ∑m
j=1 σ j (ȳ j ), then the expression of

the augmented Lagrangian can be simplified to

LΓ (x, λ̄, r) = inf
ȳ∈Rm

⎧
⎨

⎩ f (x) − 〈λ̄, ȳ〉 + r
m∑

j=1

σ j (ȳ j ) : g(x, ω j ) + ȳi ≤ 0, j = 1, . . . ,m

⎫
⎬

⎭

= f (x) + r
m∑

j=1

inf
ȳ j∈R

{
− λ̄ j

r
ȳ j + σ j (ȳ j ) : ȳ j ≤ −g(x, ω j )

}
.

Assume furthermore that σ j (ȳ j ) = max{ȳ2j ,
√|ȳ j |} for all j = 1, . . . ,m, and let

ψ : R×R → R be defined as ψ j (a, b) = inf{−bz +max{z2,√|z|} : z ≤ −a}, then

ψ j (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ −a, −1 ≤ b ≤ 1 or 0 ≤ −a ≤ 1
b2

, 1 ≤ b;
−|b| + 1, if − 1 ≤ −a, b ≤ −1 or 1 ≤ −a, 1 ≤ b

or − 1 ≤ −a ≤ − (
1 + 1

b

)2
, −1 ≤ b ≤ − 1

2 ;
ab + max{a2, √|a|}, if − a ≤ −1, b ≤ −1 or − a ≤ 0, − 1

2 ≤ b ≤ 1

or − a ∈ (−∞, −1] ∪
[
− (

1 + 1
b

)2
, 0
]
,

−1 ≤ b ≤ − 1
2

or − a ∈ (−∞, 0] ∪
[

1
b2

, 1
]
, 1 ≤ b.

Thus, we obtain

LΓ (x, λ, r) = f (x) + r
m∑

j=1

ψ j

(
g(x, ω j ),

λ j

r

)
.

The following lemma shows that the optimal value of the discretized augmented
Lagrangian is always equal to the augmented Lagrangian for (SIP). It also relates the
discretized Lagrangian with the classical one.

In the sequel, we will use the following notation: given a finite set Γ :=
{ω1, . . . , ωm} ⊂ Ω , and (x, u) ∈ R

n × R
m+, call γ (x, u) ∈ R

m the vector defined by

[γ (x, u)] j = −g(x, ω j ) − u j , for j = 1, . . . ,m. (9)
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Lemma 2.1 Let f : Rn → R, g : Rn × Ω → R be real-valued functions, and let
λ ∈ R

(Ω), σ : RΩ → R+ be a real-valued function with σ(0) = 0, Γ = supp(λ) =
{ω1, . . . , ωm} ⊂ Ω and r > 0. Then

(i)

LΩ(x, λ, r) = LΓ (x, λ̄, r), x ∈ R
n, (10)

where λ̄ = (λ(ω1), . . . , λ(ωm))T .
(ii) For every x ∈ R

n, we have

LΓ (x, λ̄, r) = f (x)+
m∑

j=1

λ(ω j )g(x, ω j ) + inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ(ω j )u j + rσΓ (γ (x, u))

⎫
⎬

⎭

= LΓ
0 (x, λ̄) + inf

u≥0

⎧
⎨

⎩

m∑

j=1

λ(ω j )u j + rσΓ (γ (x, u))

⎫
⎬

⎭ ,

(11)

where γ (x, u) is as in (9).

Proof (i) Let x ∈ R
n . For any y ∈ R

Ω such that g(x, ω) + y(ω) ≤ 0, ω ∈ Γ , set
ȳ j = y(ω j ), j = 1, . . . ,m, so ȳ = (ȳ1, . . . , ȳm)T , and we have g(x, ω j ) + ȳ j ≤ 0
for all ω j ∈ Γ . The definitions then yield

f (x) − 〈λ, y〉 + rσ(yΓ ) = f (x) − 〈λ̄, ȳ〉 + rσΓ (ȳ)

≥ LΓ (x, λ̄, r),

where we used (6) in the last inequality. Taking now infimum over y ∈ D(x) and
using (2), we obtain

LΩ(x, λ, r) ≥ LΓ (x, λ̄, r).

Therefore, (10) holds. To prove the opposite inequality, define the set

DΓ (x) := {y ∈ D(x) : supp(y) ⊂ Γ }.

The set DΓ (x) can be identified with the set

DΓ
m (x) := {ȳ ∈ R

m : g(x, ω j ) + ȳ j ≤ 0, ∀ω j ∈ Γ }.

Given any function y ∈ DΓ (x), call ȳ ∈ R
m the vector of images of y. Since

supp(y) ⊂ Γ and yΓ = ȳ we have that σ(yΓ ) = σΓ (ȳ) and 〈λ, y〉 = 〈λ̄, yΓ 〉 =
〈λ̄, ȳ〉, where we used the definition of λ̄ in the latter equality. Altogether, we can write
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LΩ(x, λ, r) = f (x) + inf y∈D(x) − 〈λ, y〉 + rσ(yΓ )

≤ f (x) + inf y∈DΓ (x) − 〈λ, y〉 + rσ(yΓ )

= f (x) + inf ȳ∈DΓ
m (x) − 〈λ̄, ȳ〉 + rσΓ (ȳ) = LΓ (x, λ̄, r),

which proves the opposite inequality.
(i i) Fix x ∈ R

n and take any y ∈ R
Ω such that g(x, ω j ) + y(ω j ) ≤ 0 for all

j = 1, . . . ,m. Define u j := −(g(x, ω j ) + y(ω j )) for all j = 1, . . . ,m. Using (6),
we can write

LΓ (x, λ̄, r) = inf
ȳ∈Rm

{ f (x) − 〈λ̄, ȳ〉 + rσ(ȳ) : g(x, ω j ) + ȳ j ≤ 0, ω j ∈ Γ }

= inf
u≥0

⎧
⎨

⎩ f (x) +
m∑

j=1

λ(ω j )(g(x, ω j ) + u j )

+ rσ(−g(x, ω1) − u1, . . . ,−g(x, ωm) − um)}

= f (x) +
m∑

j=1

λ(ω j )g(x, ω j ) + inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ(ω j )u j + rσ(γ (x, u))

⎫
⎬

⎭ .

That is, the augmented Lagrangian LΓ (x, λ̄, r) of (PΓ ) can be expressed as (11). ��
Lemma 2.2 Let f : Rn → R and g : Rn × Ω → R be real-valued functions, and
let σ : RΩ → R+ be a real-valued function with σ(0) = 0, x∗ ∈ X0, λ∗ ∈ R

(Ω)
+ ,

Γ = supp(λ∗) = {ω1, . . . , ωm}. Assume that the KKT conditions for (SIP) is satisfied
at x∗ and λ∗, i.e.,

∇x L
Γ
0 (x∗, λ∗) = 0, (12)

and

λ∗(ω) ≥ 0, λ∗(ω)g(x∗, ω) = 0,∀ω ∈ Ω. (13)

Then

LΩ(x∗, λ∗, r) = LΓ (x∗, λ̄∗, r) = f (x∗), ∀r > 0, (14)

where λ̄∗ = (λ∗(ω1), . . . , λ
∗(ωm)).

Proof Since x∗ ∈ X0, we have g(x∗, ω) ≤ 0, ω ∈ Ω . It follows from (2) that

LΩ(x∗, λ∗, r) ≤ f (x∗). (15)

Letting ũ j = −g(x∗, ω j ) ≥ 0 for all j = 1, . . . ,m, we obtain

0 ≤ infu≥0σ
Γ (γ (x∗, u)) ≤ σΓ (γ (x∗, ũ)) = σ(0) = 0. (16)
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By using (13), we have

inf
u≥0

m∑

j=1

λ∗(ω j )u j = 0. (17)

Noticing the KKT conditions and combining (16) and (17) with (11), we have

LΓ (x∗, λ̄∗, r)
= f (x∗) +

∑m

j=1
λ∗(ω j )g(x

∗, ω j ) + infu≥0

{∑m

j=1
λ∗(ω j )u j + rσΓ (γ (x∗, u))

}

≥ f (x∗) + infu≥0

{∑m

j=1
λ∗(ω j )u j

}
+ r infu≥0

{
σΓ (γ (x∗, u))

} = f (x∗).

This, together with (10) and (15), implies that (14) holds. ��

2.2 Duality Properties of (SIP)

In this section, we establish some properties and strong duality results for (SIP),
including first-order optimality conditions and a global saddle property.

Lemma 2.3 Let f : Rn → R and g : Rn × Ω → R be real-valued functions, and
let σ : RΩ → R+ be a real-valued function with σ(0) = 0, x∗ ∈ X0, λ∗ ∈ R

(Ω)
+ ,

Γ = supp(λ∗) = {ω1, . . . , ωm}. Assume that the KKT conditions (12) and (13) for
(SIP) are satisfied at x∗ and λ∗. If there exists r∗ > 0, such that λ∗ is an augmented
Lagrange multiplier of the problem (SIP) with the penalty parameter r∗ and f (x∗) =
val (SIP), then

LΩ(x, λ∗, r∗) ≥ LΩ(x∗, λ∗, r∗) ≥ LΩ(x∗, λ, r∗), ∀x ∈ R
n, λ ∈ R

(Ω). (18)

Conversely, if

LΩ(x, λ∗, r∗) ≥ LΩ(x∗, λ∗, r∗), ∀x ∈ R
n, (19)

then λ∗ is an augmented Lagrange multiplier of (SIP) with the penalty parameter r∗.

Proof As λ∗ is an augmented Lagrange multiplier of (SIP) with the penalty parameter
r∗, we have

vΩ
r∗(y) ≥ vΩ

r∗(0) + 〈λ∗, y〉, ∀y ∈ R
Ω.

Therefore,

inf y∈RΩ {vΩ
r∗(y) − 〈λ∗, y〉} ≥ vΩ

r∗(0) = val (SIP). (20)
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It follows from (14), (4) and (20) that

f (x∗) = LΩ(x∗, λ∗, r∗) ≥ infx∈Rn LΩ(x, λ∗, r∗)
= inf y∈RΩ {vΩ

r∗(y) − 〈λ∗, y〉}
≥ val (SIP) = f (x∗).

The above expression implies that

LΩ(x, λ∗, r∗) ≥ LΩ(x∗, λ∗, r∗), ∀x ∈ R
n . (21)

Let λ ∈ R
(Ω). Since x∗ ∈ X0 and 0 ∈ R

Ω , it follows from (2) that

LΩ(x∗, λ, r∗) ≤ f (x∗) = LΩ(x∗, λ∗, r∗). (22)

By (21) and (22), we obtain both inequalities in (18).
Assume that there exists r∗ > 0, such that (19) holds. Then we obtain

inf
x∈Rn

LΩ(x, λ∗, r∗) ≥ LΩ(x∗, λ∗, r∗) = f (x∗) = val (SIP). (23)

It follows from (4) and (23) that

inf y∈RΩ {vΩ
r∗(y) − 〈λ∗, y〉} = inf x∈Rn LΩ(x, λ∗, r∗) ≥ val (SIP).

This implies that

vΩ
r∗(y) ≥ vΩ

r∗(0) + 〈λ∗, y〉, ∀y ∈ R
Ω.

That is, λ∗ is an augmented Lagrange multiplier of (SIP) with penalty parameter r∗.
��

Remark 2.3 By Lemma 2.3, if λ∗ ∈ R
(Ω) is an augmented Lagrange multiplier of

(SIP) with the penalty parameter r∗, and x∗ is an optimal solution of (SIP) and satisfies
(12) and (13), then (x∗, λ∗) is a saddle point of LΩ(·, ·, r∗). Conversely, if for some
r∗ > 0, (x∗, λ∗) is a saddle point of L(·, ·, r∗), then λ∗ is an augmented Lagrange
multiplier of (SIP) with the penalty parameter r∗.

3 First-order Conditions for Augmented Lagrange Multipliers

In this section, we focus on the augmented Lagrangian in which the augmenting
function is given by the norm of the function yΓ , the restriction of y ∈ R

Ω to a fixed
finite subset Γ ⊂ Ω . Namely, given Γ := {ω1, . . . , ωm} we consider σΓ : R(Ω) →
R+, defined as
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σΓ (y) := σ(yΓ ) = ‖yΓ ‖ =
∑

ω∈Γ

|y(ω)| =
m∑

j=1

|y(ω j )|. (24)

The resulting augmented Lagrangian, inspired in [15, Example 11.58], is called the
sharp Lagrangian. It is a classical fact from convex programming that the sharp
Lagrangian admits an exact penalty parameter (see, e.g., [27, Theorem 9.3.1]).Wewill
show that this can also be achieved in our more general context. First, we will obtain
necessary optimality conditions for the existence of an augmented Lagrangemultiplier
of the sharp Lagrangian problem. Second, we establish sufficient conditions for the
existence of an augmented Lagrange multiplier, by assuming inf-compactness of the
functions involved and an extended Mangasarian–Fromovitz constraint qualification.
We start by establishing necessary first-order necessary conditions for the existence of
an augmented Lagrange multiplier of the semi-infinite programming problem (SIP).

Given a fixed finite subset Γ ⊂ Ω , we will use the following notation for the set of
active constraints of (SI P) and the set of active constraints of (PΓ ) at a given x ∈ X0,
respectively.

I (x) := {w ∈ Ω : g(x, w) = 0}, Γ (x) := {w ∈ Γ : g(x, w) = 0} = I (x) ∩ Γ.

Theorem 3.1 Let f (·) and g(·, ω), ω ∈ Ω , be real-valued continuously differentiable
functions. Fix λ∗ ∈ R

(Ω), and call Γ = supp(λ∗) = {ω1, . . . , ωm}. Consider σΓ as
in (24). Assume that

(a) λ∗ is an augmented Lagrange multiplier of (SIP) with penalty parameter r∗,
(b) x∗ is a local minimum for (SIP), and
(c) val (SIP) = f (x∗).

In this situation, we have that

∇ f (x∗)�d ≥ 0, ∀d ∈ Ψ (x∗),

where

Ψ (x∗) := {d ∈ R
n : ∇x g(x

∗, ω)�d ≤ 0, ω ∈ I (x∗)},

is the cone of feasible directions from x∗.

Proof Assumption (a) means that

vΩ
r∗(y) − 〈λ∗, y〉 ≥ vΩ

r∗(0), ∀y ∈ R
Ω.

Noting that vΩ
r∗(y) = val (Py)+r∗σ(yΓ ) = val (Py)+r∗ ∑

ω∈Γ |y(ω)| and vΩ
r∗(0) =

val (SIP), the last inequality is rewritten as

val (Py) − 〈λ∗, y〉 + r∗ ∑

ω∈Γ

|y(ω)| ≥ val (SIP), ∀y ∈ R
Ω.
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Taking infimum in the above inequality and using (c), we obtain

inf
y∈RΩ

{
val (Py) − 〈λ∗, y〉 + r∗ ∑

ω∈Γ

|y(ω)|
}

≥ val (SIP) = f (x∗).

Using now the definition of val (Py) and the fact (b) that x∗ is a local minimum for
(SIP), we obtain

f (x∗) ≤ inf y∈RΩ

{
val (Py) − 〈λ∗, y〉 + r∗∑

ω∈Γ
|y(ω)|

}

= inf y∈RΩ infx∈Rn

{
f (x) − 〈λ∗, y〉 + r∗∑

ω∈Γ
|y(ω)| : g(x, ω)

+ y(ω) ≤ 0, ω ∈ Ω
}

= infx∈Rn inf y∈RΩ

{
f (x) +

∑m

j=1
λ∗(ω j )(−y(ω j ))

+ r∗∑m

j=1
|y(ω j )| : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω

}

= infx∈Rn LΩ(x, λ∗, r∗),

where we used the definition of LΩ (see (2)) in the last equality, and the fact that
Γ = supp λ∗ in the second-to-last equality. This expression readily gives

f (x∗) ≤ inf y∈RΩ

{
f (x) +

∑m

j=1
λ∗(ω j )(−y(ω j ))

+ r∗∑m

j=1
|y(ω j )| : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω

}
= LΩ(x, λ∗, r∗),

(25)

for all x ∈ R
n . Fix x ∈ R

n , for each ω j ∈ Γ , we have two possibilities. Either
g(x, ω j ) ≤ 0, or g(x, ω j ) > 0. If g(x, ω j ) ≤ 0, take ỹ(ω j ) = 0, otherwise, take
ỹ(ω j ) = −g(x, ω j ). Namely, take ỹ(ω) := −max{0, g(x, ω)} forω ∈ Γ and ỹ(ω) =
0 for ω /∈ Γ . Using this choice of ỹ ∈ R

Ω in (25), we can write

f (x∗) ≤ LΩ(x, λ∗, r∗) = inf y∈RΩ

{
f (x) +

∑m

j=1
λ∗(ω j )(−y(ω j ))

+ r∗∑m

j=1
|y(ω j )| : g(x, ω) + y(ω) ≤ 0, ω ∈ Ω

}

≤ f (x) +
∑m

j=1
λ∗(ω j )g

+(x, ω j ) + r∗∑m

j=1
g+(x, ω j ),

(26)

where (a)+ = max{a, 0} for any a ∈ R. Inequality (26) implies that

f (x∗) ≤ f (x) +
m∑

j=1

(λ∗(ω j ) + r∗)g+(x, ω j ), ∀x ∈ R
n,
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i.e., x∗ is an unconstrained minimum of H(x) := f (x) + ∑m
j=1(λ

∗(ω j ) +
r∗)g+(x, ω j ). Thus it must satisfy the necessary first-order optimality conditions

H◦(x∗, d) = ∇ f (x∗)T d +
∑

j∈I (x∗)
(λ∗(ω j ) + r∗)max{∇x g(x

∗, ω j )
T d, 0} ≥ 0, ∀ d ∈ R

n,

where H◦(x∗, d) is the Clarke generalized directional derivative of H at x∗ in the
direction d, see [29], and the sum is restricted to j ∈ I (x∗) because x∗ is feasible
and ∇x g+(x∗, ω j )

�d = 0 for all j /∈ I (x∗) and all d ∈ R
n . Fix now d ∈ Ψ (x∗).

By definition of Ψ (x∗), we must have max{∇x g(x∗, ω j )
T d, 0} = 0, and the above

inequality yields

∇ f (x∗)�d ≥ 0, ∀d ∈ Ψ (x∗).

This completes the proof. ��
The last result in this section establishes sufficient first-order conditions for the

existence of an augmented Lagrange multiplier. Given Γ = {ω1, . . . , ωm} ⊂ Ω ,
define

XΓ
0 := {x ∈ R

n : g(x, ω) ≤ 0, ω ∈ Γ }, (27)

the subset of points which are feasible for problem (PΓ ). We will make the following
assumptions on the objective f (·) and the subset of constraint functions g(·, ω) for
ω ∈ Γ .

Assumption 3.1 Let f (x), and g(x, ω) (ω ∈ Γ ) be inf-compact, that is, there exist
α ∈ R, ω ∈ Γ , such that the sets {x ∈ R

n : f (x) ≤ α} and {x ∈ R
n : g(x, ω) ≤ α}

are nonempty and compact.

Remark 3.1 If Assumption 3.1 holds, then the inf-compactness of f implies that the
solution set SΓ of the discretized problem (PΓ ) is nonempty and compact.

The extended Mangasarian–Fromovitz constraint qualification (EMFCQ in short)
is said to hold for (PΓ ) at a feasible solution x0, see Bonnans and Shapiro [28, p.
510], if there exists z ∈ R

n such that

∇x g(x0, ω j )
�z < 0, ∀ω j ∈ Γ such that g(x0, w j ) = 0.

Assumption 3.2 The (EMFCQ) holds for the reduced problem (PΓ ) at every x ∈ SΓ .

Let x ∈ X0 and define the set of (classical) Lagrange multipliers associated with x :

ΛΓ (x) := {
λ ∈ R

m : ∇x L
Γ
0 (x, λ) = 0, λ ≥ 0, λ j g(x, ω j ) = 0, j = 1, . . . ,m

}
.

It is known that if Assumption 3.2 holds, then ΛΓ (x) is bounded (cf. Gauvin [30],
see also Bonnans and Shapiro [28, p. 510]). A general result on the boundedness of
the set of Lagrange multipliers for an optimization problemwith a closed set inclusion
constraint is given in Burke [31].
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Theorem 3.2 We assume that (SIP) is convex. Let λ∗ ∈ R
(Ω), and Γ = supp(λ∗) =

{ω1, . . . , ωm}. Denote by λ∗(ω j ) = λ̄ j , j = 1, . . . ,m. Suppose that val (SIP) =
val (PΓ ). Let f (·) and g(·, ω), ω ∈ Ω , be real-valued continuously differentiable
functions, and let σΓ be as in (24). Suppose thatAssumptions 3.1 and 3.2 are satisfied.
Then, there exists r∗ > 0, such that

(i) λ̄ = (λ̄1, . . . , λ̄m)T is an augmented Lagrange multiplier of (PΓ ), with penalty
parameter r∗, and

(ii) λ∗ ∈ R
(Ω) is an augmented Lagrange multiplier of (SIP), with the same penalty

parameter r∗.

Proof (i) First, we claim that there exists α0 ∈ R such that f (x) ≥ α0,∀x ∈ R
n .

Indeed, if this is not the case, there exists a sequence {xk} such that f (xk) → −∞ as
k → ∞. By Assumption 3.1, there exists α ∈ R, such that the set

E = {x ∈ R
n : f (x) ≤ α}

is nonempty and compact. So, xk ∈ E for large enough k. Thus, there exists a subse-
quence {xk j } of {xk}, such that xk j → x0 as j → ∞. Since f is continuous, x0 ∈ E

and f (xk j ) → f (x0) as j → ∞, which is impossible.
Recall that vΓ (ȳ) is the optimal value of (PΓ

ȳ ). Thus

vΓ (ȳ) ≥ α0, (28)

since f (x) ≥ α0,∀x ∈ R
n .

To complete our proof, wewill use similar arguments to the ones used in Rückmann
and Shapiro [24, Theorem 3]. It follows from Assumption 3.1 that the set of optimal
solutions of (PΓ ) is compact. By Assumption 3.2, the sets ΛΓ (x) are uniformly
bounded for all x in a neighborhood of any point x̄ ∈ SΓ (cf. Proposition 4.43 of
Bonnans and Shapiro [28]). Thus, we obtain that the set

⋃
x∈SΓ ΛΓ (x) is bounded as

SΓ is compact, and then supλ∈⋃x∈SΓ ΛΓ (x) ‖λ − λ̄‖ is finite. As for (PΓ ), Robinson’s
constraint qualification is equivalent to the EMFCQ, by Theorem 4.27 of Bonnans and
Shapiro [28], we have

(vΓ )′−(0, d) ≥ inf
x∈SΓ

inf
λ∈ΛΓ (x)

∇y{ f (x) + 〈λ, g(x) + y〉}�d = inf
x∈SΓ

inf
λ∈ΛΓ (x)

〈λ, d〉,
(29)

where (vΓ )′−(0, d) is the lower Hadamard directional derivative of vΓ (·) at 0 in a unit
direction d ∈ R

m , more precisely,

(vΓ )′−(0, d) := sup
r>0

[
inf

t∈(0,r), ‖d−d ′‖<r

[
vΓ (td ′) − vΓ (0)

t

]]
.
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Using the above definition and (29), we can write, for a fixed ε > 0

sup
r>0

[
inf

t∈[0,r ], ‖d−d ′‖<r

[
vΓ (td ′) − vΓ (0)

t

]]
> inf

x∈SΓ
inf

λ∈ΛΓ (x)
〈λ, d〉 − ε ‖d‖.

Hence, by definition of the supremum in the left-hand side there exists τ > 0 such
that for all d ′ ∈ τ BRm (where BRm is the unit ball in Rm), and every t ∈ [0, τ ] we can
write

vΓ (td ′) − vΓ (0)

t
>
[
infx∈SΓ infλ∈ΛΓ (x)〈λ, d〉] − ε‖d‖. (30)

Multiplying by t the expression above and restricting the quotient in the left-hand side
to d ′ = d, we can write (30) in terms of ȳ := td ∈ τ BRm , to obtain

vΓ (ȳ) − vΓ (0) >
[
inf x∈SΓ infλ∈ΛΓ (x)〈λ, ȳ〉] − ε‖ȳ‖. (31)

Let us find a suitable lower bound for the first term in the right-hand side of (31). We
can write

〈λ, ȳ〉 ≥ 〈λ − λ̄, ȳ〉 + 〈λ̄, ȳ〉 ≥ 〈λ̄, ȳ〉 − ‖λ − λ̄‖‖ȳ‖.

Taking now the infimum in this expression, we obtain

inf
x∈SΓ

inf
λ∈ΛΓ (x)

〈λ, ȳ〉 ≥ 〈λ̄, ȳ〉 + ‖ȳ‖ inf x∈SΓ infλ∈ΛΓ (x)

[−‖λ − λ̄‖]

= 〈λ̄, ȳ〉 − ‖ȳ‖ supx∈SΓ supλ∈ΛΓ (x)

[‖λ − λ̄‖] . (32)

The boundedness of the set
⋃

x∈SΓ ΛΓ (x) implies the existence of r1 > 0 such that

r1 > sup
x∈SΓ

sup
λ∈ΛΓ (x)

‖λ − λ̄‖.

Using this fact, and (32)-(31), we obtain

vΓ (ȳ) > vΓ (0) + infx∈SΓ infλ∈ΛΓ (x)〈λ, ȳ〉 − ε‖ȳ‖
= vΓ (0) + 〈λ̄, ȳ〉 − ‖ȳ‖ supx∈SΓ supλ∈ΛΓ (x)

[‖λ − λ̄‖] − ε‖ȳ‖
> vΓ (0) + 〈λ̄, ȳ〉 − ‖ȳ‖ r1 − ε‖ȳ‖ > vΓ (0) + 〈λ̄, ȳ〉 − ‖ȳ‖(r1 + ε). (33)

Noting that every ȳ ∈ τ BRm can be written as ȳ := td for t ∈ [0, τ ] and d a unit
vector, we conclude that the inequality in (33) holds for every ȳ ∈ τ BRm . Altogether,
we can write for all ȳ ∈ τ BRm

vΓ
r (ȳ) = vΓ (ȳ) + rσΓ (ȳ) = vΓ (ȳ) + r‖ȳ‖

≥ vΓ (0) + ‖ȳ‖(r − ε − r1) + 〈λ̄, ȳ〉, (34)
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where we used the definition of vΓ
r in the first equality, the definition of σΓ in the

second equality, and (33) in the inequality. This implies that for r > (ε + r1), we
obtain the inequality in the definition of an augmented Lagrangian for (PΓ ), for every
ȳ ∈ τ BRm . Now we need to establish this inequality for ȳ /∈ τ BRm . Recalling that
vΓ (0) = val(PΓ ), and using also (28), we can write

vΓ
r (ȳ) − vΓ (0) − 〈λ̄, ȳ〉 = vΓ (ȳ) + rσΓ (ȳ) − vΓ (0) − 〈λ̄, ȳ〉

= vΓ (ȳ) + r‖ȳ‖ − vΓ (0) − 〈λ̄, ȳ〉
≥ α0 − val (PΓ ) + (r − ‖λ̄‖)‖ȳ‖
≥ α0 − val (PΓ ) + (r − ‖λ̄‖)τ, (35)

where thefirst inequality comes from (28) and the last inequality follows fromchoosing
r > ‖λ̄‖ and the fact that ȳ /∈ τ BRm . Given these two inequalities, we can choose

r∗ > max

{
r1 + ε, ‖λ̄‖ + val (PΓ ) − α0

τ

}
> 0. (36)

With this choice, (34), (35) and (36) yield

vΓ
r∗(y) ≥ vΓ (0) + 〈λ̄, y〉, ∀y ∈ R

m . (37)

From (8) λ̄ is an augmented Lagrange multiplier of (PΓ ), with penalty parameter r∗.
(ii) Since val (SIP) = val (PΓ ),wehave thatvΩ

r∗ (0) = vΓ
r∗(0) = vΓ (0) = val (SIP).

Fix an arbitrary y ∈ R
(Ω), we can take its restriction yΓ to Γ , namely set

(y(ω1), . . . , y(ωm))T =: yΓ .

By Remark 2.2 and (7) we have vΩ
r∗(y) ≥ vΓ

r∗(yΓ ). So, it follows from (37) applied
to y := yΓ that

vΩ
r∗(y) ≥ vΓ

r∗(yΓ ) ≥ vΩ
r∗(0) + 〈λ̄, y〉, ∀y ∈ R

(Ω).

Therefore, λ̄ ∈ R
(Ω) is an augmented Lagrange multiplier of (SIP), with penalty

parameter r∗.

Remark 3.2 Note that the existence of an augmented Lagrange multiplier is a global
property. The proof of Theorem3.2 shows thatAssumption 3.1 is essential to obtain the
existence of an augmented Lagrange multiplier of (SIP). Indeed, by Assumption 3.1
and the continuity property of f , we obtain that (28) and (35) hold.

4 Second-order Conditions for Augmented Lagrange Multipliers

In this section, we investigate second-order conditions for the existence of an aug-
mented Lagrange multiplier for the semi-infinite programming problem (SIP). Recall
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that for y ∈ R
Ω , the norm of the restriction yΓ to a finite set Γ = {ω1, . . . , ωm}

is defined as ‖yΓ ‖ = ∑
ω∈Γ |y(ω)|, i.e., the �1-norm in R

m of the vector yΓ =
(y(ω1), . . . , y(ωm))T . We will also use ‖ · ‖∞ for denoting the infinity norm in R

m .
Namely, given z ∈ R

m , we write ‖z‖∞ := max j=1,...,m |z j |. Next we state a crucial
assumption we make on σ .

Definition 4.1 Let σ : R(Ω) → R+ be a real-valued function and Γ be a finite subset
of Ω .

(a) We say that σ has a valley at 0 with respect to Γ in R
Ω if σ is continuous at 0

with σ(0) = 0, and for every δ > 0 we have cδ = inf y∈RΩ,‖yΓ ‖≥δ σ (yΓ ) > 0.
(b) Fix p ∈]0, 1]. We say that σ satisfies a p-growth condition at 0 with respect to Γ

if there exists ρ0 > 0 such that

lim
y∈RΩ,y→0

σ(yΓ )

‖yΓ ‖p
= ρ0 > 0. (38)

Remark 4.1 Under Assumption (a) in Definition 4.1, there exists α > 0 such that the
level set

Vα := {z ∈ R
m : σΓ (z) ≤ α},

is bounded. Indeed, if this is not true, then for all α > 0 the set Vα is unbounded. Take
0 < α < c1, where c1 > 0 is as in Definition 4.1(a) for δ = 1. Since Vα is unbounded
there exists z ∈ Vα such that ‖z‖ > 1. Altogether, we have

α ≥ σΓ (z) ≥ inf
y∈RΩ,‖yΓ ‖≥1

σ(yΓ ) = c1,

contradicting the choice of α. Hence, the claim is true and there exists α0 > 0 such
that Vα0 is bounded. For future use, denote by Mα0 the positive constant such that

Vα0 ⊂ B[0, Mα0 ] ⊂ R
m,

where B[0, Mα0 ] is the ball centered at 0 with radius Mα0 .

The properties described in Definition 4.1 are used for establishing a lower bound
on the augmented Lagrangian. The next technical lemma shows why this assumption
is instrumental in establishing the lower bound.

Lemma 4.1 Fix a pair (x̂, λ̂) ∈ R
n × R

(Ω)
+ and denote by Γ = supp(λ̂) =

{ω1, . . . , ωm}. Assume that
(i) For every ω ∈ Γ , the function g(·, ω) : Rn → R is continuous at x̂ , and
(ii) σ : R(Ω) → R+ has a valley at 0 respect to Γ , and it satisfies p-growth condition

at 0 with respect to Γ .
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In this situation, there exists an open neighborhood N (x̂) of x̂ and r ′ > 0 such that
for every x ∈ N (x̂) and every r > r ′ we have

inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ̂(w j )
(
g(x, ω j ) + u j

) + rσ(−g(x, ω j ) − u j )

⎫
⎬

⎭ ≥ 0.

Proof The statement of the lemma is clearly true when λ̂ = 0, so it is enough to prove
the lemma for λ̂ 	= 0. As in (9) define γ (x, u) ∈ R

m as [γ (x, u)] j := −g(x, ω j )−u j

for all j = 1, . . . ,m. With this notation, we have that [γ (x, u)] j ≤ −g(x, ω j ) for all
u ≥ 0. The infimum in the statement of the lemma thus re-writes as

inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u))

⎫
⎬

⎭ . (39)

Fix r0 > 0. The continuity of g implies that there exists a constant C1 > 0 such that

max
x∈B[x̂,r0]

⎧
⎨

⎩

m∑

j=1

|g(x, ω j )|
⎫
⎬

⎭ ≤ C1.

This allows us to find a lower bound for the first term in the argument of (39). Indeed,

∑m

j=1
λ̂(w j )([−γ (x, u)] j ) ≥

∑m

j=1
λ̂(w j )g(x, ω j )

≥ −‖λ̂‖∞
∑m

j=1
g(x, ω j )

≥ −C1‖λ̂‖∞ , (40)

where we used the fact that u j ≥ 0 in the first inequality. The p-growth condition
assumed in part (ii) implies that

sup
r>0

inf|z|<r

σ(z)

‖z‖p
= ρ0 > ρ0/2 > 0.

Therefore, there exists r1 > 0 such that

σ(z)

‖z‖p
> ρ0/2,

for every z ∈ B(0, r1) ⊂ R
m . Take r2 < min{1, r1} This yields

σ(z) ≥ (ρ0/2)‖z‖p ≥ (ρ0/2)‖z‖, (41)

where we used the fact that p ∈ (0, 1] in the last inequality.
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Call A(r, x, u) := ∑m
j=1 λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u)), the expression

between the curly brackets in (39). We will show that

inf
u≥0, x∈B(x̂,r0)

A(r, x, u) ≥ 0,

for large enough r > 0. We consider first the case in which u ≥ 0 is such that
‖γ (x, u)‖ < r2. In this case, using (41) for z := γ (x, u), we obtain

A(r, x, u) =
∑m

j=1
λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u))

≥ −‖λ̂‖∞‖γ (x, u)‖ + rσ(γ (x, u))

≥ −‖λ̂‖∞‖γ (x, u)‖ + r (ρ0/2)‖γ (x, u)‖
= ‖γ (x, u)‖

(
r (ρ0/2) − ‖λ̂‖∞

)
,

which is positive for r >
2‖λ̂‖∞

ρ0
=: r3. Hence, for all x ∈ B(x̂, r0) we can write

inf
r>r3

{A(r, x, u) : u ≥ 0 and ‖γ (x, u)‖ < r2} ≥ 0. (42)

To complete the proof, we consider now those u ≥ 0 such that ‖γ (x, u)‖ ≥ r2. Using
the valley at 0 property and (40) have

A(r, x, u) =
∑

ω j∈Γ (x̂)
λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u))

≥ −C1‖λ̂‖∞ + rσ(γ (x, u))

≥ −C1‖λ̂‖∞ + r cr2 ,

which is positive when r >
C1‖λ̂‖∞

cr2
=: r4. Hence, for all x ∈ B(x̂, r0) we have

inf
r>r4

{A(r, x, u) : u ≥ 0 and ‖γ (x, u)‖ ≥ r2} ≥ 0. (43)

From (43) and (42) we deduce that, for r > max{r3, r4} =: r ′, the statement of the
lemma is true for N (x̂) := B(x̂, r0). ��

The next result will be used to show that the Lagrangian LΓ is lsc when σ is a
valley at zero with respect to Γ .

Lemma 4.2 Fix a pair (x̂, λ̂) ∈ R
n × R

(Ω)
+ , and denote by Γ = supp(λ̂) =

{ω1, . . . , ωm}. Assume that
(i) g(·, ω), ω ∈ Γ , is real-valued and continuous,
(ii) σ : R(Ω) → R+ is lsc and it has a valley at 0 with respect to Γ .
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For a fixed r > 0, define q(·, r) : Rn → R±∞ as

q(x, r) := inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u))

⎫
⎬

⎭ .

Then, for r > 0 large enough, the function q(·, r) is lsc in Rn.

Proof Fix r > 0. Set Q(r, x, u) := ∑m
j=1 λ̂(w j )([−γ (x, u)] j ) + rσ(γ (x, u)) +

δRm+(u). Then, we can write

q(x, r) = inf
u∈Rm

Q(r, x, u).

Theorem 1.17 in [15] states that q(·, r) is lsc if (a) Q(r, ·, ·) is lsc, and (b) Q(r, ·, ·) is
level-bounded in u locally uniformly in x . Condition (b) can be re-stated as follows.
For every α ∈ R there exists a ball B(x̂, r0) such that the set

Wα(r) := {(x, u) : x ∈ B(x̂, r0), Q(r, x, u) ≤ α} is bounded in Rn × R
m . (44)

Since the Rn-coordinate of Wα(r) is bounded by definition, it is enough to show that
theRm-coordinate ofWα(r) is bounded.We start by noting that Q(r, ·, ·) is lsc. This is
a consequence of the fact that Q(r, ·, ·) is the sum of lower semicontinuous functions.
Indeed, the continuity assumption (i) on g, together with the lower semicontinuity
of σ assumed in (ii) implies that σ ◦ γ (·, ·) is lsc. The first term in the expression of
Q(r, ·, ·) is continuous on u and hence lsc. The third term in the expression of Q(r, ·, ·)
is δRm+ , which is lsc because the set Rm+ is closed. This proves that Q(r, ·, ·) is lsc for
every r > 0.

Let us show now that, for r > 0 and large enough, Q(r, ·, ·) is level-bounded in u
locally uniformly in x . Namely, we will prove that (44) holds for r0 = 1 and for r > 0
large enough. The continuity of g implies that there exists C1 > 0 such that

max
x∈B[x̂,1]

⎧
⎨

⎩

m∑

j=1

|g(x, ω j )|
⎫
⎬

⎭ ≤ C1.

Note that, for every fixed ω j0 we have

C1 ≥
m∑

j=1

|g(x, ω j )| ≥ |g(x, ω j0)| ≥ −g(x, ω j0). (45)

Assume that (x, u) ∈ Wα(r) (and hence x ∈ B[x̂, 1]), then we must have u ≥ 0 and
we can write a lower bound for the first term in the expression of Q as follows:
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∑m

j=1
λ̂(w j )([−γ (x, u)] j ) =

∑m

j=1
λ̂(w j )(g(x, ω j ) + u j )

≥
∑m

j=1
λ̂(w j )g(x, ω j )

≥ −C1‖λ̂‖,

where we used the fact that u j ≥ 0 in the fist inequality and (45) in the last one. Alto-
gether, we canwrite, for every (x, u) ∈ Wα(r) := {(x, u) : x ∈ B(x̂, 1), Q(r, x, u) ≤
α},

α ≥ Q(r, x, u) =
∑m

j=1
λ̂(w j )([−γ (x, u)] j ) + rσΓ (γ (x, u))

≥ −C1‖λ̂‖ + rσΓ (γ (x, u)).

Therefore, we deduce that

Wα(r) ⊂ {(x, u) : σΓ (γ (x, u)) ≤ α + C1‖λ̂‖
r

}.

By Remark 4.1 there exists α0 such that the set

Vα0 := {z ∈ R
m : σΓ (z) ≤ α0},

is bounded. Take r > 0 such that α+C1‖λ̂‖
r ≤ α0. For this choice of r , we have that, if

(x, u) ∈ Wα(r), then γ (x, u) ∈ Vα0 .
Let Mα0 be as in Remark 4.1. We can thus write, for every u such that (x, u) ∈

Wα(r),

‖u‖ =
∑m

j=1
|u j | =

∑m

j=1
| − g(x, ω j ) + g(x, ω j ) + u j |

≤
∑m

j=1
| − g(x, ω j )| + |g(x, ω j ) + u j | ≤ C1 + ‖γ (x, u)‖ ≤ C1 + Mα0 ,

showing that, for this choice of r , we have

Wα(r) ⊂ B[x̂, 1] × B[0,C1 + Mα0 ].

Hence, (44) holds for r > 0 large enough. By Theorem 1.17 in [15], the function
q(·, r) is lsc for r > 0 large enough. ��

This lemma readily gives the lower semicontinuity of LΓ (·, λ, r) for large enough
r .

Proposition 4.1 Fix a pair (x̂, λ̂) ∈ R
n × R

(Ω)
+ , and denote by Γ = supp(λ̂) =

{ω1, . . . , ωm}. Assume that
(i) f (·) is real-valued and lsc and g(·, ω), ω ∈ Γ , is real-valued and continuous,
(ii) σ : R(Ω) → R+ is lsc and it has a valley at 0 with respect to Γ .
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In this situation, LΓ (·, λ, r) is lsc for r > 0 large enough.

Proof By definition, we know that

LΓ (x, λ̂, r) = f (x) + infu≥0

{∑m

j=1
λ̂(ω j )[−γ (x, u)] j + rσ(γ (x, u))

}

= f (x) + q(x, r),

where we are using the notation of Lemma 4.2. By Assumption (i) the first term is lsc.
Since we are in conditions of Lemma 4.2, the second term is lsc for r large enough.
Hence, the whole expression is lsc for r large enough.

Remark 4.2 With the notation of Definition 4.1, the sharp augmenting function
σΓ (y) := ‖yΓ ‖ used in Sect. 3 has a valley at 0 with cδ = δ, and it satisfies a
p-growth condition at 0 with respect to Γ for p = 1. More generally, the augmenting
function σΓ

p (y) := ‖yΓ ‖p for p ∈ (0, 1] has a valley at 0 with cδ = δ p, and it satisfies
a p-growth condition at 0.

The following lemma uses an augmenting function as in Definition 4.1 (a), (b) and
a second-order sufficient condition, see [32].

Lemma 4.3 Let f (·) and g(·, ω), ω ∈ Ω , be real-valued twice continuously differ-
entiable functions, and let x∗ ∈ X0, λ∗ ∈ R

(Ω), Γ = supp(λ∗) = {ω1, . . . , ωm},
σ : R(Ω) → R+ is lsc, it has a valley at 0 respect to Γ , and it satisfies p-growth
condition at 0 with respect to Γ .

Assume that the KKT conditions (12) and (13) for (SIP) are satisfied, and that the
second-order sufficient condition given by

zT∇2
xx L

Γ
0 (x∗, λ∗)z > 0, ∀z ∈ V (x∗), (46)

holds, where V (x∗) is defined by

V (x∗) :=
{
0 	= d ∈ R

n
∣∣∣∣

∇ f (x∗)T d ≤ 0,
∇x g(x∗, ω)T d ≤ 0, ∀ ω ∈ I (x∗)

⋂
Γ

}
. (47)

Then there exist r∗ > 0 and a neighborhood N (x∗) of x∗ such that

LΩ(x, λ∗, r∗) ≥ LΩ(x∗, λ∗, r∗), ∀x ∈ N (x∗). (48)

Proof By contradiction, suppose that there exist two sequences {rk} and {xk} with
rk > 0, xk 	= x∗, such that rk → ∞, xk → x∗, as k → ∞ and

LΩ(xk, λ
∗, rk) < LΩ(x∗, λ∗, rk). (49)
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We have

LΓ
0 (λ∗, r∗) = f (xk) +

m∑

j=1

λ∗(ω j )g(xk, ω j ) ≤ LΓ (xk, λ
∗, rk)

= LΩ(xk, λ
∗, rk) < f (x∗), (50)

where the first inequality follows from (11) and the nonnegativity of λ∗(ω) (∀ω ∈ Ω)

(since (13) holds), the second equality is due to (10) and the last inequality comes
from (49) and (14). Define vk := xk − x∗ and sk := vk‖vk‖ . By compactness of the ball,
there exists a subsequence of {sk} converging to a vector s with ‖s‖ = 1. Without loss
of generality, suppose that s = limk→∞ sk . We will show first that s ∈ V (x∗). We can
write

0 >
LΩ(xk, λ∗, rk) − LΩ(x∗, λ∗, rk)

‖vk‖ ≥ f (xk) − f (x∗)
‖vk‖ + infu≥0 A(rk, xk, u)

‖vk‖ ,

(51)

where A(r, x, u) is as inLemma4.1. Sincewe are under conditions ofLemma4.1, there
exist r ′, r0 > 0 such that the last term is nonnegative for rk > r ′ and xk ∈ B(x∗, r0).
Since rk tends to infinity and xk tends to x∗, we can find k0 such that rk > r ′ and
xk ∈ B(x∗, r0) for k ≥ k0. We assume from now on that k ≥ k0. Using this fact and
the Taylor development of f , we can write

0 >
f (xk) − f (x∗)

‖vk‖ + infu≥0 A(rk, xk, u)

‖vk‖ ≥ f (xk) − f (x∗)
‖vk‖

= ∇ f (x∗)T sk + o(‖vk‖)
‖vk‖ ,

where limk
o(‖vk‖)‖vk‖ = 0. Taking limit yields

∇ f (x∗)T s ≤ 0, (52)

which is one of the inequalities defining V (x∗). To show that the remaining inequalities
in V (x∗) hold for s, write again

0 >
f (xk) − f (x∗)

‖vk‖ + infu≥0 A(rk, xk, u)

‖vk‖
= ∇x L

Γ
0 (x∗, λ∗)T sk + o(‖vk‖)

‖vk‖ + rk
infu≥0 σ(γ (xk, u))

‖vk‖
= o(‖vk‖)

‖vk‖ + rk
infu≥0 σ(γ (xk, u))

‖vk‖ ,

where the first inequality follows from (49), the first equality follows from the defini-
tions of A(xk, rk, u) and LΓ

0 , and the second equality comes from (12) in Lemma 2.2.
Thus, we have
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lim
k→∞

infu≥0 σ(γ (xk, u))

‖vk‖ = 0,

since rk → ∞, as k → ∞. Therefore, there exists uk ∈ R
m+ such that

lim
k→∞

σ(γ (xk, uk))

‖vk‖ = 0, (53)

and then

lim
k→∞ σ(γ (xk, u

k)) = 0.

Since σ has a valley at 0, this can only happen if

lim
k→∞ ‖γ (xk, u

k)‖ = 0.

The p-growth condition now implies that

lim
k→∞

σ(γ (xk, uk))

‖γ (xk, uk)‖p
= ρ0. (54)

Note that 0 < p ≤ 1 and |g(xk, ω j )+ukj | ≥ g+(xk, ω j ) for all ω j ∈ Γ (x∗). Proceed-
ing as in the proof of Lemma 4.1, and taking k large enough so that ‖γ (xk, uk)‖ < 1,
we obtain

∑

ω j∈Γ (x∗)
g+(xk, ω j ) ≤ ‖γ (xk, u

k)‖ ≤ ‖γ (xk, u
k)‖p. (55)

From (54) we can take also k large enough so that σ(γ (xk ,uk ))
‖γ (xk ,uk )‖p > ρ0/2. Combine this

with (55) to write

0 ≤
∑

ω j∈Γ (x∗) g
+(xk, ω j )

‖vk‖ ≤ ‖γ (xk, uk)‖p

‖vk‖ ≤ 2

ρ0

σ(γ (xk, uk))

‖vk‖ .

Using the above expression and (53), we deduce that

lim
k→∞

∑
ω j∈Γ (x∗) g

+(xk, ω j )

‖vk‖ = 0. (56)

Since the functions g(·, ω j ), ω j ∈ Γ (x∗) are continuously differentiable at x∗, and
g(x∗, ω j ) = 0 for all ω j ∈ Γ (x∗), we use the Taylor development of g(·, ω j ) to write
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g+(xk, ω j )

‖vk‖ = max

{
0,

g(xk, ω j )

‖vk‖
}

= max

{
0,∇x g(x

∗, ω j )
T sk + o(‖vk‖)

‖vk‖
}

(57)

for all ω j ∈ Γ (x∗). Since each term in the sum of (56) is nonnegative, we deduce that

lim
k→∞

g+(xk, ω j )

‖vk‖ = 0.

for all ω j ∈ Γ (x∗). Use this fact in (57) to obtain

0 = lim
k→+∞max

{
0,∇x g(x

∗, ω j )
�sk + o(‖vk‖)

‖vk‖
}

= max
{
0,∇x g(x

∗, ω j )
�s

}
,

for all ω j ∈ Γ (x∗). This readily gives

∇x g(x
∗, ω j )

�s ≤ 0,

for all ω j ∈ Γ (x∗). Combining this fact and (52), we conclude that s ∈ V (x∗). The
Taylor development of LΓ

0 and the first-order conditions yield

f (xk) − f (x∗) +
m∑

j=1

λ∗(ω j )g(xk, ω j )

= f (xk) − f (x∗) +
m∑

j=1

[
λ∗(ω j )g(xk, ω j ) − λ∗(ω j )g(x

∗, ω j )
]

= 1

2
sTk
[∇2 f (x∗) +

m∑

j=1

λ∗(ω j )∇2
xx g(x

∗, ω j )
]
sk‖vk‖2 + o(‖vk‖2)

= ‖vk‖2
⎛

⎝sTk
[∇2 f (x∗) +

m∑

j=1

λ∗(ω j )∇2
xx g(x

∗, ω j )
]
sk + o(‖vk‖2)

‖vk‖2

⎞

⎠

= ‖vk‖2
(
sTk ∇2

xx L
Γ
0 (x∗, λ∗)sk + o(‖vk‖2)

‖vk‖2
)

.

Assumption (46) and the fact that s ∈ V (x∗), imply that, for k large enough, the
expression between parentheses is positive. Hence, we have that

f (xk) − f (x∗) +
m∑

j=1

λ∗(ω j )g(xk, ω j ) > 0,

contradicting (50) for large enough k. This implies that (49) cannot hold, and therefore
(48) must hold. ��
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The following result establishes existence of an augmented Lagrange multiplier for
(SIP), under the conditions of Lemma 4.3 and some boundedness assumptions on f
and g(·, ω).

Theorem 4.1 Let x∗ be a unique global optimal solution of (PΓ ). Suppose that all
conditions in Lemma 4.3 are satisfied. Moreover, if

(i) f and g(x, ω) (ω ∈ Γ ) are bounded below,
(ii) there exists μ0 > 0 such that the set below is bounded

Θ := {x ∈ R
n : g(x, ω) ≤ μ0, ω ∈ Γ }, (58)

then λ∗ is an augmented Lagrange multiplier of (SIP).

Proof By Condition (i), there exists ξ0 > −∞ such that

min
x∈Rn ,ω∈Ω

{ f (x), g(x, ω)} ≥ ξ0. (59)

By Lemma 2.2 (ii), it is enough to prove that there exists r∗
0 > 0 such that (19) holds

for every x ∈ R
n . We establish this fact in two steps, according to whether x belongs

or not to the set Θ defined in (58). We use in this proof the notation of Lemma 4.1.
Step I In this step, we prove that there exists r∗

1 > 0 such that (19) holds on Rn\Θ .
If x ∈ R

n\Θ , then g(x, ω j0) > μ0 for some ω j0 ∈ Γ . Thus, for every u ≥ we have

‖γ (x, u)‖ ≥ g(x, ω j0) + u j0 > μ0.

Since σ has a valley at 0, there exists cμ0 > 0 such that

σ(γ (x, u)) ≥ cμ0 . (60)

By (11), (59) and (60), we have

LΓ (x, λ∗, r) = f (x) +
m∑

j=1

λ∗(ω j )g(x, ω j ) + inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ∗(ω j )u j + rσ(γ (x, u))

⎫
⎬

⎭

≥ ξ0

⎛

⎝1 +
m∑

j=1

λ∗(ω j )

⎞

⎠ + rcμ0 , ∀x ∈ R
n\Θ.

Then there exists r∗
1 > 0 such that

LΓ (x, λ∗, r∗
1 ) ≥ f (x∗), ∀x ∈ R

n\Θ.

This inequality, combined with (10) in Lemma 2.1 and (14) in Lemma 2.2, yields that

LΩ(x, λ∗, r∗
1 ) ≥ LΩ(x∗, λ∗, r∗

1 ), ∀x ∈ R
n\Θ. (61)
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That is, (19) holds on R
n\Θ .

Step II We prove in this step that there exists r∗
2 > 0 such that (19) holds for x ∈ Θ .

By contradiction, suppose that there exist sequences {rk} and {xk}with rk > 0, xk ∈ Θ ,
such that rk → +∞ and

LΓ (xk, λ
∗, rk) = LΩ(xk, λ

∗, rk) < LΩ(x∗, λ∗, rk) = f (x∗), (62)

where we used (14) in the equalities. Set Γ = {ω1, . . . , ωm}. It follows from (11) and
(62) that

f (x∗) > f (xk) +
m∑

j=1

λ∗(ω j )g(ω j , xk) + rk inf
u≥0

σ(γ (xk, u)). (63)

Since rk → +∞ the above inequality implies that

lim
k→∞ inf

u≥0
σ(γ (xk, u)) = 0.

Therefore, we can take a sequence {uk} ⊂ R
m+ such that

lim
k→∞ σ(γ (xk, u

k)) = 0.

By condition (ii), Θ is bounded, and the sequence {xk} has at least a cluster point x̄ .
Without loss of generality, we assume that xk → x̄ .We claim that x̄ ∈ XΓ

0 , where X
Γ
0

is defined by (27). Indeed, the fact that σ has a valley at zero and the last expression
imply that, for every ω j ∈ Γ we have

0 = lim
k→∞ ‖γ (xk, u

k)‖ ≥ lim
k→∞ |g(xk, ω j ) + ukj | = 0.

Since g is continuous, the sequence {g(xk, ω j )} is bounded for every j , and hence
we conclude that the sequence {uk} ⊂ R

m+ is bounded too. Therefore, they both have
convergent subsequences. We may and do denote these still by {g(xk, ω j )} and {uk}.
Hence, we can write, for every ω j ∈ Γ ,

g(x̄, ω j ) = lim
k→∞ g(xk, ω j ) = lim

k→∞ −ukj ≤ 0,

because {uk} ⊂ R
m+. Therefore, x̄ ∈ XΓ

0 . Since we are under the conditions of
Lemma 4.3, there exist r∗ > 0 and a neighborhood N (x∗) of x∗ such that (48)
holds, i.e.,

LΩ(x, λ∗, r∗) > LΩ(x∗, λ∗, r∗) = f (x∗), ∀x ∈ N (x∗). (64)
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It follows from (62) and (64) that xk /∈ N (x∗). Indeed, for large enough k we must
have rk > r∗ and hence (62) gives

LΓ (xk, λ
∗, r∗) ≤ LΓ (xk, λ

∗, rk) < LΩ(x∗, λ∗, rk) = f (x∗),

where we used the fact that rk > r∗ in the first inequality. This expression and (64)
yield xk /∈ N (x∗). Since xk → x̄ , we deduce that x̄ 	= x∗. By assumption, x∗ is a
unique global optimal solution of (PΓ ) and x̄ is feasible for (PΓ ), hence we must
have f (x̄) > f (x∗). Let β = f (x̄) − f (x∗). By using (10) and (11), we have

LΩ(x̄, λ∗, r) = f (x̄) + inf
u≥0

⎧
⎨

⎩

m∑

j=1

λ∗(ω j )[−γ (x̄, u)] j + rσΓ (γ (x̄, u))

⎫
⎬

⎭

≥ f (x∗) + β

2
+ inf

u≥0

⎧
⎨

⎩

m∑

j=1

λ∗(ω j )[−γ (x̄, u)] j + rσΓ (γ (x̄, u))

⎫
⎬

⎭ .

(65)

Since we are under the conditions of Lemma 4.1, the last term in (65) is nonnegative
for r large enough. Using this in (65) gives

LΩ(x̄, λ∗, r) ≥ f (x∗) + β

2
, ∀r ≥ r ′. (66)

Fix k0 such that rk ≥ r ′ for all k ≥ k0, where r ′ > 0 is as in (66). Using Proposition 4.1,
we may and do assume that r ′ is large enough such that LΓ (·, λ∗, r ′) is lsc. Then by
(62) we obtain

f (x∗) ≥ lim infk L
Γ (xk, λ

∗, rk) ≥ lim infk L
Γ (xk, λ

∗, r ′)

≥ LΓ (x̄, λ∗, r ′) = LΩ(x̄, λ∗, r) ≥ f (x∗) + β

2
,

where we used (62) in the first inequality, the fact that LΓ (xk, λ∗, rk) ≥ LΓ (x̄, λ∗, r ′)
if rk ≥ r ′ in the second inequality, lower semicontinuity of LΓ (·, λ∗, r ′) in the third
inequality, (10) in the equality, and (66) in the last inequality. This expression entails
a contradiction and hence there exists r∗

2 > 0 such that

LΩ(x, λ∗, r∗
2 ) ≥ LΩ(x∗, λ∗, r∗

2 ), ∀x ∈ Θ. (67)

Equivalently, (19) holds on Θ . Let r∗
0 = max{r∗

1 , r∗
2 }. It follows from (61) and (67)

that (19) holds on R
n . The proof is complete. ��

Remark 4.3 Shapiro and Sun [22] established second-order conditions ensuring exis-
tence of an augmented Lagrange multiplier when the augmenting function is assumed
to be a quadratic function and condition (R) (called quadratic growth condition in
Rockafellar[14]) is satisfied. Under some second-order sufficient conditions and by
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assuming that the global optimal solution of the primal problem is unique, Sun et
al. [23] obtained existence results of global saddle points for four classes of aug-
mented Lagrangian functions (by Remark 2.3, this implies existence of augmented
Lagrange multipliers). In the latter paper, the augmenting function σ is twice differen-
tiable and convex, while in the other three classes of augmented Lagrangian functions
the augmenting function is assumed to be twice differentiable. In our analysis (see
Theorem 4.1), the augmenting function is not necessarily convex nor differentiable.
Hence, the result and the proof techniques in Theorem 4.1 are different than those in
Shapiro and Sun [22] and Sun et al. [23]. Moreover, it is known that some nonconvex
and nondifferentiable penalty functions, which are the special cases of the augmented
Lagrangians with nonconvex and nondifferentiable augmenting functions, are able to
provide a smaller exact penalty parameter than that of the classical l1 penalty function,
see [33, Theorem 4.9], and indeed it has been shown that nonconvex and nondifferen-
tiable penalty functions need only smaller penalty parameters to achieve the required
accuracy than the classical l1 penalty function in some practical applications, see [34].

Nextwe apply a global second-order sufficient condition [26] to obtain the existence
of an augmented Lagrange multiplier.

Definition 4.2 Let X be a subset of Rn , x∗ ∈ X , W (x∗) be a subset of Rn and
f : X → R be twice continuously differentiable at x∗. We say that a generalized
representation condition holds for f at x∗ on X with respect to η(x, x∗) ∈ W (x∗) if,
for every x ∈ X ,

f (x) = f (x∗) + ∇ f (x∗)�(x − x∗) + 1

2
η(x, x∗)�∇2 f (x∗)η(x, x∗).

Remark 4.4 There are some functions that satisfy the generalized representation con-
dition in Definition 4.2 (cf. Yang [26]). For example, for a linear fractional function

f (x) = b�x + c

a�x + s
, x ∈ X

where a, b ∈ R
n , c, s ∈ R and X is a convex set such that a�x + s > 0,∀x ∈ X. It is

easy to show that

f (x) = f (x∗) + ∇ f (x∗)�(x − x∗) + 1

2

a�x∗ + s

a�x + s
(x − x∗)�∇2 f (x∗)(x − x∗).

Then f (x) satisfies the generalized representation condition on X with

W (x∗) =
⎧
⎨

⎩η(x, x∗) ∈ R
n : η(x, x∗) =

√
a�x∗ + s

a�x + s
(x − x∗)

⎫
⎬

⎭ .

Theorem 4.2 Let f (·) and g(·, ω), ω ∈ Ω , be real-valued twice continuously dif-
ferentiable functions, and let x∗ ∈ X0, λ∗ ∈ R

(Ω), Γ = supp(λ∗) = {ω1, . . . , ωm},
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V (x∗) be defined by (47), σ : RΩ → R+ have a valley at 0 respect toΓ and (38) hold.
Assume that the KKT Conditions (12) and (13) for problem (SIP) and Conditions (i),
(ii) in Theorem 4.1 are satisfied. Moreover, if there exists a set W (x∗) ⊂ R

n\{0} such
that V (x∗) ⊂ W (x∗) and the generalized representation condition holds for f (x)
and g(x, ω j ), j = 1, . . . ,m, at x∗ on XΓ

0 with respect to the same η(x, x∗) ∈ W (x∗),
where η(·, x∗) : Rn → W (x∗) is continuous,

y�∇2
xx L

Γ
0 (x∗, λ∗)y > 0, ∀y ∈ W (x∗). (68)

Then λ∗ is an augmented Lagrange multiplier of (SIP).

Proof As in the proof of Theorem 4.1, we will prove that there exists r∗ > 0 such
that (19) holds on Rn = Θ ∪ (Rn\Θ), where Θ is defined by (58). The proof for the
case in which x /∈ Θ follows the same line of argument as that in Step 1 of the proof
of Theorem 4.1 and hence it is omitted. Namely, Step 1 of the proof of Theorem 4.1
can be quoted to conclude that there exists r∗

1 > 0 such that (19) holds on R
n\Θ . To

complete the proof, we prove that there exists r∗
2 > 0 such that (19) holds on Θ . By

contradiction, suppose that there exist sequences {rk} and {xk} with rk > 0, xk ∈ Θ ,
such that rk → +∞ and (62) holds. Again, similar steps as those in Theorem 4.1, Step
II establishes (63) and proves that x̄ ∈ XΓ

0 , where XΓ
0 is defined by (27). Because

V (x∗) ⊂ W (x∗), it follows from Lemma 4.3 that there are r∗ > 0 and a neighborhood
N (x∗) of x∗ such that (48) holds, i.e.,

LΩ(x, λ∗, r∗) > LΩ(x∗, λ∗, r∗), ∀x ∈ N (x∗).

Thus, it follows from (62) that x̄ 	= x∗, since xk → x̄ , as k → ∞.
By the assumption, there is η(x̄, x∗) ∈ W (x∗) such that the generalized represen-

tation conditions of f (x) and g(x, ω j ), j = 1, · · · ,m, hold. By (68), we have

η(x̄, x∗)�∇2
xx L

Γ
0 (x∗, λ∗)η(x̄, x∗) > 0.

Thus, for k sufficiently large, and by continuity of η(·, x∗),

η(xk, x
∗)�∇2

xx L
Γ
0 (x∗, λ∗)η(xk, x

∗) > 0. (69)

Thus, by the KKT conditions and (69), we have

f (xk) +
m∑

j=1

λ∗(ω j )g(ω j , xk)

= f (x∗) + ∇ f (xk)
�(xk − x∗) + 1

2
η(xk, x

∗)�∇2 f (xk)
�η(xk, x

∗)

+
m∑

j=1

λ∗(ω j )g(ω j , xk)
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+
m∑

j=1

λ∗(ω j )∇g(ω j , xk)
�(xk − x∗)

+ 1

2

m∑

j=1

λ∗(ω j )η(xk, x
∗)�∇2

xx g(ω j , xk)η(xk, x
∗)

= 1

2
η(xk, x

∗)�∇2
xx L

Ω(x∗, λ∗)η(xk, x
∗)

> f (x∗),

which contradicts to (63). Therefore, there exists r∗
2 > r∗ > 0 such that (19) holds on

Θ .
Let r∗ = max{r∗

1 , r∗
2 }. Therefore, (19) holds on R

n . By Lemma 2.2, λ∗ is an
augmented Lagrange multiplier of (SIP) with penalty parameter r∗. ��
Remark 4.5 If Assumption 3.1 holds, then conditions (i) and (ii) of Theorem 4.1 are
satisfied (see the proof of Theorem 3.2).

5 Conclusions

In the case of a sharp Lagrangian, we obtained first-order necessary or sufficient con-
ditions for the existence of an augmented Lagrangemultiplier for (SIP). Using a valley
at 0 augmenting function, we obtained second-order sufficient conditions for the exis-
tence of an augmented Lagrange multiplier for (SIP). We employed the discretization
technique in our work and provided some characterizations of augmented Lagrange
multipliers for (SIP) in terms of saddle points. However, we could not establish the
equivalence of the (SIP) and its discretized optimization problem when an augmented
Lagrange multiplier exists. We leave this question as an open problem for our future
research.
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