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Abstract Some classical references in the literature include second-order necessary
conditions for the isoperimetric problem of Lagrange in the calculus of variations
involving inequality and equality constraints. Those conditions take into account, in
the sets of critical directions, the sign of the Lagrangemultipliers of the extremal under
consideration. However, they hold under a strong assumption of normality relative to
a set defined only by equality constraints for active indices. In this paper, we show
how the same conditions can be preserved under a weaker assumption, thus providing
a wider range of applicability.
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1 Introduction

In this paper, we solve a fundamental question in optimization theory. It deals with
different criteria for regularity in a calculus of variations context and some of its
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consequences for first- and second-order necessary conditions. In particular, our main
result allows us to weaken the usual assumption of strong normality found in the
literature and, at the same time, preserve the corresponding conditions on the sets of
extremals and critical directions.

The calculus of variations problem we shall be concerned with is a fixed endpoint
problem of Lagrange posed over piecewise smooth functions and involving inequality
and equality isoperimetric constraints. In a recent paper (see [1]), we studied different
assumptions found in the literature under which, for that problem, second-order neces-
sary conditions are well known, and showed that all those assumptions are equivalent
to a form of strong normality defined in [2]. In this paper, we shall prove, in particular,
that those second-order conditions for the problem under consideration can be derived
under a much weaker assumption.

One can find in the literature different references treating this and more general
problems, some inserted in an optimal control context. In particular, let us mention
some differences between our main result, which corresponds to an improvement in
Theorem 2.2, and the fundamental research developed in [3–8]. In those references,
one of the main distinctive features is that the necessary conditions obtained make
sense and are derived, without a priori assumptions on the normality of the extremal
under consideration. The excellent survey given in [5] provides a full account of these
results aswell as others related to the inverse function theorem. The paper [6] continues
an investigation begun in [3,4,8], extending some of the results to the case of mixed
constraints. On the other hand, the second-order conditions derived in those references
(see, for example, [5, Theorem 2.1]) are expressed in terms of the maximum of a
quadratic form, over certain Lagrange multipliers, for all the elements of the so-called
critical cone which, for our problem, corresponds to the set of tangential constraints
with respect to the original set of inequality and equality constraints. In contrast,
Theorem 2.4 provides second-order conditions on the set of tangential constraints with
respect to a subset of the previous one, and under the assumption of normality relative
not to a set defined only by equality constraints for active indices, as in Theorem 2.2,
but relative to a set which properly contains it.

Other references in the subject provide different approaches to the derivation of
second-order necessary conditions. Some deal with implicit function theorems (see,
for example, [2,9–12]), themaximumof a quadratic form for different types ofminima
[13–15], or new notions of conjugacy and critical directions [16–19].

The paper is organized as follows. In Sect. 2, we pose the problemwe shall deal with
and state twowell-known results on first- and second-order necessary conditions. Both
results require a standard assumption of “strong normality” and, based on a particular
notion of regularity, we show how they can be easily established. In the same section,
we introduce a more general notion of normality and state that the previous, standard
second-order conditions hold under the weaker assumption of normality relative to
a subset of the set of isoperimetric constraints, which takes into account the sign
of the corresponding Lagrange multipliers. This is the main result of the paper. A
result on necessary conditions in terms of a more general notion of regularity is
then proved and, as explained at the end of that section, our main result turns out
to be a simple consequence of the fact that regularity relative to a set S is implied
precisely by normality relative to the same set. Section3 is devoted to prove this fact
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by introducing the notion of properness relative to a set. Finally, in Sect. 4, we provide
a simple example which illustrates the usefulness of our result and for which the
classical theory on second-order conditions cannot be applied.

2 The Problem and Main Results

Let us begin by stating the problem. The given data correspond to an interval T
:= [t0, t1] in R, two points ξ0, ξ1 in Rn , functions L and Lγ mapping T × Rn × Rn

to R and scalars bγ in R (γ = 1, . . . , q). Denote by X the space of piecewise C1

functions mapping T toRn called arcs or trajectories, and let Xe be the set of all arcs
x satisfying the endpoint constraints x(t0) = ξ0 and x(t1) = ξ1. The admissible arcs
are the elements of

S := {x ∈ Xe : Iα(x) ≤ 0 (α ∈ R), Iβ(x) = 0 (β ∈ Q)},

where R = {1, . . . , r}, Q = {r + 1, . . . , q}, and

Iγ (x) = bγ +
∫ t1

t0
Lγ (t, x(t), ẋ(t))dt (x ∈ X, γ = 1, . . . , q).

The problem we shall deal with, which we label (P), is that of minimizing I on S,
where

I (x) =
∫ t1

t0
L(t, x(t), ẋ(t))dt (x ∈ X).

An arc x is said to solve (P), if x is admissible and I (x) ≤ I (y) for all admissible arcs
y. For any x ∈ X , the notation (x̃(t)) represents (t, x(t), ẋ(t)) and we assume that L ,
Lγ are C2.

Given an arc x consider the first variation of I along x given by

I ′(x; y) :=
∫ t1

t0
{Lx (x̃(t))y(t) + Lẋ (x̃(t))ẏ(t)}dt (y ∈ X)

and the second variation of I along x given by

I ′′(x; y) :=
∫ t1

t0
2Ω(t, y(t), ẏ(t))dt (y ∈ X)

where, for all (t, y, ẏ) ∈ T × Rn × Rn ,

2Ω(t, y, ẏ) := 〈y, Lxx (x̃(t))y〉 + 2〈y, Lxẋ (x̃(t))ẏ〉 + 〈ẏ, Lẋ ẋ (x̃(t))ẏ〉.

The first and second variations of other integrals such as Iγ are defined in a similar
way. Define the set of admissible variations as
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Y := {y ∈ X : y(t0) = y(t1) = 0}.

2.1 Strong Normality and p-Regularity

For first- and second-order necessary conditions, one is usually interested in proving
linearly independence on Y of the first variations I ′

γ (x0; y) (for all γ ∈ Ia(x0) ∪ Q)
of Iγ along an admissible arc x0, where

Ia(x0) = {α ∈ R : Iα(x0) = 0}

denotes the set of active indices at x0. This is equivalent to the existence of yγ ∈ Y
(γ ∈ Ia(x0) ∪ Q) such that

|I ′
β(x0; yγ )| �= 0 (β, γ ∈ Ia(x0) ∪ Q).

Let us call this property strong normality or, as it will become apparent from the theory
to follow, normality relative to S0, where

S0 := S0(x0) = {x ∈ Xe : Iγ (x) = 0 (γ ∈ Ia(x0) ∪ Q)}.

Definition 2.1 We shall call a pair (x0, λ) ∈ S × Rq an extremal, if the following
conditions hold:

i. λα ≥ 0 and λα Iα(x0) = 0 (α ∈ R).
ii. If J (x) := I (x) + ∑q

1 λγ Iγ (x), then J ′(x0; y) = 0 for all y ∈ Y .

Condition (ii), as it is well known, is equivalent to the existence of c ∈ Rn such
that

Fẋ (x̃(t)) =
∫ t

t0
Fx (x̃(s))ds + c (t ∈ T )

where F = L + ∑q
1 λγ Lγ (see [2]). Denote by E the set of all extremals.

We have the following two well-known results on necessary conditions (see, for
example, [2]). Both require a strong normality assumption on the solution to the
problem.

Theorem 2.1 If x0 solves (P) and is strongly normal, then ∃λ ∈ Rq unique such that
(x0, λ) ∈ E .
Theorem 2.2 Suppose ∃λ ∈ Rq such that (x0, λ) ∈ E . If x0 solves (P) and is strongly
normal, then J ′′(x0; y) ≥ 0 for all y ∈ Y satisfying

a. I ′
α(x0; y) ≤ 0 (α ∈ Ia(x0), λα = 0);

b. I ′
β(x0; y) = 0 (β ∈ R with λβ > 0, or β ∈ Q).

Let us briefly explain how, based on a particular notion of regularity, these two
results can be easily established. We begin by stating the following well-known prop-
erty of linear functionals on real vector spaces (see [2,20]).
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Lemma 2.1 Let X be a real vector space. Suppose L , Li are linear functionals on X
(i ∈ A ∪ B, where A = {1, . . . , p}, B = {p + 1, . . . ,m}), and

R = {x ∈ X : Lα(x) ≤ 0 (α ∈ A), Lβ(x) = 0 (β ∈ B)}.

If L(x) ≥ 0 for all x ∈ R, then ∃{λi }m1 such that λα ≥ 0 (α ∈ A) and such that
L(x) + ∑m

1 λi Li (x) = 0 (x ∈ X). If {Li }m1 is linearly independent, then {λi }m1 is
unique.

Now, define the set of tangential constraints at x0 ∈ S by

RS(x0) =
{
y ∈ Y : I ′

α(x0; y) ≤ 0 (α ∈ Ia(x0)), I ′
β(x0; y) = 0 (β ∈ Q)

}

and the set of (positive) curvilinear tangents of S at x0 by

CS(x0) = {y ∈ Y : ∃δ > 0 and x(·, ε) ∈ S (0 ≤ ε < δ) with x(t, 0) = x0(t),

xε(t, 0) = y(t) (t ∈ T )}.

Clearly, CS(x0) ⊂ RS(x0) since, for all y ∈ CS(x0),

d

dε
Iγ (x(·, ε))

∣∣∣∣
ε=0

=
∫ t1

t0
{Lγ x (x̃0(t))y(t) + Lγ ẋ (x̃0(t))ẏ(t)}dt = I ′

γ (x0; y).

If the converse holds, that is, if the two sets coincide, the arc x0 will be called p-
regular. Note that in this event, if x0 solves the problem, y ∈ RS(x0) and δ > 0 and
x are as in the definition of CS(x0), then g(ε) := I (x(·, ε)) has a local minimum at
ε = 0 and so g′(0) = I ′(x0; y) ≥ 0. In Theorem 2.1, the existence and uniqueness of
λ1, . . . , λq satisfying (i) and (ii) in the definition of E , follows by Lemma 2.1. Finally,
by an application of the implicit function theorem, one can show that strong normality
implies p-regularity.

For Theorem 2.2, consider the subset of S given by

S1 := S1(λ) = {x ∈ Xe : Iα(x) ≤ 0 (α ∈ R, λα = 0),

Iβ(x) = 0 (β ∈ R with λβ > 0, or β ∈ Q)}

and note that S1 = {x ∈ S : J (x) = I (x)} and RS1(x0) is precisely the set of all
y ∈ Y satisfying (a) and (b) of that theorem, that is,

RS1(x0) = {y ∈ Y : I ′
α(x0; y) ≤ 0 (α ∈ Ia(x0), λα = 0),

I ′
β(x0; y) = 0 (β ∈ R with λβ > 0, or β ∈ Q)}.

Since strong normality relative to S is equivalent to strong normality relative to S1,
our assumption implies that RS1(x0) = CS1(x0). Thus, for any y in RS1(x0), there
exist δ and x as in the definition of CS1(x0) and so, if we define g(ε) := I (x(·, ε))
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as before, then g(ε) = J (x(·, ε)) by definition of S1, and therefore, as one readily
verifies, J ′′(x0; y) = g′′(0) ≥ 0.

Let us emphasize that, in both proofs (which can be seen with full detail in, for
example, [1,2]), aswell as in other proofs found in the literature (with a different but, as
explained in [1], equivalent assumption in an optimal control context in [2,9,10]), the
assumption of strong normality is basic. This notion, as mentioned before, is related
to the set S0 when a different, more general definition of normality is adopted.

2.2 Normality and Regularity Relative to S

An arc x0 will be said to be normal relative to S, if λ = 0 is the only solution of

i. λα ≥ 0 and λα Iα(x0) = 0 (α ∈ R).
ii.

∑q
1 λγ I ′

γ (x0; y) = 0 for all y ∈ Y .

To understand the origin of this definition, let us state the following well-known set
of first-order conditions given in [2].

Theorem 2.3 If x0 solves (P), then there exist λ0 ≥ 0 and λ1, . . . , λq not all zero,
such that

i. λα ≥ 0 and λα Iα(x0) = 0 (α ∈ R).
ii. If J0(x) := λ0 I (x) + ∑q

1 λγ Iγ (x), then J ′
0(x0; y) = 0 for all y ∈ Y .

Clearly, if x0 is a solution to the problem and is normal relative to S then, necessarily,
λ0 > 0 in Theorem 2.3 and the multipliers can be chosen so that λ0 = 1. In this event,
the conclusion of Theorem 2.1 follows except possibly for the uniqueness of the
multipliers. Normality relative to S will be called weak normality.

Note that this notion, applied to S0, is equivalent to strong normality since, in view
of the definition, x0 is normal relative to S0 if λ = 0 is the only solution of

i. λα Iα(x0) = 0 (α ∈ R).
ii.

∑q
1 λγ I ′

γ (x0; y) = 0 for all y ∈ Y .

This notion of normality can, of course, be applied also to the set S1. An arc x0 is
normal relative to S1, if μ = 0 is the only solution of

i. μα ≥ 0 and μα Iα(x0) = 0 (α ∈ R, λα = 0).
ii.

∑q
1 μγ I ′

γ (x0; y) = 0 for all y ∈ Y .

A fundamental question posed in the literature (see also [9,11,12,17–19] for other
problems in optimal control) is if, in Theorem 2.2, the assumption of strong normality
can be replaced with that of normality relative to S1, without altering the setRS1(x0)
of critical directions where the second-order conditions hold, that is, the set of all
y ∈ Y satisfying conditions (a) and (b) of Theorem 2.2. In other words, the question
is whether the following theorem is valid or not.

Theorem 2.4 Suppose ∃λ1, . . . , λq such that

i. λα ≥ 0 and λα Iα(x0) = 0 (α ∈ R).
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ii. If J (x) := I (x) + ∑q
1 λγ Iγ (x), then J ′(x0; y) = 0 for all y ∈ Y .

If x0 solves (P) and is normal relative to S1 = {x ∈ S : J (x) = I (x)}, then
J ′′(x0; y) ≥ 0 for all y ∈ Y satisfying

a. I ′
α(x0; y) ≤ 0 (α ∈ Ia(x0), λα = 0);

b. I ′
β(x0; y) = 0 (β ∈ R with λβ > 0, or β ∈ Q).

We shall pose, and solve this question, by means of a notion of regularity slightly
different to the previous one, defined in terms not of curvilinear but sequential tangents.
Based on the weak norm on X ,

‖x‖ := sup
{|x(t)|2 + |ẋ(t)|2}1/2,

let us introduce the notion of tangent cone which corresponds to a generalization
of the one given by Hestenes [2,20] for finite-dimensional spaces (see also [21] for
equivalent definitions). In what follows, the letter q should not be confused with the
cardinality of R ∪ Q.

We shall say that a sequence {xq} ⊂ X converges to x0 in the direction y if y is a
unit arc, xq �= x0, and

lim
q→∞ ‖xq − x0‖ = 0, lim

q→∞
xq − x0

‖xq − x0‖ = y.

The tangent cone of S at x0, which we shall denoted by TS(x0), is the cone determined
by the unit arcs y ∈ Y for which there exists a sequence {xq} in S converging to x0 in
the direction y.

Note that, equivalently, TS(x0) is the set of all y ∈ Y for which there exist sequences
{xq} in S and {εq} of positive numbers such that

lim
q→∞ εq = 0, lim

q→∞
xq − x0

εq
= y. (1)

This follows since, if {xq} and {εq} satisfy (1), then we have

lim
q→∞ xq = x0, lim

q→∞
‖xq − x0‖

εq
= ‖y‖.

Hence, if y �≡ 0, then ‖xq − x0‖ �= 0 for large values of q and

lim
q→∞

xq − x0
‖xq − x0‖ = lim

q→∞
xq − x0

εq
lim
q→∞

εq

‖xq − x0‖ = y

‖y‖ .

Therefore, if y is a unit arc and there exist {xq} ⊂ S and {εq > 0} satisfying (1), then
we can choose εq = ‖xq − x0‖ in (1).
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A fundamental property satisfied by this norm is that, as shown in [2], if {xq}
converges to x0 in the direction y, then

lim
q→∞

I (xq) − I (x0)

‖xq − x0‖ = I ′(x0; y). (2)

Similarly, for the second variation,

lim
q→∞

I (xq) − I (x0) − I ′(x0; xq − x0)

‖xq − x0‖2 = 1
2 I

′′(x0; y). (3)

The first of these relations, clearly implies that TS(x0) ⊂ RS(x0), and we shall say
that x0 ∈ S is a regular arc of S if TS(x0) = RS(x0). In terms of this notion, we
obtain the following first- and second-order necessary conditions.

Theorem 2.5 If x0 solves (P) and is a regular arc of S, then ∃λ ∈ Rq such that
(x0, λ) ∈ E .
Theorem 2.6 Suppose ∃λ ∈ Rq such that (x0, λ) ∈ E . If x0 solves (P) and is a regular
arc of S1 = {x ∈ S : J (x) = I (x)}, then J ′′(x0; y) ≥ 0 for all y ∈ RS1(x0).

To prove these results, suppose x0 solves (P). Clearly, by (2), I ′(x0; y) ≥ 0 for all
y ∈ TS(x0). By regularity relative to S, this holds on RS(x0), and the conclusion of
Theorem 2.5 follows by Lemma 2.1. Now, if y ∈ TS1(x0) is a unit arc and {xq} ⊂ S1
a sequence converging to x0 in the direction y then, since J (x) = I (x) on S1, we
have J (xq) ≥ J (x0), and therefore, by (3), J ′′(x0; y) ≥ 0. The result then follows by
regularity relative to S1.

Note that the only difference between Theorems 2.4 and 2.6 is the assumption
imposed on the extremal. For the former, we have normality relative to S1 while, for
the latter, it is regularity relative to S1. Therefore, Theorem 2.4 will be established, as
a simple consequence of Theorem 2.6, if normality (relative to S) implies regularity
(relative to S). Thus, this result would allow us to weaken the usual assumption of
strong normality, but preserving the conditions on the sets of extremals and critical
directions. This is the fundamental question in optimization theory, mentioned in the
beginning of the introduction, which we shall now solve.

3 Normality, Regularity and Properness

Recall that an arc x0 ∈ S is called regular relative to S ifRS(x0) ⊂ TS(x0) (implying
equality), and normal relative to S if λ = 0 is the only solution to

i. λα ≥ 0 and λα Iα(x0) = 0 (α ∈ R).
ii.

∑q
1 λγ I ′

γ (x0; y) = 0 for all y ∈ Y .

The purpose of this section is to prove that normality implies regularity. Let us begin
with a new concept which, as we shall see below, characterizes normality relative to
S.
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Definition 3.1 We call x0 ∈ S proper relative to S if

a. {I ′
β(x0; y) : β ∈ Q} is linearly independent on Y .

b. ∃y ∈ Y such that I ′
α(x0; y) < 0 (α ∈ Ia(x0)) and I ′

β(x0; y) = 0 (β ∈ Q).

To prove that properness and normality are equivalent, we shall make use of the
following auxiliary result on linear functionals (see [2,20]).

Lemma 3.1 Let L1, . . . , Lm be linear forms on X, a real vector space, and let

R = {x ∈ X : Lα(x) ≤ 0 (α ∈ A), Lβ(x) = 0 (β ∈ B)}

where A = {1, . . . , p} and B = {p + 1, . . . ,m}. Suppose that Li (x) = 0 for all
x ∈ R and i ∈ A ∪ B. Then there exist λα > 0 (α ∈ A) and λβ ∈ R (β ∈ B) such
that

∑m
1 λi Li (x) = 0 (x ∈ X).

Proposition 3.1 Let x0 ∈ S. Then x0 is normal relative to S ⇔ x0 is proper relative
to S.

Proof Without loss of generality, assume that all constraints are active at x0, that is,
R = Ia(x0).

“⇐”: Suppose x0 is a proper arc of S. Let λ satisfy (i) and (ii) above. If R = ∅,
then λ = 0. If R �= ∅, choose a trajectory y satisfying 3.1(b). We have

0 =
q∑
1

λγ I
′
γ (x0; y) =

r∑
1

λα I
′
α(x0; y), λα ≥ 0 (α ∈ R)

and, since I ′
α(x0; y) < 0 (α ∈ R), we have λα = 0 (α ∈ R). Thus,

∑
β∈Q

λβ I
′
β(x0; y) = 0

and, by 3.1(a), λβ = 0 (β ∈ Q).
“⇒”: Suppose x0 is a normal arc of S. Clearly, 3.1(a) holds. Without loss of gen-

erality, R �= ∅. Define

C = {α ∈ R : I ′
α(x0; y) < 0 for some y ∈ RS(x0)}

and let D := R ∼ C = {α ∈ R : α /∈ C}, so that I ′
γ (x0; y) = 0 for all γ ∈ D ∪ B

and y ∈ RS(x0). Let

V := {x ∈ Xe : Iα(x) ≤ 0 (α ∈ D), Iβ(x) = 0 (β ∈ Q)},
V0 := {x ∈ Xe : Iγ (x) = 0 (γ ∈ D ∪ Q)}

and consider their corresponding sets of tangential constraints at x0:

RV (x0) = {y ∈ Y : I ′
α(x0; y) ≤ 0 (α ∈ D), I ′

β(x0; y) = 0 (β ∈ Q)},
RV0(x0) = {y ∈ Y : I ′

γ (x0; y) = 0 (γ ∈ D ∪ Q)}.
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We claim thatRV (x0) = RV0(x0). To prove it, consider the following subset of S:

S̃ = {x ∈ Xe : Iα(x) ≤ 0 (α ∈ C), Iγ (x) = 0 (γ ∈ D ∪ Q)}.

and the tangential constraints at x0 associated with S̃:

RS̃(x0) = {y ∈ Y : I ′
α(x0; y) ≤ 0 (α ∈ C), I ′

γ (x0; y) = 0 (γ ∈ D ∪ Q)}.

Clearly RS(x0) = RS̃(x0). Without loss of generality, C �= ∅ for, otherwise,
RS̃(x0) = RV0(x0) and RS(x0) = RV (x0). Select, for each α ∈ C , a trajectory
yα ∈ RS(x0) such that I ′

α(x0; yα) < 0, and set ŷ := ∑
α∈C yα . Note that

I ′
α(x0; ŷ) < 0 (α ∈ C) and I ′

γ (x0; ŷ) = 0 (γ ∈ D ∪ Q).

Let y �≡ 0 inRV (x0), and let ε > 0 be such that

I ′
α(x0; y + ε ŷ) = I ′

α(x0; y) + ε I ′
α(x0; ŷ) ≤ 0 (α ∈ C).

Note that

I ′
α(x0; y + ε ŷ) = I ′

α(x0; y) ≤ 0 (α ∈ D), I ′
β(x0; y + ε ŷ) = 0 (β ∈ Q)

and, therefore, y + ε ŷ ∈ RS(x0) = RS̃(x0). We conclude that

I ′
γ (x0; y + ε ŷ) = I ′

γ (x0; y) = 0 (γ ∈ D ∪ Q)

and so y ∈ RV0(x0). This proves the claim.
Now, by Lemma 3.1, ∃λα > 0 (α ∈ D) and λβ ∈ R (β ∈ Q), such that, for all

y ∈ Y ,

∑
α∈D

λα I
′
α(x0; y) +

∑
β∈Q

λβ I
′
β(x0; y) = 0.

If D �= ∅, we contradict normality. Thus, D = ∅ and so, as before, we can find y ∈ Y
satisfying 3.1(b) by selecting, for each α ∈ R, a trajectory yα ∈ RS(x0) such that
I ′
α(x0; yα) < 0, and setting y := ∑

α∈R yα . ��
In the next result, we shall make use of the closedness of the tangent cone. This

property canbe easily seen as follows. Suppose y �≡ 0, {yq} ⊂ TS(x0) and yq converges
to y. Since yq/‖yq‖ → y/‖y‖, it is sufficient to consider the case in which ‖y‖ =
‖yq‖ = 1. For all q, select xq ∈ S such that

0 < εq := ‖xq − x0‖ <
1

q
and

∥∥∥∥ xq − x0
εq

− yq

∥∥∥∥ <
1

q
.
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We then have
∥∥∥∥ xq − x0

εq
− y

∥∥∥∥ ≤
∥∥∥∥ xq − x0

εq
− yq

∥∥∥∥ + ‖yq − y‖ <
1

q
+ ‖yq − y‖.

Hence, (1) holds, and so y ∈ TS(x0), as was to be proved.

Theorem 3.1 If x0 is a proper arc of S, then it is a regular arc of S.

Proof Assume, without loss of generality, that R = Ia(x0). By 3.1(b), R = C , that
is, D = ∅. From the theory for equality constraints (see, for example, [1,2]), 3.1(a)
implies that x0 is regular relative to

V0 = {x ∈ Xe : Iβ(x) = 0 (β ∈ Q)},

that is,

TV0(x0) = RV0(x0) = {y ∈ Y : I ′
β(x0; y) = 0 (β ∈ Q)}.

Assume R �= ∅ since, otherwise, V0 = S. Define

KS(x0) := {y ∈ Y : I ′
α(x0; y) < 0 (α ∈ R), I ′

β(x0; y) = 0 (β ∈ Q)}.

We claim that KS(x0) ⊂ TS(x0). To prove it, let y ∈ KS(x0) and observe that, since
y ∈ RV0(x0) = TV0(x0), there exist sequences {xq} in V0 and {εq > 0} such that (1)
holds. Therefore,

lim
q→∞

Iγ (xq)

εq
= lim

q→∞
Iγ (xq) − Iγ (x0)

εq
= I ′

γ (x0; y) (γ = 1, . . . , q).

Since I ′
α(x0; y) < 0 (α ∈ R), ∃N such that, for all q ≥ N , Iα(xq) < 0 (α ∈ R). Since

{xq} ⊂ V0, it follows that, for q ≥ N , xq ∈ S. Hence, y ∈ TS(x0), and this proves the
claim. Finally, let ŷ ∈ RS(x0) and let y satisfy 3.1(b), so that y ∈ KS(x0). Then, for
all ε > 0, ŷ + εy ∈ KS(x0) ⊂ TS(x0) and, since TS(x0) is closed, ŷ ∈ TS(x0). ��

We have proved that normality implies regularity. In particular, this implies, as
explained before, that Theorem 2.4 is true.

4 An Example and Applications

In this section, we provide a simple example that illustrates one of the main conse-
quences of our result. For this example, the classical theory cannot be applied since,
for the extremal (x0, λ) under consideration, x0 is not strongly normal. Therefore,
Theorem 2.2 yields no information. However, by an application of Theorem 2.4, we
can conclude that x0 it is not a solution to the problem. This example shows a clear
advantage of the main result of the paper over previous ones found in the literature.We
end the paper with some comments on possible applications of the results obtained.
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Example 4.1 Let a = π/2 and consider the problem of minimizing

I (x) = 1

2

∫ a

0

{
x2(t) − ẋ2(t)

}
dt

subject to x(0) = 1, x(a) = −1,

∫ a

0
x(t)dt ≤ 0 and

∫ a

0
{x(t) + ẋ(t)}dt ≤ −2.

In this case, T = [0, a], n = 1, r = 2, ξ0 = 1, ξ1 = −1,

L(t, x, ẋ) = (x2 − ẋ2)/2, L1(t, x, ẋ) = x, L2(t, x, ẋ) = x + ẋ, b1 = 0, b2 = 2.

Consider the function

F(t, x, ẋ) := L(t, x, ẋ) +
2∑
1

λαLα(t, x, ẋ)

= x2 − ẋ2

2
+ λ1x + λ2(x + ẋ)

and note that Fẋ (t, x, ẋ) = −ẋ + λ2 and Fx (t, x, ẋ) = x + λ1 + λ2. Euler’s equation
is, therefore, given by ẍ(t) + x(t) + λ1 + λ2 = 0, whose general solution is

x(t) = c1 sin t + c2 cos t − (λ1 + λ2).

The constraints x(0) = 1 and x(a) = −1 imply that c1 = λ1 + λ2 − 1 and
c2 = λ1 + λ2 + 1.

Let us consider the arc

x0(t) := cos t − sin t (t ∈ [0, a])

and let λ = (λ1, λ2) ≡ (0, 0). Clearly, x0 is admissible since it satisfies the endpoint
constraints and I1(x0) = I2(x0) = 0. Moreover, in view of the above argument,
(x0, λ) is an extremal with c1 = −1 and c2 = 1. Observe now that, for this particular
multiplier, we have

S = {x ∈ Xe : Iα(x) ≤ 0 (α = 1, 2)} = S1.

Also, by definition, x0 will be normal relative to S = S1 if μ1 = μ2 = 0 is the only
solution to

i. μ1 ≥ 0, μ2 ≥ 0;
ii. μ1 I ′

1(x0; y) + μ2 I ′
2(x0; y) = 0 for all y ∈ Y .
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That this is indeed the case follows since, for all y ∈ Y ,

μ1 I
′
1(x0; y) + μ2 I

′(x0; y) = μ1

∫ a

0
y(t)dt + μ2

∫ a

0
{y(t) + ẏ(t)}dt

= (μ1 + μ2)

∫ a

0
y(t)dt

and so (i) and (ii) imply μ ≡ 0. On the other hand, x0 is not strongly normal since,
without imposing condition (i), we have nonnull solutions to (ii) such asμ ≡ (1,−1).
Therefore, we cannot invoke Theorem 2.2. However, if we define

y(t) =
{

−t if t ∈ [0, a/2]
t − a if t ∈ [a/2, a]

then y ∈ Y with I ′
1(x0; y) ≤ 0, I ′

2(x0; y) ≤ 0 and

J ′′(x0; y) =
∫ a

0
{y2(t) − ẏ2(t)}dt

=
∫ a/2

0
(t2 − 1)dt +

∫ a

a/2
{(t − a)2 − 1}dt

= a3

3
− a < 0.

By Theorem 2.4, the admissible arc x0 with (x0, λ) an extremal, is not a solution to
the problem.

Both the theory of necessary conditions for problems in the calculus of variations
involving isoperimetric constraints and its applications to real problems have a long
history. Perhaps the best known problems of this type include that of determining
a closed curve of given length which encloses maximum area, and the shape of a
flexible rope of uniform density that hangs at rest with its endpoints fixed. Quoting
[22], “the study of the [calculus of variations] problem (and its numerous variants) is
over three centuries old, yet its interest has not waned. Its applications are numerous in
geometry and differential equations, in mechanics and physics, and in areas as diverse
as engineering, medicine, economics, and renewable resources. It is not surprising,
then, that modeling and numerical analysis play a large role in the subject today.”

This paper, however, focuses on one of the crucial mathematical issues: second-
order necessary conditions for optimality. For the fundamental aspect of applications
to real problems, we refer the reader to [22] for problems in elasticity and acoustics,
[23–25] in economics and management, [26,27] in physics and engineering, [28] in
biology, and [29] in medicine (seeking, for example, the optimal dose to inject to a
patient during a therapy).
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5 Conclusions

This paper shows how the classical theory of second-order necessary conditions for the
isoperimetric problem of Lagrange in the calculus of variations, involving inequality
and equality constraints, can be substantially improved. The new assumption, under
which the conditions are obtained, deals with the notion of normality relative to a
set of constraints which takes into account the sign of the corresponding Lagrange
multipliers, instead of the usual set defined only by equality constraints for active
indices. Theproof provided is basedon the relationbetween the three notions appearing
in the title of the paper. It is shown that normality is equivalent to properness which, in
turn, implies regularity. It is of interest to see whether these notions, and the conditions
obtained, can be generalized to isoperimetric problems in optimal control.
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