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Abstract This paper studies a bilevel polynomial program involving box data uncer-
tainties in both its linear constraint set and its lower-level optimization problem. We
show that the robust global optimal value of the uncertain bilevel polynomial program
is the limit of a sequence of values of Lasserre-type hierarchy of semidefinite lin-
ear programming relaxations. This is done by first transforming the uncertain bilevel
polynomial program into a single-level non-convex polynomial program using a dual
characterization of the solution of the lower-level program and then employing the
powerful Putinar’s Positivstellensatz of semi-algebraic geometry.We provide a numer-
ical example to show how the robust global optimal value of the uncertain bilevel
polynomial program can be calculated by solving a semidefinite programming prob-
lem using the MATLAB toolbox YALMIP.
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Global polynomial optimization · Semidefinite program
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1 Introduction

The bilevel optimization problems arise when two independent decision makers,
ordered within a hierarchical structure, try to optimize their objectives over a jointly

B T. D. Chuong
chuongthaidoan@yahoo.com

V. Jeyakumar
v.jeyakumar@unsw.edu.au

1 School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052,
Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-017-1069-4&domain=pdf


684 J Optim Theory Appl (2017) 173:683–703

dependent set. They appear as hierarchical decision-making problems, such as risk
management and economic planning problems, in engineering, governments, and
industries [1–5]. The commonly used bilevel optimization techniques (see [3,6,7]
and the references therein) assume precise information (i.e., accurate values for the
input quantities or system parameters), despite the reality that such precise knowledge
is rarely available in hierarchical decision-making problems. The data of these prob-
lems are often uncertain (i.e., they are not known exactly at the time of the decision)
due to estimation errors, prediction errors, or lack of information. Consequently, the
development of optimization methodologies, which are capable of generating robust
optimal solutions that are immunized against data uncertainty, such as the deterministic
robust optimization techniques, has becomemore important than ever in mathematics,
commerce, and engineering [8–12].

The bilevel program is a class of NP-hard optimization problems even in the case,
where all the functions are linear and are free of data uncertainty [13]. A general
approach for studying bilevel optimization problems is to transform them into single-
level optimization problems [2,3,6]. The resulting single-level optimization problems
are generally non-convex constrained optimization problems. It is often difficult to find
global optimal solutions of non-convex optimization problems. However, Putinar’s
Positivstellensatz [14] together with Lasserre-type semidefinite relaxations allows us
to characterize global optimal solutions and find the global optimal value of a non-
convex optimization problem involving polynomials. The reader is referred to [15–20]
for related recent work on single-level convex and non-convex polynomial optimiza-
tion in the literature.

In this paper, we study a bilevel polynomial program that finds robust global optimal
values under box data uncertainties. The main purpose of this paper is to show how
the robust global optimal value of a bilevel polynomial program in the face of uncer-
tain linear constraints can be calculated by solving a sequence of semidefinite linear
programming relaxations. More concretely, under the coercivity of the objective poly-
nomial, we prove that the values of Lasserre-type semidefinite relaxations converge
to the robust global optimal value of the uncertain bilevel polynomial program.

This is done by first transforming the uncertain bilevel polynomial program into
a single-level non-convex polynomial program using a dual characterization of the
solution of the lower-level program and then employing Putinar’s Positivstellensatz
[14]. The dual characterization is achieved by using a generalized Farkas lemma with
a numerical certificate for semi-infinite linear inequality systems [21], whose dual
statement can be verified by solving a semidefinite linear program. Related recent
work on global bilevel polynomial optimization in the absence of data uncertainty can
be found in [17,22].

We would also like to point out that some other approaches to treating uncer-
tain bilevel optimization problems are available in the literature. For instance, the
authors in [23] used a stochastic approach to obtain robust solutions to hierarchical
problems, where the lower-level program is described by equilibrium constraints and
the uncertain data include random inputs as well as discretely distributed probability
distributions. A fuzzy approach was employed in [24] for studying a linear bilevel opti-
mization problem, in which the concept of the solution for both levels is understood
in the sense of fuzzy. An approximation/perturbation approach was used in [25] for
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treating a two-level optimization problem by approximating it by a sequence of math-
ematical programs. However, to the best of our knowledge, a mathematical theory and
the associated methods for uncertain bilevel optimization problems that employ the
deterministic robust optimization approach [8–10,12] do not appear to be available in
the literature.

The outline of the paper is as follows. Section 2 presents preliminaries and aux-
iliary results, where we can find dual characterizations for robust solutions of the
lower-level program and for robust feasible points of the uncertain bilevel polyno-
mial problem. The main result is given in Sect. 3, where we prove the convergence of
robust global optimal values via semidefinite linear programming relaxations for the
uncertain bilevel polynomial problem. Section 4 provides conclusions and discusses
further research perspectives.

2 Preliminaries and Auxiliary Results

Let us start this section by fixing some notation and definitions. The notation R
n

signifies the Euclidean space, whose norm is denoted by ‖ · ‖ for each n ∈ N :=
{1, 2, . . .}. The inner product in R

n is defined by 〈x, y〉 := x�y for all x, y ∈ R
n .

As usual, coneΩ := {∑k
i=1 αi xi : xi ∈ Ω,αi ∈ R+, i = 1, . . . , k, k ∈ N} stands

for the convex conical hull of Ω , where R+ := [0,+∞[⊂ R. The notation convΩ

denotes the convex hull ofΩ ⊂ R
n .A symmetric (n×n)matrix A is said to be positive

semidefinite, denoted by A 	 0, whenever x�Ax ≥ 0 for all x ∈ R
n . A real-valued

function f : Rn → R is coercive on R
n if lim inf||x ||→∞ f (x) = +∞. In particular, it is

shown in [19, Lemma 3.1] that a convex polynomial f is coercive onRn if there exists
x̄ ∈ R

n such that the Hessian ∇2 f (x̄) is positive definite, i.e., x�∇2 f (x̄)x > 0 for
all x ∈ R

n \ {0}. Some numerically checkable sufficient conditions for the coercivity
of non-convex polynomials have also been given in [15].

Denote by R[x] the ring of polynomials in x with real coefficients. One says that
(cf. [20]) f ∈ R[x] is sum-of-squares if there exist polynomials f j ∈ R[x], j =
1, . . . , r, such that f = ∑r

j=1 f 2j . The set of all sum-of-squares polynomials

in x is denoted by �2[x]. Given polynomials {g1, . . . , gr } ⊂ R[x], the notation
M(g1, . . . , gr ) stands for the set of polynomials generated by {g1, . . . , gr }, i.e.,

M(g1, . . . , gr ) := {σ0 + σ1g1 + . . . + σr gr : σ j ∈ �2[x], j = 0, 1, . . . , r}. (1)

If there exists h ∈ M(g1, . . . , gr ) such that the set {x ∈ R
n : h(x) ≥ 0} is compact,

then M(g1, . . . , gr ) is called to be archimedean (cf. [26]).
The following lemma of Putinar (cf. [14,20]), which provides a positivity represen-

tation for a polynomial over a systemof polynomial inequalities under the archimedean
property, can be viewed as a polynomial analog of Farkas’s lemma.

Lemma 2.1 (Putinar’s Positivstellensatz [14]) Let f, g j ∈ R[x], j = 1, . . . , r. Sup-
pose that M(g1, . . . , gr ) is archimedean. If f (x) > 0 for all x ∈ {y ∈ R

n :
g j (y) ≥ 0, j = 1, . . . , r}, then f ∈ M(g1, . . . , gr ), i.e., there exist σ j ∈ �2[x],
j = 0, 1, . . . , r, such that f = σ0 + ∑r

j=1 σ j g j .
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Consider an uncertain linear inequality system,

x ∈ R
n, â�

j x ≤ b̂ j , j = 1, . . . , q, (2)

where (â j , b̂ j ), j = 1, . . . , q are uncertain and they belong to the uncertainty sets
Û j , j = 1, . . . , q. The uncertainty sets are given by

Û j :=
{ (

a0j +
s∑

i=1

uij a
i
j , b

0
j +

s∑

i=1

uij b
i
j

)

: u j :=
(
u1j , . . . , u

s
j

)
∈Uj

}

, j =1, . . . , q,

where aij ∈ R
n, bij ∈ R, i = 0, 1, . . . , s, j = 1, . . . , q are fixed andUj , j = 1, . . . , q

are spectrahedra (see, e.g., [27]) described by

Uj :=
{

u j :=
(
u1j , . . . , u

s
j

)
∈ R

s : A0
j +

s∑

i=1

uij A
i
j 	 0

}

, j = 1, . . . , q (3)

with Ai
j , i = 0, 1, . . . , s, j = 1, . . . , q symmetric (p j × p j ) matrices.

Now, consider the affine mappings a j : Rs → R
n and b j : Rs → R, j = 1, . . . , q

given, respectively, by

a j (u j ) := a0j +
s∑

i=1

uij a
i
j , b j (u j ) := b0j +

s∑

i=1

uij b
i
j for u j :=

(
u1j , . . . , u

s
j

)
∈ R

s

(4)

with aij ∈ R
n, bij ∈ R, i = 0, 1, . . . , s, j = 1, . . . , q fixed as above. Then, the robust

counterpart of the uncertain system (2),

x ∈ R
n, â�

j x ≤ b̂ j , ∀(â j , b̂ j ) ∈ Û j , j = 1, . . . , q,

can be expressed equivalently as

x ∈ R
n, a j (u j )

�x ≤ b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q. (5)

The generalized non-homogeneous Farkas lemma, which provides a numerically
tractable certificate for nonnegativity of an affine function over the uncertain linear
inequality system (5), plays an important role in characterizing robust solutions of the
lower-level optimization problem.

Lemma 2.2 (See [21, Theorem 2.1]) Let C := cone
{(
a j (u j ), b j (u j )

) : u j ∈
Uj , j = 1, . . . , q

}
be closed, where U j , j = 1, . . . , p, in (3) are assumed to be

bounded, and let (℘, r) ∈ R
n ×R. Assume that the robust linear inequality system (5)

has a solution, i.e.,

X :=
{
x ∈ R

n : a j (u j )
�x ≤ b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q

}
�= ∅.
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Then, the following statements are equivalent:

(i) x ∈ R
n, a j (u j )

�x ≤ b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q �⇒ ℘�x − r ≥ 0;
(ii) ∃λ0j ≥ 0, λij ∈ R, j = 1, . . . , q, i = 1, . . . , s, such that

℘ +
q∑

j=1

(

λ0j a
0
j +

s∑

i=1

λij a
i
j

)

= 0, −r −
q∑

j=1

(

λ0j b
0
j +

s∑

i=1

λij b
i
j

)

≥ 0

and λ0j A
0
j +

s∑

i=1

λij A
i
j 	 0, j = 1, . . . , q.

Bilevel Polynomial Problems. Let f : R
m × R

n → R be a real polynomial. We
consider an uncertain bilevel polynomial optimization problemwith linear constraints
as

min
(x,y)∈Rm×Rn

{
f (x, y) : y ∈ Y (x, â1, b̂1, . . . , âq , b̂q), ã

�
i x+b̃�

i y ≤ c̃i , i = 1, . . . , l
}
,

(P)

where (ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l and (â j , b̂ j ) ∈ Û j , j = 1, . . . , q are uncertain
and

Y
(
x, â1, b̂1, . . . , âq , b̂q

)

:= argminz∈Rn

{

c�
0 x + d�

0 z : c�
j x + â�

j z ≤ b̂ j , j = 1, . . . , q

}

denotes the optimal solution set of the uncertain lower-level optimization problem

min
z∈Rn

{

c�
0 x + d�

0 z : c�
j x + â�

j z ≤ b̂ j , j = 1, . . . , q

}

. (6)

In the above data, c0 ∈ R
m, d0 ∈ R

n, c j ∈ R
m, j = 1, . . . , q, are fixed, the uncer-

tainty sets Ũi , i = 1, . . . , l, are boxes given by

Ũi := [ai , ai ] × [bi , bi ] × [ci , ci ], i = 1, . . . , l

with ai := (
a1i , . . . , a

m
i

)
, ai := (

a1i , . . . , a
m
i

) ∈ R
m, aki ≤ aki , k = 1, . . . ,m, bi :=

(
b1i , . . . , b

n
i

)
, bi :=

(
b
1
i , . . . , b

n
i

)
∈ R

n, bki ≤ b
k
i , k = 1, . . . , n, and ci , ci ∈ R, ci ≤

ci for i = 1, . . . , l, while the uncertainty sets Û j , j = 1, . . . , q, are given by

Û j :=
{(

a0j +
s∑

i=1

uij a
i
j , b

0
j +

s∑

i=1

uij b
i
j

)

: u j :=
(
u1j , . . . , u

s
j

)
∈ Uj

}

, j=1, . . . , q
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with Uj := [−γ1, γ1] × · · · × [−γs, γs], γi > 0, i = 1, . . . , s and aij ∈ R
n, bij ∈

R, i = 0, 1, . . . , s, j = 1, . . . , q, fixed.
By considering the affine mappings a j : Rs → R

n, b j : Rs → R, j = 1, . . . , q,

given as in (4), the uncertain lower-level optimization problem (6) can be formulated
equivalently as

min
z∈Rn

{

c�
0 x + d�

0 z : c�
j x + a j (u j )

�z ≤ b j (u j ), j = 1, . . . , q

}

, (LP)

where u j ∈ Uj , j = 1, . . . , q. In the formulation of (LP), the boxesUj , j = 1, . . . , q,

play the role of uncertainty sets.
Now, the robust counterpart of the problem (P) is defined by

min
(x,y)∈Rm×Rn

{

f (x, y) : y ∈ Y (x), ã�
i x + b̃�

i y ≤ c̃i ,∀(ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l

}

,

(RP)

where Y (x) := argminz∈Rn

{
c�
0 x + d�

0 z : c�
j x + a j (u j )

�z ≤ b j (u j ), ∀u j ∈
Uj , j = 1, . . . , q

}
. Note that in the robust counterpart (RP), the uncertain constraint

inequalities of both the lower-level and upper-level problems are enforced for every
possible value of the data within the uncertainty sets Uj , j = 1, . . . , q, and Ũi , i =
1, . . . , l.

Given x ∈ R
m , we first focus on the robust counterpart of the lower-level optimiza-

tion problem (LP) given by

min
z∈Rn

{

c�
0 x + d�

0 z : c�
j x + a j (u j )

�z ≤ b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q

}

.

(RLP)

As usual, a point y ∈ R
n is called to be a robust solution of the lower-level optimization

problem (LP) (see, e.g., [8]) if it is an optimal solution of the problem (RLP), i.e.,
y ∈ Y (x).

The next lemma establishes a characterization for robust solutions of the lower-level
optimization problem (LP). In what follows, for the sake of simplicity, we denote by
Vs the boxes Uj , j = 1, . . . , q, and use

{
ǔk := (

ǔ1k, . . . , ǔ
s
k

) ∈ R
s | k = 1, . . . , 2s

}

to indicate the set of extreme points of the box Vs .

Lemma 2.3 (Tractable characterization for robust solutions of (LP)) Let x ∈ R
m.

Then, y ∈ Y (x) if and only if
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(I)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ R
n, c�

j x +
(
a0j + ∑s

i=1 ǔ
i
ka

i
j

)�
y

−
(
b0j + ∑s

i=1 ǔ
i
kb

i
j

)
≤ 0, k = 1, . . . , 2s, j = 1, . . . , q,

∃μ0 > 0, μ j ≥ 0, μi
j ∈ R, j = 1, . . . , q, i = 1, . . . , s

such that
q∑

j=0
(μ j )

2 +
q∑

j=1

s∑

i=1

(
μi

j

)2 = 1,

μ0d0 +
q∑

j=1

(
μ j a0j + ∑s

i=1 μi
j a

i
j

)
= 0,

−μ0d�
0 y −

q∑

j=1

(
μ j b0j − μ j c�

j x + ∑s
i=1 μi

j b
i
j

)
≥ 0

and (μ jγi )
2 −

(
μi

j

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q.

Proof For each j ∈ {1, . . . , q}, put

A0
j :=

(
E0 0
0 E0

)

, Ai
j :=

(
Ei 0
0 −Ei

)

, i = 1, . . . , s, (7)

where E0 is the (s × s) diagonal matrix with the diagonal entries, say γi > 0, i =
1, . . . , s, and Ei is the (s × s) diagonal matrix with one in the (i, i)th entry and zeros
elsewhere. Then, it follows that

{

u j :=
(
u1j , . . . , u

s
j

)
∈ R

s : A0
j +

s∑

i=1

uij A
i
j 	 0

}

=
{

u j :=
(
u1j , . . . , u

s
j

)
∈ R

s : γi + uij ≥ 0, γi − uij ≥ 0, i = 1, . . . , s

}

=
{

u j :=
(
u1j , . . . , u

s
j

)
∈ R

s : |uij | ≤ γi , i = 1, . . . , s

}

= Vs, j = 1, . . . , q,

which shows how the box Vs can be expressed in terms of spectrahedra in (3).
Since Uj , j = 1, . . . , q, are boxes, the cone C(x) := cone

{(
a j (u j ), b j (u j ) −

c�
j x

) : u j ∈ Uj , j = 1, . . . , q
}
is closed (see, e.g., [21, Proposition 2.2(i)]). Invoking

Lemma 2.2, we can verify that y ∈ Y (x) if and only if the following conditions hold:

y ∈ R
n, c�

j x + a j (u j )
�y ≤ b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q and (8)

∃λ0j ≥ 0, λij ∈ R, j = 1, . . . , q, i = 1, . . . , s such that

d0 +
q∑

j=1

(

λ0j a
0
j +

s∑

i=1

λij a
i
j

)

= 0, −d�
0 y −

q∑

j=1

(

λ0j b
0
j − λ0j c

�
j x +

s∑

i=1

λij b
i
j

)

≥ 0

and λ0j A
0
j +

s∑

i=1

λij A
i
j 	 0, j = 1, . . . , q. (9)
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It is easy to see that (8) amounts to the following one

y ∈ R
n,maxu j∈Uj

{ 〈(
a1�j y − b1j , . . . , a

s�
j y − bsj

)
, u j

〉
+ a0�j y + c�

j x − b0j

}

≤ 0,

j = 1, . . . , q,

which in turn is equivalent to the assertion

y ∈ R
n, ǔ�

k

(
a1�j y − b1j , . . . , a

s�
j y − bsj

)
+ a0�j y + c�

j x − b0j ≤ 0,

k = 1, . . . , 2s, j = 1, . . . , q,

where
{
ǔk := (

ǔ1k, . . . , ǔ
s
k

) ∈ R
s : k = 1, . . . , 2s

}
stands for the set of extreme

points of the box Vs as above. Therefore, (8) becomes

y ∈ R
n, c�

j x +
(

a0j +
s∑

i=1

ǔika
i
j

)�
y

−
(

b0j +
s∑

i=1

ǔikb
i
j

)

≤ 0, k = 1, . . . , 2s, j = 1, . . . , q.

In addition, it can be checked that, under our setting, (9) is equivalent to

(
λ0jγi

)2 −
(
λij

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q. (10)

So, we come to the assertion that y ∈ Y (x) if and only if

(II)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ R
n, c�

j x +
(
a0j + ∑s

i=1 ǔ
i
ka

i
j

)�
y −

(
b0j + ∑s

i=1 ǔ
i
kb

i
j

)

≤ 0, k = 1, . . . , 2s, j = 1, . . . , q,

∃λ0j ≥ 0, λij ∈ R, j = 1, . . . , q, i = 1, . . . , s such that

d0 +
q∑

j=1

(
λ0j a

0
j + ∑s

i=1 λij a
i
j

)
= 0,

−d�
0 y −

q∑

j=1

(
λ0j b

0
j − λ0j c

�
j x + ∑s

i=1 λij b
i
j

)
≥ 0

and
(
λ0jγi

)2 −
(
λij

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q.

Tocomplete the proof, it remains to show that (II) and (I) are equivalent to eachother.
To this end, suppose that (II) holds. By setting μ0 := 1√

1+∑q
j=1

(
λ0j

)2+∑q
j=1

∑s
i=1

(
λij

)2

and μ j := λ0j√

1+∑q
j=1

(
λ0j

)2+∑q
j=1

∑s
i=1

(
λij

)2
, μi

j := λij√

1+∑q
j=1

(
λ0j

)2+∑q
j=1

∑s
i=1

(
λij

)2
,
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j = 1, . . . , q, i = 1, . . . , s, we come to (I). Conversely, assume that (I) holds. Letting

λ0j := μ j
μ0

, λij := μi
j

μ0
, j = 1, . . . , q, i = 1, . . . , s, we arrive at (II). ��

To proceed further, we should define concepts of robust feasible/solutions for the
uncertain bilevel polynomial optimization problem (P).

Definition 2.1 (i) We say that (x̄, ȳ) ∈ R
m × R

n is a robust feasible point of prob-
lem (P) if it satisfies

ȳ ∈ Y (x̄), ã�
i x̄ + b̃�

i ȳ ≤ c̃i , ∀(ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l,

or equivalently, it is a feasible point of its robust counterpart (RP).
(ii) Let (x̄, ȳ) ∈ R

m × R
n be a robust feasible point of problem (P). We say that

(x̄, ȳ) is a global robust solution of problem (P) if f (x̄, ȳ) ≤ f (x, y) for every
robust feasible point (x, y) of problem (P), or equivalently, it is a global solution
of its robust counterpart (RP).

(iii) We say that the problem (P) satisfies the lower-level Slater condition (LSC) if
for each x ∈ R

m there exists z ∈ R
n such that

c�
j x + a j (u j )

�z < b j (u j ), ∀u j ∈ Uj , j = 1, . . . , q. (11)

The forthcoming lemma supplies a characterization for robust feasible points of
the uncertain bilevel polynomial optimization problem (P). Hereafter, we use notation

as before, and in addition, we denote by

{ (
ǎki , b̌

k
i , č

k
i

)
∈ R

m × R
n × R : k =

1, . . . , 2m+n+1
}

the set of extreme points of the box Ũi for i = 1, . . . , l, and let

d0 := (
d10 , . . . , d

n
0

)
, aij :=

(
ai1j , . . . , ainj

)
∈ R

n, i = 0, 1, . . . , s, j = 1, . . . , q.

Lemma 2.4 (Robust feasibility for (P))

(i) Let (x, y) ∈ R
m × R

n. Then, (x, y) is a robust feasible point of problem (P) if
and only if there exists μ := (μ0, μ1, . . . , μq , μ

1
1, . . . , μ

1
q , . . . , μ

s
1, . . . , μ

s
q) ∈

R
q(s+1)+1 such that

(III)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi (x, y, μ) ≥ 0, i = 1, . . . , l2m+n+1 + q2s ,

gi (x, y, μ) > 0, i = l2m+n+1 + q2s + 1,

gi (x, y, μ) ≥ 0, i = l2m+n+1 + q2s + 2, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1,
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where L := l2m+n+1 + q(2s + s + 1) + 2 and

gi (x, y, μ) := −
(
ǎi−(k−1)2m+n+1

k

)�
x −

(
b̌i−(k−1)2m+n+1

k

)�
y + či−(k−1)2m+n+1

k for

i = (k − 1)2m+n+1 + 1, . . . , k2m+n+1 with k = 1, . . . , l,

gi (x, y, μ) := −c�
k x −

⎛

⎝a0k +
s∑

j=1

ǔ j
i−(k−1)2s−l2m+n+1a

j
k

⎞

⎠

�
y + b0k

+
s∑

j=1

ǔ j
i−(k−1)2s−l2m+n+1b

j
k for

i = l2m+n+1 + (k − 1)2s + 1, . . . , l2m+n+1 + k2s with k = 1, . . . , q,

gi (x, y, μ) := μ0 for i = l2m+n+1 + q2s + 1,

gi (x, y, μ) := μi−l2m+n+1−q2s−1 for i = l2m+n+1

+ q2s + 2, . . . , l2m+n+1 + q2s + q + 1,

gi (x, y, μ) := −μ0d
�
0 y −

q∑

k=1

⎛

⎝μkb
0
k − μkc

�
k x +

s∑

j=1

μ
j
k b

j
k

⎞

⎠ for

i = l2m+n+1 + q2s + q + 2,

gi (x, y, μ) := (
μkγi−(k−1)s−(l2m+n+1+q2s+q+2)

)2 −
(
μ
i−(k−1)s−(l2m+n+1+q2s+q+2)
k

)2
for

i = (l2m+n+1 + q2s + q + 2)

+ (k − 1)s + 1, . . . , (l2m+n+1 + q2s + q + 2) + ks

with k = 1, . . . , q,

and

h j (x, y, μ) :=μ0d
j
0 +

q∑

k=1

(

μka
0 j
k +

s∑

i=1

μi
ka

i j
k

)

for j = 1, . . . , n,

h j (x, y, μ) :=1 −
q∑

k=0

(μk)
2 −

q∑

k=1

s∑

i=1

(
μi
k

)2
for j = n + 1.

(ii) Assume that the (LSC) in (11) is satisfied. Then, (III) is equivalent to

(IV)

{
gi (x, y, μ) ≥ 0, i = 1, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1
(12)

for each (x, y, μ) ∈ R
m × R

n × R
q(s+1)+1.

Proof (i) Let us first show that the set

{
(x, y) ∈ R

m × R
n : ã�

i x + b̃�
i y ≤ c̃i , ∀(ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l

}
(13)
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is equivalent to the following one

{
(x, y) ∈ R

m × R
n : ǎk�i x + b̌k�i y − čki ≤ 0, k = 1, . . . , 2m+n+1, i = 1, . . . , l

}
,

(14)

where
{(

ǎki , b̌
k
i , č

k
i

)
∈ R

m × R
n × R : k = 1, . . . , 2m+n+1

}
denotes the set of

extreme points of the box Ũi for i = 1, . . . , l as denoted above. Indeed, for each
(x, y) ∈ R

m × R
n , by letting X := (x, y,−1), we obtain that

max

{

ã�
i x + b̃�

i y − c̃i : (ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l

}

= max

{

ã�
i x + b̃�

i y − c̃i : (ãi , b̃i , c̃i ) ∈ conv

{ (
ǎki , b̌

k
i , č

k
i

)
, k = 1, . . . , 2m+n+1

}

, i = 1, . . . , l

}

= max

{

W�
i X : Wi ∈ conv

{ (
ǎki , b̌

k
i , č

k
i

)
, k = 1, . . . , 2m+n+1

}

, i = 1, . . . , l

}

= max

{

W̌ k�
i X : k = 1, . . . , 2m+n+1, i = 1, . . . , l

}

= max

{

ǎk�i x + b̌k�i y − čki : k = 1, . . . , 2m+n+1, i = 1, . . . , l

}

,

where Wi := (ãi , b̃i , c̃i ) and W̌ k
i :=

(
ǎki , b̌

k
i , č

k
i

)
, k = 1, . . . , 2m+n+1 for

i = 1, . . . , l. So, we conclude that (13) is equivalent to (14).
Now, let (x, y) be a robust feasible point of problem (P). It means that

y ∈ Y (x), ã�
i x + b̃�

i y ≤ c̃i , ∀(ãi , b̃i , c̃i ) ∈ Ũi , i = 1, . . . , l. (15)

Due to the equivalence between (13) and (14), (15) is nothing else, but the assertion
that

y ∈ Y (x), ǎk�i x + b̌k�i y − čki ≤ 0, k = 1, . . . , 2m+n+1, i = 1, . . . , l. (16)

Invoking Lemma 2.3, (16) can be equivalently

(V)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
m × R

n, ǎk�i x + b̌k�i y − čki ≤ 0, k = 1, . . . , 2m+n+1, i = 1, . . . , l,

c�
j x +

(
a0j + ∑s

i=1 ǔ
i
ka

i
j

)�
y −

(
b0j + ∑s

i=1 ǔ
i
kb

i
j

)
≤ 0, k = 1, . . . , 2s , j = 1, . . . , q,

∃μ0 > 0, μ j ≥ 0, μi
j ∈ R, j = 1, . . . , q, i = 1, . . . , s

such that
q∑

j=0
(μ j )

2 +
q∑

j=1

s∑

i=1

(
μi

j

)2 = 1,

μ0d0 +
q∑

j=1

(
μ j a0j + ∑s

i=1 μi
j a

i
j

)
= 0, −μ0d�

0 y −
q∑

j=1

(
μ j b0j − μ j c�

j x + ∑s
i=1 μi

j b
i
j

)
≥ 0

and (μ jγi )
2 −

(
μi

j

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q,

where

{

ǔk := (
ǔ1k, . . . , ǔ

s
k

) ∈ R
s | k = 1, . . . , 2s

}

stands for the set of extreme

points of the box Vs .
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Denote μ :=
(
μ0, μ1, . . . , μq , μ

1
1, . . . , μ

1
q , . . . , μ

s
1, . . . , μ

s
q

)
∈ R

q(s+1)+1,

gi (x, y, μ), i = 1, . . . , L and h j (x, y, μ), j = 1, . . . , n + 1 as stated in the
lemma. Then, we conclude by (V) that (x, y) is a robust feasible point of prob-
lem (P) if and only if there exists μ ∈ R

q(s+1)+1 such that

gi (x, y, μ) ≥ 0, i = 1, . . . , l2m+n+1 + q2s,

gi (x, y, μ) > 0, i = l2m+n+1 + q2s + 1,

gi (x, y, μ) ≥ 0, i = l2m+n+1 + q2s + 2, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1.

So, we have proved (i).
(ii) Let the (LSC) in (11) be satisfied, and consider any (x, y, μ) ∈ R

m × R
n ×

R
q(s+1)+1. If (x, y, μ) satisfies (III), then it obviously satisfies (IV).

Conversely, let (x, y, μ) be such that (IV) holds. It means that

(VI)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R
m × R

n,

μ :=
(
μ0, μ1, . . . , μq , μ

1
1, . . . , μ

1
q , . . . , μ

s
1, . . . , μ

s
q

)
∈ R

q(s+1)+1,

ǎk�i x + b̌k�i y − čki ≤ 0, k = 1, . . . , 2m+n+1, i = 1, . . . , l,

c�
j x +

(
a0j + ∑s

i=1 ǔ
i
ka

i
j

)�
y

−
(
b0j + ∑s

i=1 ǔ
i
kb

i
j

)
≤ 0, k = 1, . . . , 2s, j = 1, . . . , q,

μ0 ≥ 0, μ j ≥ 0, j = 1, . . . , q,
q∑

j=0
(μ j )

2 +
q∑

j=1

s∑

i=1

(
μi

j

)2 = 1,

μ0d0 +
q∑

j=1

(
μ j a0j + ∑s

i=1 μi
j a

i
j

)
= 0,

−μ0d�
0 y −

q∑

j=1

(
μ j b0j − μ j c�

j x + ∑s
i=1 μi

j b
i
j

)
≥ 0

and (μ jγi )
2 −

(
μi

j

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q.

We need to show that (x, y, μ) satisfies (III). It suffices to verify that μ0 �= 0.
Assume on the contrary that μ0 = 0. We get by (VI) that

q∑

j=1

(μ j )
2 +

q∑

j=1

s∑

i=1

(
μi

j

)2 = 1, (17)

q∑

j=1

(

μ j a
0
j +

s∑

i=1

μi
j a

i
j

)

= 0,
q∑

j=1

μ j c
�
j x −

q∑

j=1

μ j b
0
j −

q∑

j=1

s∑

i=1

μi
j b

i
j ≥ 0,

(18)

(μ jγi )
2 −

(
μi

j

)2 ≥ 0, i = 1, . . . , s, j = 1, . . . , q. (19)
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By (19), for each j ∈ {1, . . . , q}, μi
j = 0 for i = 1, . . . , s whenever μ j = 0, and

hence, we conclude from (17) that there exists j ∈ {1, . . . , q} such that μ j �= 0,

i.e.,
q∑

j=1
μ j �= 0. For each j ∈ {1, . . . , q}, let ū j := (ū1j , . . . , ū

s
j ) ∈ R

s with

ūij :=
⎧
⎨

⎩

0 if μ j = 0
μi

j
μ j

if μ j �= 0,
i = 1, . . . , s.

Then, |ūij | ≤ γi for i = 1, . . . , s, j = 1, . . . , q, and so, ū j ∈ Vs = Uj for all
j = 1, . . . , q. On the one hand, in view of the (LSC) in (11), we find z ∈ R

n such
that

c�
j x + a j (ū j )

�z < b j (ū j ), j = 1, . . . , q.

Since
q∑

j=1
μ j �= 0, it follows that

q∑

j=1

μ j c
�
j x +

q∑

j=1

μ j a j (ū j )
�z <

q∑

j=1

μ j b j (ū j ),

or equivalently,

q∑

j=1

μ j c
�
j x +

( q∑

j=1

μ j a
0
j +

q∑

j=1

s∑

i=1

μi
j a

i
j

)�
z −

q∑

j=1

μ j b
0
j −

q∑

j=1

s∑

i=1

μi
j b

i
j < 0.

(20)

On the other hand, we get by (18) that

q∑

j=1

μ j c
�
j x +

( q∑

j=1

μ j a
0
j +

q∑

j=1

s∑

i=1

μi
j a

i
j

)�
z −

q∑

j=1

μ j b
0
j −

q∑

j=1

s∑

i=1

μi
j b

i
j ≥ 0,

which contradicts (20). Therefore,we conclude thatμ0 > 0. It entails that (x, y, μ)

satisfies (III). The proof is complete.
��

3 Robust Bilevel Polynomial Problems via Semidefinite Programming
Relaxations

In this section, we present semidefinite programming relaxations for the uncertain
bilevel polynomial optimization problem (P) and show how the robust global optimal
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value of problem (P) can be found by solving a sequence of corresponding semidefinite
programming relaxation problems.
Sum-of-Squares Relaxation Problems. For each k ∈ N, we consider a relaxation
problem in terms of sum of squares for the uncertain bilevel polynomial optimization
problem (P) given by

sup
(t,σ0,σi ,ξ j ,ζ )

{
t : f −

L∑

i=1

σi gi −
n+1∑

j=1

ξ j h j − ζ(κ − f ) − t = σ0, (Dk)

t ∈ R, ζ, σ0, σi ∈ �2[x, y, μ], ξ j ∈ R[x, y, μ],
deg(σ0) ≤ k, deg(ζ f ) ≤ k, deg(σi gi ) ≤ k, deg(ξ j h j ) ≤ k,

i = 1, . . . , L , j = 1, . . . , n + 1
}
,

where gi , i = 1, . . . , L := l2m+n+1 + q(2s + s + 1) + 2, h j , j = 1, . . . , n + 1, are
defined as in the statement of Lemma 2.4 and κ ≥ f (x̄, ȳ) with (x̄, ȳ) being a robust
feasible point of problem (P).

It is worth mentioning here that for each fixed k ∈ N, the problem (Dk) can be
regarded as a sum of squares relaxation problem of the problem (P), and more inter-
estingly, it can be reformulated as a semidefinite linear programming problem [20].
We denote the robust optimal value of problem (P) and the optimal value of problem
(Dk), respectively, by val (P) and val(Dk).

In the next theorem, we show that, under some additional conditions, the uncertain
bilevel polynomial optimization problem (P) has a global robust solution and the
optimal values of the relaxation problem (Dk) converge to the robust global optimal
value of the problem (P) when the degree bound k goes to infinity.

Theorem 3.1 (Computing robust global optimal value by SDP) Let f be coercive
on R

m × R
n. Assume that the (LSC) in (11) is satisfied. Then, the uncertain bilevel

polynomial optimization problem (P) has a global robust solution (x0, y0) satisfying

val(Dk) ≤ val(P) = f (x0, y0) for all k ∈ N. (21)

Moreover, we have

lim
k→∞ val(Dk = val(P). (22)

Proof (Proving the existenceof global robust solutions of (P))Thanks toLemma2.4(i),
we assert that (x, y) ∈ R

m × R
n is a robust feasible point of problem (P) if and only

if there exists μ ∈ R
q(s+1)+1 such that

gi (x, y, μ) ≥ 0, i = 1, . . . , l2m+n+1 + q2s,

gi (x, y, μ) > 0, i = l2m+n+1 + q2s + 1,

gi (x, y, μ) ≥ 0, i = l2m+n+1 + q2s + 2, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1, (23)
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where gi , i = 1, . . . , L , h j , j = 1, . . . , n + 1 are defined as in the statement of
Lemma 2.4.

Let k ∈ N, and let (x̄, ȳ) ∈ R
m × R

n be a robust feasible point of problem (P)
as in the construction of problem (Dk). Then, one has κ ≥ f (x̄, ȳ), and there exists
μ̄ ∈ R

q(s+1)+1 such that (23) holds at (x̄, ȳ, μ̄). Putting ĥ := κ − f +hn+1, we assert
that

H := {(x, y, μ) ∈ R
m × R

n × R
q(s+1)+1 : ĥ(x, y, μ) ≥ 0} �= ∅.

Indeed, as (x̄, ȳ, μ̄) satisfies (23), it entails that hn+1(x̄, ȳ, μ̄) = 0. Then,
ĥ(x̄, ȳ, μ̄) = κ − f (x̄, ȳ) ≥ 0, and so, (x̄, ȳ, μ̄) ∈ H .

For each (x, y, μ) ∈ H , we have ĥ(x, y, μ) ≥ 0. It entails that

f (x, y) ≤ 1 + κ,

q∑

k=0

(μk)
2 +

q∑

k=1

s∑

i=1

(μi
k)

2 ≤ 1 + κ − inf
(x,y)∈Rm×Rn

f (x, y).

(24)

Since f is coercive on R
m × R

n, it follows that inf(x,y)∈Rm×Rn f (x, y) > −∞, and
hence, (24) guarantees that H is a compact set. Setting

K := {(x, y, μ) ∈ R
m × R

n × R
q(s+1)+1 :

κ − f (x, y) ≥ 0, gi (x, y, μ) ≥ 0, i = 1, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1}, (25)

we easily verify that (x̄, ȳ, μ̄) ∈ K , and hence, K �= ∅. Moreover, it can be checked
that K ⊂ H , and so, K is compact as well.

Now, consider the function f̃ (x, y) := f (x, y) − f (x̄, ȳ) for (x, y) ∈ R
m ×

R
n . Since f̃ is a polynomial and hence continuous, we conclude that there exists

(x0, y0, μ0) ∈ K such that

f̃ (x0, y0) ≤ f̃ (x, y) for all (x, y) ∈ R
m × R

n satisfying (x, y, μ) ∈ K , (26)

where μ ∈ R
q(s+1)+1.

We claim that (x0, y0) is a global robust solution of problem (P). Indeed, by
(x0, y0, μ0) ∈ K , it follows that

gi (x0, y0, μ0) ≥ 0, i = 1, . . . , L ,

h j (x0, y0, μ0) ≥ 0,−h j (x0, y0, μ0) ≥ 0, j = 1, . . . , n + 1, (27)

and that

κ ≥ f (x0, y0). (28)

Under the fulfillment of the (LSC) in (11), invoking Lemma 2.4(ii), we assert by (27)
that (23) holds at (x0, y0, μ0) and so, (x0, y0) is a robust feasible point of problem (P).
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Let (x, y) ∈ R
m × R

n be a robust feasible point of problem (P). Then, there is
μ ∈ R

q(s+1)+1 such that (23) holds. If in addition κ− f (x, y) ≥ 0, then (x, y, μ) ∈ K ,
and so, we get by (26) that f (x0, y0) ≤ f (x, y). Otherwise, κ − f (x, y) < 0,
then f (x, y) > κ ≥ f (x0, y0), where the last inequality holds by virtue of (28).
Consequently, our claim holds.

Furthermore, it holds that

val(P) = f (x0, y0). (29)

[Verifying (21)] If the feasible set of problem (Dk) is empty, then val (Dk = −∞,
and in this case, (21) holds trivially. Now, let (t, σ0, σi , ξ j , ζ ), i = 1, . . . , L , j =
1, . . . , n + 1 be a feasible point of problem (Dk). It means that there exist t ∈
R, ζ, σ0, σi ∈ �2[x, y, μ], ξ j ∈ R[x, y, μ], deg(σ0) ≤ k, deg(ζ f ) ≤ k, deg(σi gi ) ≤
k, deg(ξ j h j ) ≤ k, i = 1, . . . , L , j = 1, . . . , n+1 such that f −

L∑

i=1
σi gi −

n+1∑

j=1
ξ j h j −

ζ(κ − f ) − t = σ0 or equivalently,

(1 + ζ ) f = σ0 +
L∑

i=1

σi gi +
n+1∑

j=1

ξ j h j + t + ζ f (x0, y0) + ζ
(
κ − f (x0, y0)

)
, (30)

where (x0, y0) is the global robust solution of problem (P) as shown above.
Recall here that (28) and (23) hold at (x0, y0, μ0). Due to the nonnegativity of
sum-of-squares polynomials, estimating (30) at (x0, y0, μ0), we obtain that

(
1 +

ζ(x0, y0, μ0)
)
f (x0, y0) ≥ t+ζ(x0, y0, μ0) f (x0, y0), or equivalently, f (x0, y0) ≥ t.

It guarantees that val (Dk) ≤ f (x0, y0), which together with (29) proves that (21) is
valid.
[Verifying (22)] Let us consider a set of polynomials M(g1, . . . , gL , h1, . . .,
hn+1,−h1, . . . ,−hn+1,κ − f ) as defined in (1). It is obvious by definition that

ĥ := (κ − f ) + hn+1 ∈ M(g1, . . . , gL , h1, . . . , hn+1,−h1, . . . ,−hn+1, κ − f ).

As shown above, the set H := {(x, y, μ) ∈ R
m × R

n × R
q(s+1)+1 : ĥ(x, y, μ) ≥

0} is compact. Hence, M(g1, . . . , gL , h1, . . . , hn+1,−h1, . . . ,−hn+1, κ − f ) is
archimedean.

Let ε > 0. We pay attention to the set K given in (25). For any (x, y, μ) ∈ K , it
follows that

gi (x, y, μ) ≥ 0, i = 1, . . . , L ,

h j (x, y, μ) ≥ 0,−h j (x, y, μ) ≥ 0, j = 1, . . . , n + 1,

which is nothing else but (23) under the fulfillment of the (LSC) in (11), and so, (x, y)
is a robust feasible point of problem (P) by virtue of Lemma 2.4. This fact gives us that
f (x, y) ≥ f (x0, y0) inasmuch as (x0, y0) is a global robust solution of problem (P)
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as shown above. Consequently, it guarantees that

f̂ (x, y, μ) := f (x, y) − f (x0, y0) + ε > 0 for all (x, y, μ) ∈ K .

[Applying Putinar’s Positivstellensatz] Now, applying Lemma 2.1, we find sum-of-
squares polynomials σi , i = 0, 1, . . . , L , ξ1j , ξ

2
j , j = 1, . . . , n + 1, ζ ∈ �2[x, y, μ]

such that

f̂ = σ0 +
L∑

i=1

σi gi +
n+1∑

j=1

ξ1j h j +
n+1∑

j=1

ξ2j (−h j ) + ζ(κ − f ). (31)

Let ξ j ∈ R[x, y, μ], j = 1, . . . , n + 1 be real polynomials defined by ξ j := ξ1j −
ξ2j , j = 1, . . . , n + 1. Then, we deduce from (31) that f −

L∑

i=1
σi gi −

n+1∑

j=1
ξ j h j −

ζ(κ − f ) − f (x0, y0) + ε = σ0, or equivalently,

f −
L∑

i=1

σi gi −
n+1∑

j=1

ξ j h j − ζ(κ − f ) − t0 = σ0,

with t0 := f (x0, y0) − ε ∈ R. So, there exists kε ∈ N such that deg(σ0) ≤
kε, deg(ζ f ) ≤ kε, deg(σi gi ) ≤ kε, deg(ξ j h j ) ≤ kε, i = 1, . . . , L , j = 1, . . . , n + 1,
and that

val(Dkε ) ≥ f (x0, y0) − ε.

Since ε > 0 was arbitrarily taken, we conclude that lim inf
k→∞ val (Dk)≥ f (x0, y0). This

together with (21) establishes (22), which ends the proof of the theorem. ��
Remark 3.1 It is worth noticing that if f is a convex polynomial and there exists
(x̄, ȳ) ∈ R

m × R
n such that its Hessian ∇2 f (x̄, ȳ) is positive definite, then f is

coercive on R
m × R

n (see, e.g., [19, Lemma 3.1]) and hence, the above theorem can
be obviously applied for this convex setting under the fulfillment of the (LSC) in (11).

The next example illustrates that if the (LSC) in (11) is violated, then the conclusion
of Theorem 3.1 may go awry. Below, we consider the case of l := 1 and q := 1 for
the purpose of simplicity.

Example 3.1 (The importance of the Slater condition)Consider an uncertain bilevel
polynomial optimization problem of the form:

min
(x,y)∈R2

{
f (x, y) := x2 + y2 + 2y − 2 : y ∈ Y (x, u)

}
, (EP1)

where u ∈ U := [−1, 1] ⊂ R and Y (x, u) := argminz∈R{x − z : (1 + u)z ≤ 0}.
The problem (EP1) can be expressed in terms of problem (P), where Ũ := [a, a] ×
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[b, b] × [c, c] with a := a := b := b := c := c := 0 ∈ R, and c0 := 1 ∈ R, d0 :=
−1 ∈ R, c := 0 ∈ R, the affine mappings a : R → R and b : R → R are given by
a(u) := a0 + ua1 and b(u) := b0 + ub1 with a0 := a1 := 1 ∈ R, b0 := b1 := 0 ∈ R

for u ∈ R.
In this setting, it is easy to see that Y (x) = {0} for any x ∈ R, and therefore, we

see that (x0, y0) := (0, 0) is a global robust solution of problem (EP1). Obviously, f
is coercive on R

2. Let μ := (μ0, μ1, μ
1
1) ∈ R

3, and denote the functions gi (x, y, μ)

and h j (x, y, μ) as in the statement of Lemma 2.4. For the sake of clear representation,
we first remove the null functions and then relabel them as

g1(x, y, μ) = −2y, g2(x, y, μ) = μ0, g3(x, y, μ) = μ1,

g4(x, y, μ) = μ0y, g5(x, y, μ) = (μ1)
2 − (μ1

1)
2,

h1(x, y, μ) = −μ0 + μ1 + μ1
1, h2(x, y, μ) = 1 − (μ0)

2 − (μ1)
2 − (μ1

1)
2.

Let κ ≥ −2 = f (x0, y0). In this setting, the problem (Dk), k ∈ N, becomes

sup
(t,σ0,σi ,ξ j ,ζ )

{
t : f −

5∑

i=1

σi gi −
2∑

j=1

ξ j h j − ζ(κ − f ) − t = σ0,

t ∈ R, ζ, σ0, σi ∈ �2[x, y, μ], ξ j ∈ R[x, y, μ], deg(σ0) ≤ k,

deg(ζ f ) ≤ k, deg(σi gi ) ≤ k, deg(ξ j h j ) ≤ k, i = 1, . . . , 5, j = 1, 2
}
.

(32)

We claim that, for each k ∈ N, the representation of sum-of-squares polynomials in
(32) fails to hold for any t ∈]−3,+∞[. Indeed, assume on the contrary that there exist
k ∈ N, t ∈] − 3,+∞[ and sum-of-squares polynomials ζ, σ0, σi ∈ �2[x, y, μ], i =
1, . . . , 5, as well as real polynomials ξ j ∈ R[x, y, μ], j = 1, 2 such that

f −
5∑

i=1

σi gi −
2∑

j=1

ξ j h j − ζ
(
κ − f

) − t = σ0, (33)

where deg(σ0) ≤ k, deg(ζ f ) ≤ k, deg(σi gi ) ≤ k, deg(ξ j h j ) ≤ k, i = 1, . . . , 5, j =
1, 2. Setting x̃ := 0, ỹ := −1 and μ̃ := (0, 1√

2
, −1√

2
), and then substituting (x̃, ỹ, μ̃)

into (33) we obtain that

−3 − 2σ1(x̃, ỹ, μ̃) − 1√
2
σ3(x̃, ỹ, μ̃) − (κ + 3)ζ(x̃, ỹ, μ̃) − t = σ0(x̃, ỹ, μ̃).

Hence, it entails that σ0(x̃, ỹ, μ̃) ≤ −3 − t < 0, which is absurd.
Consequently, the conclusion (22) of Theorem 3.1 fails due to the fact that val (Dk)

≤ −3 for all k ∈ N and val (EP1) = f (x0, y0) = −2. The reason is that the (LSC) in
(11) is violated.

123



J Optim Theory Appl (2017) 173:683–703 701

Finally in this section, we provide a simple example which shows how our schemes
can be applied to find the robust global optimal value of an uncertain bilevel polynomial
optimization problem.

Example 3.2 (Uncertain bilevel polynomial problem) Consider an uncertain bilevel
polynomial optimization problem of the form:

min
(x,y)∈R2

{
f (x, y) := x4 − 4xy + y4 − 2 : y ∈ Y (x, u)

}
, (EP2)

where u ∈ U := [− 1
2 ,

1
2 ] ⊂ R and Y (x, u) := argminz∈R{x − z : (1 + u)z ≤ 0}.

The problem (EP2) can be expressed in terms of problem (P), where Ũ := [a, a] ×
[b, b] × [c, c] with a := a := b := b := c := c := 0 ∈ R, and c0 := 1 ∈ R, d0 :=
−1 ∈ R, c := 0 ∈ R, the affine mappings a : R → R and b : R → R are given by
a(u) := a0 + ua1 and b(u) := b0 + ub1 with a0 := a1 := 1 ∈ R, b0 := b1 := 0 ∈ R

for u ∈ R. A direct calculation shows that (x0, y0) := (0, 0) is a global robust solution
of problem (EP2) with the robust global optimal value −2.

Now, we employ the relaxation schemes formulated in Theorem 3.1 to verify this
robust global optimal value. In this setting, it is easy to see that f is coercive onR2 and
the (LSC) in (11) is fulfilled. Let μ := (μ0, μ1, μ

1
1) ∈ R

3, and denote the functions
gi (x, y, μ) and h j (x, y, μ) as in the statement of Lemma 2.4. For the sake of clear
representation, we first remove the null functions and then relabel them as

g1(x, y, μ) = −1

2
y, g2(x, y, μ) = −3

2
y, g3(x, y, μ) = μ0,

g4(x, y, μ) = μ1, g5(x, y, μ) = μ0y, g6(x, y, μ) = 1

4
(μ1)

2 −
(
μ1
1

)2
,

h1(x, y, μ) = −μ0 + μ1 + μ1
1, h2(x, y, μ) = 1 − (μ0)

2 − (μ1)
2 −

(
μ1
1

)2
.

Let (x̄, ȳ) := (1, 0) be a feasible point, and take κ := −1 ≥ −1 = f (x̄, ȳ). In this
setting, the problem (Dk) becomes

sup
(t,σ0,σi ,ξ j ,ζ )

{

t : f −
6∑

i=1

σi gi −
2∑

j=1

ξ j h j − ζ(−1 − f ) − t = σ0,

t ∈ R, ζ, σ0, σi ∈ �2[x, y, μ], ξ j ∈ R[x, y, μ],
deg(σ0) ≤ k, deg(ζ f ) ≤ k, deg(σi gi ) ≤ k, deg(ξ j h j ) ≤ k, i = 1, . . . , 6, j = 1, 2

}

.

Using theMATLAB toolbox YALMIP (see, e.g.,[28]), we convert the above optimiza-
tion problem into an equivalent semidefinite program and solve it with k := 4. The
solver returns the true robust global optimal value as −2.000.
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4 Conclusions

We have shown that the robust global optimal value of the uncertain bilevel poly-
nomial program with box data uncertainties is the limit of a sequence of values of
Lasserre-type hierarchy of semidefinite linear programming relaxations. It has been
achieved by transforming the uncertain bilevel polynomial program into a single-level
non-convex polynomial program using a dual characterization of the solution of the
lower-level program and Putinar’s Positivstellensatz of semi-algebraic geometry. We
have provided a numerical example to show how the robust global optimal value of
the uncertain bilevel polynomial program can be calculated via a semidefinite pro-
gramming problem using the MATLAB toolbox YALMIP.

It would be of interest to study how a global robust solution of the uncertain bilevel
polynomial program can be found from its semidefinite linear programming relax-
ations, or to extend the obtained results to the case of spectrahedral uncertainty, where
explicit sum-of-squares/SDP relaxations in terms of the original data are often not
available.
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