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Abstract We present an exact formula for the radius of robust feasibility of uncertain
linear programs with a compact and convex uncertainty set. The radius of robust feasi-
bility provides a value for the maximal ‘size’ of an uncertainty set under which robust
feasibility of the uncertain linear program can be guaranteed. By considering spectra-
hedral uncertainty sets, we obtain numerically tractable radius formulas for commonly
used uncertainty sets of robust optimization, such as ellipsoids, balls, polytopes and
boxes. In these cases, we show that the radius of robust feasibility can be found by
solving a linearly constrained convex quadratic program or a minimax linear program.
The results are illustrated by calculating the radius of robust feasibility of uncertain
linear programs for several different uncertainty sets.
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1 Introduction

The real-world linear programs involve input data that are often noisy or uncertain
due to prediction or measurement errors. For example, a linear program, arising in
industry or commerce [1,2], might involve various costs, financial returns, and future
demands that might be unknown at the time of the decision. They have to be predicted
and are replaced with their forecasts. They often result in prediction errors. Similarly,
some of the data, such as the contents associated with raw materials, might be hard to
measure exactly. These input data are subject to measurement errors.

If data uncertainty arises, for instance, at the constraints of some linear programs, it
is likely that these constraints will be violated upon realization of the actual data. Con-
straint violations can potentially influence the usability of the solution. Consequently,
the development of optimization methodologies, which are capable of generating
robust solutions that are immunized against data uncertainty, has become more impor-
tant than ever in mathematics, commerce and engineering.

The deterministic approach of finding robust solutions of linear programs under
data uncertainty was pioneered in the 1970s, leading to the introduction of what is
now called, Robust Optimization, by Soyster [3]. Two decades later, in the late 1990s,
Ben-Tal and Nemirovski [4,5], and El Ghaoui [6] provided a highly successful com-
putationally tractable treatment of robust optimization approach for linear as well as
convex optimization problems under data uncertainty (see [4,7–14] and other refer-
ences therein).

The robust optimization approach is based on the principle that the robust counter-
part of an uncertain program, where uncertain constraints are enforced for all possible
parameter realizations within some uncertainty set, has a feasible solution, called a
robust feasible solution. Recent research in robust optimization has addressed the issue
of guaranteeing robust feasibility by providing formulas for radius of robust feasibil-
ity for uncertain linear and convex programs [15–17]. The radius of robust feasibility
gives a value for themaximal ‘size’ of an uncertainty set under which robust feasibility
can be guaranteed. However, these formulas are valid only for programs with a ball
uncertainty set.

The purpose of this paper is to present a new exact formula for radius of robust fea-
sibility for uncertain linear programs under a general compact and convex uncertainty
set. By considering spectrahedral uncertainty sets, we obtain numerically tractable
radius formulas for commonly used uncertainty sets of robust optimization, such as
ellipsoids, balls, polytopes and boxes. In these cases, we show that the radius of
robust feasibility can be calculated by means of solving a linearly constrained convex
quadratic program or a minimax linear program.

Our approach to deriving these formulas was inspired by the elegant work on the
consistency radius in linear semi-infinite programming in order to guarantee the feasi-
bility of the nominal system under perturbations preserving the number of constraints
[18–20].

In Sect. 2, we provide a general exact formula for the radius of robust feasibility
under a general compact and convex uncertainty set, whereas in Sect. 3 we present
numerically tractable formulas for the radius of robust feasibility in the case of spec-
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trahedral uncertainty sets. In the Appendix, we provide the proof of a technical lemma
which paves the way to establishing the general exact formula for the radius.

2 An Exact Formula for Radius of Robust Feasibility

This section is devoted to presenting an exact formula for computing the radius of
robust feasibility for an uncertain linear program under a compact and convex uncer-
tainty set.

Webegin byfixing somedefinitions and somebasic results thatwill be used through-
out the paper. A symmetric (n × n) matrix A is said to be positive semi-definite,
denoted by A � 0, whenever x�Ax ≥ 0 for all x ∈ R

n,where n ∈ N := {1, 2, . . .}. If
x�Ax > 0 for all x ∈ R

n \ {0n}, then A is called positive definite, denoted by A � 0.
The following lemma is known as the Schur complement.

Lemma 2.1 (See [5, Lemma 4.2.1]) Let

W :=
(
A B�
B C

)

be a symmetric matrix with (k × k) block A and (l × l) block C. Assume that A � 0.
Then, W � 0 if and only if C − BA−1B� � 0.

Let Ω ⊂ R
n be a convex set such that 0n ∈ intΩ, where the notation intΩ stands

for the interior of Ω . The function φΩ : Rn → R+ := [0,+∞[ given by

φΩ(x) := inf {t > 0 : x ∈ tΩ}, x ∈ R
n, (1)

is called Minkowski function or gauge of Ω. The following lemma provides some
properties of the Minkowski function that can be found in the literature; see, e.g., [21,
Lemma 1.3.13].

Lemma 2.2 Let Ω ⊂ R
n be a convex set such that 0n ∈ intΩ. Then, the following

properties hold:

(i) φΩ is sublinear and continuous;
(ii) {x ∈ R

n : φΩ(x) ≤ 1} = clΩ, where clΩ stands for the closure of Ω; and
(iii) if in addition Ω is bounded and symmetric (i.e., x ∈ Ω ⇒ −x ∈ Ω), then

φΩ := || · || is a norm on R
n generated by Ω .

A parametric linear program in the face of data uncertainty in both the objective
and the constraints, denoted by (PU), can be captured by a family of uncertain linear
programs: for each parameter α ∈ R+, we have an uncertain linear program

min
x∈Rn

{c�x : a�
j x − b j ≤ 0, j = 1, . . . , p}, c ∈ V α ⊂ R

n,

(a j , b j ) ∈ Uα
j ⊂ R

n+1, j = 1, . . . , p, (PUα)
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where c, (a j , b j ), j = 1, . . . , p, are uncertain vectors and V α,Uα
j , j = 1, . . . , p,

are uncertainty sets that are compact and convex.
The robust counterpart of (PUα) is given by

min
x∈Rn

{max
c∈V α

c�x : a�
j x − b j ≤ 0, ∀(a j , b j ) ∈ Uα

j , j = 1, . . . , p}, (PRα)

where the uncertain constraints are enforced for all possible parameter realizations
within the correspondinguncertainty sets. Theprogram (PUα) is said to be robust feasi-
ble if the robust program (PRα) is feasible, i.e., {x ∈ R

n : a�
j x−b j ≤ 0, ∀(a j , b j ) ∈

Uα
j , j = 1, . . . , p} 
= ∅.

Throughout this paper, the uncertainty sets Uα
j , j = 1, . . . , p, are given by

Uα
j := (a j , b j ) + αZ , j = 1, . . . , p, (2)

where (a j , b j ) ∈ R
n+1, j = 1, . . . , p, are fixed and Z ⊂ R

n+1 is a convex and
compact set such that 0n+1 ∈ intZ . We also assume that the nominal program (PU0)

is feasible, i.e., {x ∈ R
n : a�

j x − b j ≤ 0, j = 1, . . . , p} 
= ∅.

Following [16,17], we define the notion of radius of robust feasibility for the para-
metric uncertain linear program (PU) as follows.

Definition 2.1 (Radius of robust feasibility) The radius of robust feasibility for (PU)
is given by

ρ := sup {α ∈ R+ : (PRα) is feasible}. (3)

The radius ρ provides a value for the maximal ‘size’ of the uncertainty set under
which robust feasibility of our uncertain program is guaranteed.

The following dual characterization of solutions of a semi-infinite linear inequality
system, which is useful for our analysis in the sequel, can be found in [22]. Recall that
convΩ denotes the convex hull of Ω ⊂ R

n, while coneΩ := R+convΩ stands for
the convex conical hull of Ω ∪ {0n}.
Lemma 2.3 (See [22, Corollary 3.1.1]) Let T be an arbitrary index set. Then, it holds
that

{x ∈ R
n : u�

t x − vt ≤ 0, t ∈ T } 
= ∅ ⇐⇒ (0n, 1) /∈ cl cone{(−ut ,−vt ) : t ∈ T }.

The next lemma can be regarded as an extension of [16, Lemma 3] for the case of
ball uncertainty, and its method of proof is similar to that of [15, Lemma 2.2], where
the data involve the epigraphs of conjugate functions of convex functions. For the
benefit of the reader a self-contained proof is given in the appendix.

Lemma 2.4 Let α ∈ R+, (a j , b j ) ∈ R
n × R, j = 1, . . . , p, and let Z ⊂

R
n+1 be a convex and compact set with 0n+1 ∈ intZ . Assume that (0n, 1) ∈

cl cone

{ p⋃
j=1

[(−a j ,−b j ) − αZ ]
}
. Then,
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(0n, 1) ∈ cone

{ p⋃
j=1

[(−a j ,−b j ) − (α + δ)Z ]
}

for all δ > 0.

Proof See Appendix. ��
The following theorem provides an exact formula for the radius of robust feasibility

for (PU) in terms of the Minkowski function of Z . This formula involves the so-called
hypographical set of the nominal system {a�

j x − b j ≤ 0, j = 1, . . . , p} (cf. [16,18])
defined by

H(a, b) := conv {(−a j ,−b j ) : j = 1, . . . , p} + R+(0n,−1), (4)

where a := (a1, . . . , a p) ∈ (Rn)p and b := (b1, . . . , bp) ∈ R
p.

Theorem 2.1 (Exact radius formula) Let the nominal program (PU0) be feasible.
Then, the radius of robust feasibility for (PU) defined in (3) is given by

ρ = inf
(a,b)∈H(a,b)

φZ (a, b). (5)

Proof We first prove that

ρ ≤ inf
(a,b)∈H(a,b)

φZ (a, b). (6)

Assume on the contrary that (6) is false. It means that there exists (a, b) ∈ H(a, b)
such that

ρ > φZ (a, b). (7)

By (a, b) ∈ H(a, b), there exist λk ≥ 0, k = 1, . . . , p with
∑p

k=1 λk = 1 and μ ≥ 0
such that

(a, b) =
p∑

k=1

λk(−ak,−bk) + μ(0n,−1). (8)

Let ε > 0. Then, (8) implies that

(0n, 1) =
p∑

k=1

λk

μ + ε

(
(−ak,−bk) − (a, b − ε)

)
. (9)

Besides, by the definition of φZ in (1), for ε > 0 as above, there exists tε > 0 such
that (a, b− ε) ∈ tεZ and tε < φZ (a, b− ε)+ ε. It then follows that there exists z ∈ Z
such that (a, b − ε) = tεz. Moreover, since Z is convex and 0n+1 ∈ Z , we have
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(a, b − ε) = (
φZ (a, b − ε) + ε

) ( tε
φZ (a, b − ε) + ε

z

+
(
1 − tε

φZ (a, b − ε) + ε

)
0n+1

)
∈ (φZ (a, b − ε) + ε

)
Z .

Hence, there exists z̃ ∈ Z such that (a, b − ε) = (
φZ (a, b − ε) + ε

)̃
z, and then, by

(9), we obtain that

(0n, 1) =
p∑

k=1

λk

μ + ε

(
(−ak,−bk) − (

φZ (a, b − ε) + ε
)̃
z
)
. (10)

Now, let α ∈ R+ be such that (PRα) is feasible. Then,

{x ∈ R
n : a�

j x − b j ≤ 0, ∀(a j , b j ) ∈ Uα
j , j = 1, . . . , p} 
= ∅, (11)

where Uα
j := (a j , b j ) + αZ , j = 1, . . . , p. According to Lemma 2.3, (11) is

equivalent to the following condition

(0n, 1) /∈ −cl cone

⎛
⎝ p⋃

j=1

Uα
j

⎞
⎠ . (12)

We claim that

α ≤ φZ (a, b − ε) + ε. (13)

Indeed, assume on the contrary that α > φZ (a, b − ε) + ε. Then, α > 0 and

(
φZ (a, b − ε) + ε

)̃
z

= α

(
φZ (a, b − ε) + ε

α
z̃ +

(
1 − φZ (a, b − ε) + ε

α

)
0n+1

)
∈ αZ ,

because Z is convex and 0n+1 ∈ Z . We find ẑ ∈ Z such that
(
φZ (a, b−ε)+ε

)̃
z = α̂z.

This together with (10) yields

(0n, 1) =
p∑

k=1

λk

μ + ε

(
(−ak,−bk) − α̂z

) ∈ −cone

⎛
⎝ p⋃

j=1

Uα
j

⎞
⎠ , (14)

which contradicts (12), and so, our claim in (13) holds. Note that φZ is a continuous
function [cf. Lemma 2.2(i)]. By letting ε → 0, we obtain from (13) that α ≤ φZ (a, b),
which in turn implies by definition of radius that ρ ≤ φZ (a, b). This together with (7)
gives a contradiction. Consequently, (6) holds.

123



J Optim Theory Appl (2017) 173:203–226 209

We now prove that

ρ ≥ inf
(a,b)∈H(a,b)

φZ (a, b). (15)

We assume by contradiction that

ρ < inf
(a,b)∈H(a,b)

φZ (a, b). (16)

For each ε > 0, let α̃ := ρ + ε. By the definition of ρ, the program (PRα) is not
feasible at α := α̃. It means that

{x ∈ R
n : a�

j x − b j ≤ 0, ∀(a j , b j ) ∈ U α̃
j , j = 1, . . . , p} = ∅, (17)

whereU α̃
j := (a j , b j )+ α̃Z , j = 1, . . . , p. In view of Lemma 2.3, (17) is equivalent

to the following condition

(0n, 1) ∈ −cl cone

⎛
⎝ p⋃

j=1

U α̃
j

⎞
⎠ = cl cone

{ p⋃
j=1

[(−a j ,−b j ) − α̃Z ]
}
.

Invoking Lemma 2.4, we assert that

(0n, 1) ∈cone
{ p⋃

j=1

[(−a j ,−b j ) − (̃α + ε)Z ]
}

for all ε > 0. Then, there exist λ j ≥ 0 and z j ∈ Z , j = 1, . . . , p, such that

(0n, 1) =
p∑

j=1

λ j
[
(−a j ,−b j ) − (̃α + ε)z j

]
. (18)

Observe by (18) that
∑p

j=1 λ j 
= 0. Putting λ̃ j := λ j∑p
j=1 λ j

≥ 0, j = 1, . . . , p, we

obtain that
p∑

j=1
λ̃ j = 1, and then deduce from (18) that

(̃α + ε)

p∑
j=1

λ̃ j z j =
p∑

j=1

λ̃ j (−a j ,−b j ) + 1∑p
j=1 λ j

(0n,−1) ∈ H(a, b). (19)

Note that z j ∈ Z for all j = 1, . . . , p, and hence, z∗ :=
p∑

j=1
λ̃ j z j ∈ Z due to the

convexity of Z . So, from (19) follows that (̃α +ε)z∗ ∈ H(a, b),which in turn implies
that
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inf
(a,b)∈H(a,b)

φZ (a, b) ≤ φZ [(̃α + ε)z∗] ≤ (̃α + ε)φZ (z∗) ≤ α̃ + ε = ρ + 2ε, (20)

where the second and third inequalities in (20) hold by virtue of Lemma 2.2(i, ii).
Letting ε → 0 in (20), we arrive at inf

(a,b)∈H(a,b)
φZ (a, b) ≤ ρ, which contradicts (16).

So, (15) is valid, which completes the proof of the theorem. ��
We now focus on the case where the uncertainty set Z in (2) is symmetric (i.e.,

z ∈ Z ⇒ −z ∈ Z ). In this case, the radius of robust feasibility for (PU) can be
computed by solving a convex programming problem in terms of a specified norm. In
what follows, we use the notation

�p :=
⎧⎨
⎩λ := (λ1, . . . , λp) ∈ R

p : λ j ≥ 0, j = 1, . . . , p,
p∑

j=1

λ j = 1

⎫⎬
⎭

to denote the simplex in Rp.

Corollary 2.1 (Radius formula with symmetric uncertainty) Let the nominal pro-
gram (PU0) be feasible, and let the uncertainty set Z in (2) be symmetric. Then, we
have

ρ = min
(λ,μ)∈�p×R+

∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣, (21)

where || · || is a norm on Rn+1 generated by Z, i.e., || · || = φZ .

Proof Since Z is symmetric and bounded, we assert by Lemma 2.2 (iii) thatφZ = ||·||,
where || · || is a norm on R

n+1. Applying Theorem 2.1, we conclude that

ρ = inf
(a,b)∈H(a,b)

||(a, b)||. (22)

Note that H(a, b) is a nonempty and closed set in R
n+1 and any norm in R

n+1 is
coercive. Therefore, the “inf” in (22) is attained; i.e., we have

ρ = min
(a,b)∈H(a,b)

||(a, b)||. (23)

For each (a, b) ∈ H(a, b), there exist λ j ≥ 0, j = 1, . . . , p with
∑p

j=1 λ j = 1 and
μ ≥ 0 such that

(a, b) =
p∑

j=1

λ j (−a j ,−b j ) + μ(0n,−1),
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or equivalently,

a = −
p∑

j=1

λ j a j , b = −
p∑

j=1

λ j b j − μ. (24)

Letting λ := (λ1, . . . , λp), we obtain that (λ, μ) ∈ �p × R+. Substituting now (24)
into (23), we arrive at (21), which completes the proof. ��

Observe by definition that the radius of robust feasibility for (PU) is always non-
negative, and moreover, it could be zero (see, e.g., [23, Example 4.5] for a particular
box uncertainty set). The following proposition presents a necessary and sufficient
condition for the radius of robust feasibility for (PU) to be positive.

Proposition 2.1 (Necessary and sufficient condition for the positivity of ρ) Let the
nominal program (PU0) be feasible. Consider the radius of robust feasibility for (PU)
defined in (3). Then, it holds that

sup
(x,y)∈Rn×R

{y : a�
j x − b j + y ≤ 0, j = 1, . . . , p} > 0 ⇐⇒ ρ > 0. (25)

Proof Since the nominal program (PU0) is feasible, we assert by Theorem 2.1 that
ρ = inf

(a,b)∈H(a,b)
φZ (a, b).

[Proving �⇒] Let sup
(x,y)∈Rn×R

{y : a�
j x − b j + y ≤ 0, j = 1, . . . , p} > 0. Then,

there exist x̂ ∈ R
n and δ0 > 0 such that

a�
j x̂ − b j + δ0 ≤ 0, j = 1, . . . , p. (26)

Arguing by contradiction, we suppose that ρ = 0. It means that for each k ∈ N,
there exists (ak, bk) ∈ H(a, b) such that

φZ (ak, bk) <
1

k
. (27)

Let k ∈ N. Then, the relation (ak, bk) ∈ H(a, b) implies that there exist λkj ≥ 0, j =
1, . . . , p with

∑p
j=1 λkj = 1 and μk ≥ 0 such that

(ak, bk) =
p∑

j=1

λkj (−a j ,−b j ) + μk(0n,−1),

which entails that

(0n, 1) =
p∑

j=1

λkj

μk + 1
k

((− a j ,−b j
)− (

ak, bk
)+

(
0n,

1

k

))
. (28)
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By the definition of φZ (ak, bk), we find tk > 0 such that tk < φZ (ak, bk) + 1
k and

(ak, bk) ∈ tk Z . The latter ensures that there exists zk ∈ Z such that (ak, bk) = tk zk .
In addition, since Z is convex and 0n+1 ∈ Z , we have

(ak, bk) =
(

φZ (ak, bk) + 1

k

)(
tk

φZ (ak, bk) + 1
k

zk

+
(
1 − tk

φZ (ak, bk) + 1
k

)
0n+1

)
∈
(
φZ (ak, bk) + 1

k

)
Z .

Hence, there exists z̃k ∈ Z such that (ak, bk) = (
φZ (ak, bk) + 1

k

)̃
zk, and then, by

(28), we obtain that

(0n, 1) =
p∑

j=1

λ̃kj

(
(−a j ,−b j ) −

(
φZ (ak, bk) + 1

k

)
z̃k +

(
0n,

1

k

))
, (29)

where λ̃kj := λkj

μk+ 1
k

≥ 0. Letting γk := ∑p
j=1 λ̃kj , we see that γk > 0 and, by taking

subsequences if necessary, we assume that
λ̃kj
γk

→ λ j ≥ 0, j = 1, . . . , p as k → ∞
and

∑p
j=1 λ j = 1. On account of (29), we obtain that

−
⎡
⎣ p∑

j=1

λ̃kj

γk

(
(−a j ,−b j ) −

(
φZ (ak, bk) + 1

k

)
z̃k +

(
0n,

1

k

))⎤
⎦

= 1

γk
(0n,−1) ∈ R+(0n,−1), ∀k ∈ N. (30)

Keeping in mind the compactness of Z and the relation in (27), and letting k → ∞ in
(30), we arrive at −∑p

j=1 λ j (−a j ,−b j ) ∈ R+(0n,−1). Then, we find μ ≥ 0 such
that

0n+1 =
p∑

j=1

λ j (−a j ,−b j ) + μ(0n,−1),

which implies that

(0n, 1) =
p∑

j=1

λ j

μ + δ0

(− a j ,−(b j − δ0)
) ∈ cone

{(− a j ,

− (b j − δ0)
) : j = 1, . . . , p

}
,
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where δ0 was given in (26). It together with Lemma 2.3 implies that

{
x ∈ R

n : a�
j x − (b j − δ0) ≤ 0, j = 1, . . . , p

} = ∅,

which contradicts (26), and thus, our conclusion follows.
[Proving ⇐�] Let ρ > 0 and set X (ε) := {

x ∈ R
n : a�

j x − b j + ε ≤ 0, j =
1, . . . , p

}
, where ε > 0. The proof will be completed if we can show that there exists

ε0 > 0 such that X (ε0) 
= ∅.

Assume on the contrary that X (ε) = ∅ for all ε > 0. In this circumstance, we
invoke Lemma 2.3 to assert that, for each ε > 0,

(0n, 1) ∈ cl cone
{(− a j ,−(b j − ε)

) : j = 1, . . . , p
}

= cone
{(− a j ,−(b j − ε)

) : j = 1, . . . , p
}
. (31)

Let us consider any ε > 0. Then, by (31), there exist λε
j ≥ 0, j = 1, . . . , p, such that

(0n, 1) =
p∑

j=1

λε
j

(− a j ,−b j + ε
)
. (32)

Observe by (32) that
∑p

j=1 λε
j 
= 0. Putting λ̃ε

j := λε
j∑p

j=1 λε
j

≥ 0, j = 1, . . . , p, we

obtain that
p∑

j=1
λ̃ε
j = 1, and then deduce from (32) that

(0n,−ε) =
p∑

j=1

λ̃ε
j (−a j ,−b j ) + 1∑p

j=1 λε
j

(0n,−1) ∈ H(a, b). (33)

Letting ε → 0, we get by (33) that 0n+1 ∈ H(a, b) as inasmuch H(a, b) is a closed
set. Hence,

ρ = inf
(a,b)∈H(a,b)

φZ (a, b) ≤ φZ (0n+1) = 0, (34)

where the last equality holds due to 0n+1 ∈ Z . Now, clearly, (34) contradicts our
assumption that ρ > 0. So, the proof is complete. ��

3 Numerically Tractable Radius Formulas for Spectrahedral
Uncertainty Sets

In this section, we derive numerically tractable formulas from Theorem 2.1 for calcu-
lating the radius of robust feasibility for (PU) in the framework, where the uncertainty
set Z in (2) is a spectrahedron (see, e.g.,[24–26]) described by
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Z := {
z := (z1, . . . , zn+1) ∈ R

n+1 : A0 +
n+1∑
i=1

zi Ai � 0
}

(35)

with Ai , i = 0, 1, . . . , n + 1 being symmetric (q × q) matrices.
The remarkable feature of the spectrahedron (35) is that, besides the closedness

and convexity of Z followed straightforwardly by definition, its boundedness can be
characterized in terms of dual data (cf. [22, Theorem 9.3]). Furthermore, the condition
0n+1 ∈ intZ implies that the matrix A0 can be chosen to be positive definite. Con-
versely, if A0 � 0, then A0 can be congruently transformed to the identity matrix In+1,
and in this case, we obtain that 0n+1 ∈ intZ (see e.g., [24, Page 252] and [22, Theo-
rem 5.9]). It is also worth mentioning that the spectrahedron (35) possesses a broad
spectrum of convex infinite sets, such as polyhedra, balls and ellipsoids [24–26], which
are used to describe uncertainty sets of robust optimization.

With the aid of the spectrahedron (35), we can derive numerically tractable formulas
for calculating the radius of robust feasibility for (PU) in commonly used uncertainty
sets of robust optimization, such as ellipsoids, balls, polytopes and boxes.

Let us first consider the case, where the spectrahedron Z in (35) is an ellipsoid.
More concretely, we examine an ellipsoid centered at the origin as

Z := {z ∈ R
n+1 : z�M−1z ≤ 1}, (36)

where M is a positive definite symmetric (n + 1)× (n + 1) matrix. In this case, as the
following corollary shows, the radius of robust feasibility for (PU) can be computed
by solving a linearly constrained convex quadratic programming problem.

Corollary 3.1 (Radius formula with ellipsoidal uncertainty) Let the nominal pro-
gram (PU0) be feasible, and let Z be as in (36). Then, the radius of robust feasibility
ρ for (PU) defined in (3) satisfies

ρ2= min
(λ,μ)∈�p×R+

⎧⎪⎨
⎪⎩
⎛
⎝ p∑

j=1

λ j a j , μ+
p∑

j=1

λ j b j

⎞
⎠

�
M−1

⎛
⎝ p∑

j=1

λ j a j , μ+
p∑

j=1

λ j b j

⎞
⎠
⎫⎪⎬
⎪⎭.

(37)

Proof Let

A0 :=
(
M 0
0 1

)
, Ai :=

(
0 ei
e�
i 0

)
, i = 1, . . . , n + 1,

where ei ∈ R
n+1 is a vector whose i th component is one and all others are zero. Then,

we have

123



J Optim Theory Appl (2017) 173:203–226 215

{
z := (z1, . . . , zn+1) ∈ R

n+1 : A0 +
n+1∑
i=1

zi Ai � 0
}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 :
(
M z
z� 1

)
� 0

}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 : 1 − z�M−1z ≥ 0
}

= Z , (38)

where the second equality in (38) is valid due to theSchur complement (cf. Lemma2.1).
It means that the ellipsoid Z in (36) can be expressed in terms of the spectrahedron (35)
(see also,[24]). Since the ellipsoid Z is symmetric, we apply Corollary 2.1 to obtain
that

ρ := min
(λ,μ)∈�p×R+

∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣, (39)

where || · || = φZ . Note further that the Minkowski function of the spectrahedron (35)
is given by

φZ (a, b) = inf
{
t > 0 : t A0 +

n∑
i=1

ai Ai + bAn+1 � 0
}

for (a, b) := (a1, . . . , an, b) ∈ H(a, b). Thus, we arrive at ||(a, b)|| =
inf
{
t > 0 : t A0 +

n∑
i=1

ai Ai + bAn+1 � 0
}
for (a, b) := (a1, . . . , an, b) ∈ R

n+1. In

this setting, for any t > 0 and (a, b) := (a1, . . . , an, b) ∈ R
n+1, the matrix inequality

t A0 +
n∑

i=1
ai Ai + bAn+1 � 0 amounts to A0 +

n+1∑
i=1

zi Ai � 0 with zi := 1
t a

i , i =
1, . . . , n and zn+1 := 1

t b. In view of (38) with z := (z1, . . . , zn+1) = 1
t (a, b), we see

that

t A0 +
n∑

i=1

ai Ai + bAn+1 � 0 ⇔ t2 − (a, b)�M−1(a, b) ≥ 0.

Then, for each (a, b) ∈ R
n+1,

||(a, b)|| = inf
{
t > 0 : t2 − (a, b)�M−1(a, b) ≥ 0

}
= inf

{
t > 0 : t ≥ (

(a, b)�M−1(a, b)
) 1
2
} = (

(a, b)�M−1(a, b)
) 1
2 , (40)

where we should note that (a, b)�M−1(a, b) ≥ 0 as M is a positive definite matrix.
Now, on account of (40), we assert that the equivalence between (37) and (39) is

valid. It completes the proof. ��
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Next, we provide an example which illustrates how the radius of robust feasibility
for (PU) can be computed in the case of ellipsoidal uncertainty.

Example 3.1 (Calculating the radius with ellipsoidal uncertainty) Let

Z :=
{
z :=

(
z1, z2

)
∈ R

2 :
(
z1
)2
4

+
(
z2
)2
8

≤ 1

}
.

Consider a parametric uncertain linear program (PU) that is defined as follows: for
each parameter α ∈ R+, we have an uncertain linear program

min
x∈R {c�x : a�

j x − b j ≤ 0, j = 1, 2}, (EP1α)

where c ∈ [1, 2] and (a j , b j ) ∈ Uα
j := (a j , b j ) + αZ for j = 1, 2 with (a1, b1) :=

(1, 0), (a2, b2) := (0, 1) ∈ R
2.

It is easy to check that x0 := −1 is a robust feasible solution of program (EP1α) at
α = 0, or equivalent to saying that (PU0) is feasible and that Z can be viewed in the

form (36) with M =
(
4 0
0 8

)
. Applying Corollary 3.1, we obtain that

ρ2 = min
(λ,μ)∈�2×R+

{
1

4
λ21 + 1

8
(μ + λ2)

2
}
, (41)

where λ := (λ1, λ2). Since λ2 := 1 − λ1 ≥ 0, (41) amounts to the following convex
quadratic program

ρ2 = min

{
f (λ1, μ) := 3

8
λ21 + 1

8
μ2 + 1

4
μ(1 − λ1) − 1

4
λ1 + 1

8
: 0 ≤ λ1 ≤ 1, μ ≥ 0

}
. (42)

Note that, for this setting, we can evaluate the objective function f of problem (42)
as follows:

f (λ1, μ) = 3

8

(
λ1 − 1

3

)2

+ 1

8
μ2 + 1

4
μ(1 − λ1) + 1

12
≥ 1

12
,

where the equality is attained at (λ1, μ) := ( 13 , 0). It shows that fmin = 1
12 and hence

confirms that ρ2 = 1
12 . Consequently, we conclude that the radius of robust feasibility

is ρ = 1
2
√
3

(Fig. 1).

Let us now consider a particular case, where the matrix M given in (36) is the
identity matrix In+1. In this setting, the ellipsoid Z becomes the Euclidean unit closed
ball IBn+1.

Corollary 3.2 (Radius formula with ball uncertainty) Let the nominal program (PU0)

be feasible, and let Z := IBn+1. Then, the radius of robust feasibility ρ for (PU) defined
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Fig. 1 Ellipsoid Z and sets
αZ , α ≤ ρ

in (3) satisfies

ρ2 = min
(λ,μ)∈�p×R+

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝ p∑

j=1

λ j a
i
j

⎞
⎠

2

+
⎛
⎝μ +

p∑
j=1

λ j b j

⎞
⎠

2
⎫⎪⎬
⎪⎭ , (43)

where a j := (a1j , . . . , a
n
j ) for j = 1, . . . , p.

Proof Letting M := In+1, Corollary 3.1 gives us that

ρ2 = min
(λ,μ)∈�p×R+

⎧⎪⎨
⎪⎩
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠

� (
In+1

)−1
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
⎫⎪⎬
⎪⎭. (44)

It is clear that (44) and (43) are equivalent to each other, which finishes the proof. ��
Remark 3.1 It is worth observing here that the result obtained in Corollary 3.2 can be
viewed as

ρ = min
(λ,μ)∈�p×R+

∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣, (45)
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where the norm || · || is given (see (40) with M := In+1) by

||(a, b)|| =
(

n∑
i=1

(ai )2 + b2
) 1

2

= ||(a, b)||2 for (a, b) := (a1, . . . , an, b) ∈ R
n+1.

(46)

Here, the norm || · ||2 is the Euclidean norm on R
n+1. With the norm (46), the for-

mula (45) can be expressed in terms of distance as

ρ = d
(
0n+1, H(a, b)

)
. (47)

Note that the distance function d generated by the Euclidean norm || · ||2 of Ω ⊂ R
n

is defined by

d(x,Ω) := inf {||x − y||2 : y ∈ Ω}, x ∈ R
n

with the convention d(x,Ω) := +∞ whenever Ω is empty, i.e., inf ∅ = +∞. The
formula (47) was established in [16, Theorem 4], where a direct proof was given.

We now deal with the case where the spectrahedron Z in (35) is a cross-polytope
defined by

Z := {
z := (z1, . . . , zn+1) ∈ R

n+1 :
n+1∑
i=1

|zi | ≤ 1
}
. (48)

In this case, we obtain a numerically tractable formula for calculating the radius of
robust feasibility for (PU) as follows.

Corollary 3.3 (Radius formula with polytopic uncertainty) Let the nominal pro-
gram (PU0) be feasible, and let Z be as in (48). Then, the radius of robust feasibility
for (PU) defined in (3) is given by

ρ = min
(λ,μ)∈�p×R+

⎧⎨
⎩

n∑
i=1

∣∣ p∑
j=1

λ j a
i
j

∣∣+ ∣∣μ +
p∑

j=1

λ j b j
∣∣
⎫⎬
⎭, (49)

where a j := (a1j , . . . , a
n
j ) for j = 1, . . . , p.

Proof Let

A0 :=
(
I2n 0
0 I2n

)
, Ai :=

(
Di 0
0 −Di

)
, i = 1, . . . , n + 1,
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where Di , i = 1, . . . , n + 1, are the (2n × 2n) diagonal matricies with the entries
σ i
k = 1 or σ i

k = −1 in the kth row for k = 1, . . . , 2n satisfying (σ 1
k1

, . . . , σ n+1
k1

) 
=
±(σ 1

k2
, . . . , σ n+1

k2
) whenever k1, k2 ∈ {1, . . . , 2n}, k1 
= k2. Then,

{
z := (z1, . . . , zn+1) ∈ R

n+1 : A0 +
n+1∑
i=1

zi Ai � 0
}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 : 1 +
n+1∑
i=1

σ i
k z

i ≥ 0,

1 −
n+1∑
i=1

σ i
k z

i ≥ 0, k = 1, . . . , 2n
}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 :
n+1∑
i=1

|zi | ≤ 1
} = Z , (50)

which shows how the cross-polytope Z can be expressed in terms of the spectrahe-
dron (35). Since the cross-polytope Z is symmetric, we get by Corollary 2.1 that

ρ = min
(λ,μ)∈�p×R+

∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣, (51)

where || · || = φZ .

Similar to the proof of Corollary 3.1, we conclude that ||(a, b)|| = inf
{
t > 0 : t A0

+
n∑

i=1
ai Ai +bAn+1 � 0

}
for (a, b) := (a1, . . . , an, b) ∈ R

n+1. In this circumstance,

for any t > 0 and (a, b) := (a1, . . . , an, b) ∈ R
n+1, the matrix inequality t A0 +

n∑
i=1

ai Ai + bAn+1 � 0 amounts to A0 +
n+1∑
i=1

zi Ai � 0 with zi := 1
t a

i , i = 1, . . . , n

and zn+1 := 1
t b. In view of (50) with z := (z1, . . . , zn+1) = 1

t (a, b), we assert that

t A0 +
n∑

i=1

ai Ai + bAn+1 � 0 ⇔ t ≥
n∑

i=1

|ai | + |b|.

Then, for each (a, b) := (a1, . . . , an, b) ∈ R
n+1, we have

||(a, b)|| = inf
{
t > 0 : t ≥

n∑
i=1

|ai | + |b|} =
n∑

i=1

|ai | + |b| = ||(a, b)||1, (52)

where || · ||1 is the �1-norm on R
n+1. With the norm (52), we see that (49) coincides

with (51), which finishes the proof. ��
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Finally, we examine the case where the spectrahedron Z in (35) is a hypercube/box
given by

Z := [−1, 1] × · · · × [−1, 1] ⊂ R
n+1. (53)

In this setting, the radius of robust feasibility for (PU) can be found by solving a linear
minimax program with affine constraints.

Corollary 3.4 (Radius formula with box uncertainty) Let the nominal program (PU0)

be feasible, and let Z be as in (53). Then, it holds

ρ = min
(λ,μ)∈�p×R+

⎧⎨
⎩max

{∣∣ p∑
j=1

λ j a
i
j

∣∣, i = 1, . . . , n,
∣∣μ +

p∑
j=1

λ j b j
∣∣}
⎫⎬
⎭, (54)

where a j := (a1j , . . . , a
n
j ) for j = 1, . . . , p.

Proof Let Ei be the (n + 1) × (n + 1) diagonal matrix with one in the (i, i)th entry
and zeros elsewhere, and

A0 :=
(
In+1 0
0 In+1

)
, Ai :=

(
Ei 0
0 −Ei

)
, i = 1, . . . , n + 1.

Then, we see that

{
z := (z1, . . . , zn+1) ∈ R

n+1 : A0 +
n+1∑
i=1

zi Ai � 0
}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 : 1 + zi ≥ 0, 1 − zi ≥ 0, i = 1, . . . , n + 1
}

= {
z := (z1, . . . , zn+1) ∈ R

n+1 : |zi | ≤ 1, i = 1, . . . , n + 1
} = Z , (55)

which shows how the box Z can be expressed in terms of the spectrahedron (35). In
this case, the formula of Corollary 2.1 becomes

ρ = min
(λ,μ)∈�p×R+

∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝ p∑

j=1

λ j a j , μ +
p∑

j=1

λ j b j

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣, (56)

where ||(a, b)|| = inf
{
t > 0 : t A0 +

n∑
i=1

ai Ai + bAn+1 � 0
}
for (a, b) := (a1,

. . . , an, b) ∈ R
n+1. For any t > 0 and (a, b) := (a1, . . . , an, b) ∈ R

n+1, the matrix

inequality t A0 +
n∑

i=1
ai Ai + bAn+1 � 0 is nothing else but A0 +

n+1∑
i=1

zi Ai � 0 with

zi := 1
t a

i , i = 1, . . . , n and zn+1 := 1
t b. Substituting z := (z1, . . . , zn+1) = 1

t (a, b)
into (55), we arrive at
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t A0 +
n∑

i=1

ai Ai + bAn+1 � 0 ⇔
{
t ≥ |ai |, i = 1, . . . , n,

t ≥ |b|.

Then, for each (a, b) := (a1, . . . , an, b) ∈ R
n+1, we have

||(a, b)|| = inf
{
t > 0 : t ≥ max {|a1|, . . . , |an|, |b|}}

= max {|a1|, . . . , |an|, |b|} = ||(a, b)||∞, (57)

where the norm || · ||∞ is the maximum norm on Rn+1. With the norm (57), it is easy
to see that (54) is nothing else but (56). It finishes the proof. ��

Similar to the case of ball uncertainty, the formula (54) can be expressed in terms
of distance as

ρ = d
(
0n+1, H(a, b)

)
, (58)

where d is generated by the maximum norm || · ||∞.Note further that (58) has recently
been given in [23, Corollary 5.4] by a different approach. More precisely, the radius
of robust feasibility in [23, Corollary 5.4] has been derived from the so-called radius
of robust global error bound.

We close this sectionwith a remark that for a general spectrahedron of the form (35),
we can calculate the radius of robust feasibility for (PU) directly from (5) as inasmuch
in this case the Minkowski function of Z is explicitly given by

φZ (a, b) = inf
{
t > 0 : t A0 +

n∑
i=1

ai Ai + bAn+1 � 0
}

(59)

for (a, b) := (a1, . . . , an, b) ∈ H(a, b).
Let us see the following example, which illustrates how the radius of robust feasi-

bility for (PU) can be directly calculated from (5) when Z is a simple non-symmetric
spectrahedral uncertainty set.

Example 3.2 (Calculating the radius with non-symmetric spectrahedral uncertainty)
Let

Z :=
{
z := (z1, z2) ∈ R

2 : |z1 + 1

2
| ≤ 1, |z2 − 1

2
| ≤ 1, |z1 + z2| ≤ 1

}
.

Consider a parametric uncertain linear program (PU) that is defined as follows: for
each parameter α ∈ R+, we have an uncertain linear program

min
x∈R {c�x : a�

j x − b j ≤ 0, j = 1, 2}, (EP2α)

where c ∈ [−1, 2] and (a j , b j ) ∈ Uα
j := (a j , b j )+αZ for j = 1, 2 with (a1, b1) :=

(1, 0), (a2, b2) := (0, 1) ∈ R
2.
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It is easy to check that x0 := −1 is a robust feasible solution of program (EP2α) at
α = 0, or equivalent to saying that (PU0) is feasible, and that Z can be viewed in the
form (35) with

A0 := I6, A1 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3 0 0 0 0 0
0 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 − 2

3 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this case, for any t > 0 and (a, b) ∈ R
2, we assert that

t A0 + aA1 + bA2 � 0 ⇔

⎧⎪⎨
⎪⎩
t ≥ − 2

3a, t ≥ 2a,

t ≥ −2b, t ≥ 2
3b,

t ≥ −a − b, t ≥ a + b.

So, for each (a, b) ∈ R
2,

φZ (a, b) = inf
{
t > 0 : t A0 + aA1 + bA2 � 0

}

= inf
{
t > 0 : t ≥ max

{− 2

3
a, 2a,−2b,

2

3
b,−a − b, a + b

}}

= max
{

− 2

3
a, 2a,−2b,

2

3
b,−a − b, a + b

}
.

Invoking now Theorem 2.1, we arrive at

ρ = inf
(a,b)∈H(a,b)

max
{

− 2

3
a, 2a,−2b,

2

3
b,−a − b, a + b

}
. (60)

Note that for each (a, b) ∈ H(a, b) = conv{(−1, 0), (0,−1)} + R+(0,−1), there
exist λ ∈ [0, 1] and μ ≥ 0 such that

a = −λ, b = λ − 1 − μ.
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Fig. 2 Parametric sets
αZ , α ≤ ρ

Hence, (60) becomes

ρ = inf
(λ,μ)∈[0,1]×R+

max
{2
3
λ, 2(1 − λ + μ), 1 + μ

}
. (61)

Observe that, for any μ ≥ 0,

max
{2
3
λ, 2(1 − λ + μ), 1 + μ

}
=
{
2(1 − λ + μ) if 0 ≤ λ ≤ μ+1

2 ,

1 + μ if μ+1
2 < λ ≤ 1,

and therefore, by solving the problem (61), we conclude that the radius of robust
feasibility is ρ = 1 (Fig. 2).

4 Conclusions

We have provided an exact formula for the radius of robust feasibility of a parametric
uncertain linear program (PU) with a compact and convex uncertainty set. In the
case, where the uncertainty set is a spectrahedron, we have obtained a tractable radius
formula. In particular, we have shown that the radius of robust feasibility for (PU) can
be found by solving a linearly constrained convex quadratic program or a minimax
linear program for the cases of commonly used uncertainty sets of robust optimization
like ellipsoids, balls, polytopes and boxes.
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Appendix

In this section, we give the proof of Lemma 2.4 by exploiting some techniques from
[15].

Proof of Lemma 2.4 We assume by contradiction that there exists δ > 0 such that

(0n, 1) /∈ cone
{ p⋃

j=1

[(−a j ,−b j ) − (α + δ)Z ]
}
.

Applying the separation theorem, we find a nonzero element (u, v) ∈ R
n × R such

that

v ≤ inf

⎧⎨
⎩〈(u, v), (a, b)〉 : (a, b) ∈ cone

{ p⋃
j=1

[(−a j ,−b j ) − (α + δ)Z ]
}⎫⎬
⎭. (62)

Obviously v ≤ 0 because of 0n+1 ∈ cone
{ p⋃

j=1
[(−a j ,−b j )−(α+δ)Z ]

}
, and further,

we assert that

〈(u, v), (a, b)〉 ≥ 0 for all (a, b) ∈ cone
{ p⋃

j=1

[(−a j ,−b j ) − (α + δ)Z ]
}
. (63)

Otherwise, there exists (a0, b0) ∈ cone
{ p⋃

j=1
[(−a j ,−b j ) − (α + δ)Z ]

}
such that

〈(u, v), (a0, b0)〉 < 0. Then, λ(a0, b0) ∈ cone
{ p⋃

j=1
[(−a j ,−b j ) − (α + δ)Z ]

}
for all

λ > 0, and so,

〈(u, v), λ(a0, b0)〉 = λ〈(u, v), (a0, b0)〉 → −∞ as λ → +∞.

This fact contradicts (62) and thus, the assertion (63) holds.
By our assumption,

(0n, 1) ∈ cl cone
{ p⋃

j=1

[(−a j ,−b j ) − αZ ]
}
.

Then, there exists a sequence {(uk, vk)} ⊂ cone
{ p⋃

j=1
[(−a j ,−b j ) − αZ ]

}
such that

(uk, vk) → (0n, 1) as k → ∞. (64)
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So, for each k ∈ N, there exist z jk ∈ Z and λ
j
k ≥ 0, j = 1, . . . , p, such that

(uk, vk) =
p∑

j=1

λ
j
k

[(−a j ,−b j
)− αz jk

]
. (65)

We claim that there exists κ > 0 such that

p∑
j=1

λ
j
k ≥ κ for all k ∈ N. (66)

If this is not the case, then by passing to a subsequence if necessary, we may assume
that

∑p
j=1 λ

j
k → 0 as k → ∞. It implies by (65) that (uk, vk) → 0n+1 as k → ∞

due to the compactness of Z . This contradicts (64), and so, our claim in (66) holds.
By 0n+1 ∈ intZ , we find ρ > 0 such that ρBn+1 ⊂ Z . Note that ||(u, v)|| =
max

w∗∈Bn+1
〈(u, v), w∗〉, and hence, there exists w∗ ∈ Bn+1 such that ||(u, v)|| =

〈(u, v), w∗〉. Now, letting z := ρw∗, it follows that z ∈ ρBn+1 ⊂ Z and that

〈(u, v), z〉 = ρ||(u, v)||. (67)

Taking (65) into account, we see that

(uk, vk) − δ

p∑
j=1

λ
j
k z =

p∑
j=1

λ
j
k [(−a j ,−b j ) − αz jk − δz]

=
p∑

j=1

λ
j
k

[
(−a j ,−b j ) − (α + δ)

(
α

α + δ
z jk + δ

α + δ
z

)]

∈ cone

{ p⋃
j=1

[(−a j ,−b j ) − (α + δ)Z ]
}
, ∀k ∈ N,

where
(

α
α+δ

z jk + δ
α+δ

z
) ∈ Z inasmuch as Z is a convex set. Granting this, (63) and

(67) entail that

0 ≤ 〈(u, v), (uk, vk) − δ

p∑
j=1

λ
j
k z〉 = 〈(u, v), (uk, vk)〉 − δ

p∑
j=1

λ
j
k 〈(u, v), z〉

= 〈(u, v), (uk, vk)〉 − δ

p∑
j=1

λ
j
kρ||(u, v)||.

This together with (66) entails that

0 ≤ 〈(u, v), (uk, vk)〉 − δρκ||(u, v)||, ∀k ∈ N. (68)

123



226 J Optim Theory Appl (2017) 173:203–226

Letting k → ∞ in (68), we arrive at 0 ≤ v − δρκ||(u, v)||, which is absurd by virtue
of v ≤ 0 and (u, v) 
= 0n+1. So, the proof is complete. ��
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