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Abstract This paper studies a time optimal control problem for a class of ordinary
differential equations. The control systems may have multiple solutions. Based on
the properties fulfilled by the solutions of the concerned equations, we get both the
existence and the Pontryagin maximum principle for optimal controls.
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1 Introduction

The optimal control problems of ordinary and partial differential equations have been
studied extensively since the middle of the last century. Generally, the control systems
considered in these literatures arewell posed (see, for instance, [1]). However, it is well
known that optimal control problems, where the control systems are non-well-posed,
aremuchmore challenging than thewell-posed ones. In the casewhere a state equation
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admits more than one solution, the state variable does not depend continuously on the
control variable. Hence, it is not clear how to make the sensitivity analysis of the state
with respect to the control variable. Therefore, we could not obtain the variations of the
statewith respect to the control similarly as in [1]. Lions [2] first studied optimal control
problems of non-monotone elliptic systemswithout state constraints, andBonnans and
Casas [3] considered the cases where the state constraints were involved. In [2,3], in
order to overcome the difficulties caused by the non-well-posedness, the first step
was penalizing the original problem by removing the nonlinear term from the state
equation, and regarding it as a part of the state constraints. Then, it was proved that
the penalization problem had at least one solution, and the necessary conditions for
a solution of this penalization problem were given. Finally, the necessary conditions
for an optimal pair of the original problem were obtained by passing to the limit.
Following this technique, some authors [4–6] discussed more general state equations.

Recently, Lin [7] studied the extendability and an optimal control problem after
quenching for some ordinary differential equations. The quenching of a solutionmeans
that the derivative of the solution goes to infinity at finite time, while it keeps bounded
itself. It was shown in [7] that a solution, which quenches for the first time at finite time,
may hold different properties: not extendable after quenching, extendable uniquely or
having at least two extended solutions. An optimal control problem, which means that
among all the extended control-solution pairs of a given extendable solution which
quenches for the first time at finite time, onewould like to find the pair with theminimal
energy for certain cost functional,was also studied in [7]. This cost functional is defined
in a time interval whose left endpoint is the first quenching time of the aforementioned
extendable solution, and the right endpoint is a given time greater than the left one.
The Pontryagin maximum principle was established for this problem. This control
problem is different to the classical one, since the extended solutions may be multiple.

Time optimal control problem is one of the important research areas of control
theory. To our best knowledge, there is a small amount of literature on time optimal
control problems, where the control systems are not well posed. In recent years, using
different techniques, several researchers studied the existence and the necessary con-
ditions of the optimal quenching/blowup time for some special controlled systems
(see [9–12]).

Stimulated by the methods used in our paper [7], we shall study in this paper a
time optimal control problem for a class of ordinary differential equations, which may
have multiple solutions. Making use of a sequence of approximate and well-posed
time optimal control problems, we establish the Pontryagin maximum principle for
the autonomous system with multiple solutions. The existence of optimal controls,
under the assumption that the system is affine and the control set is convex, is also
obtained.

From the point of view of applied science, classical time optimal control problems
can be used to describe a missile with one warhead hitting the target in the shortest
time. Since the 1960s, the technology of one missile with multiple and independent
re-entry vehicles (warheads) has been developed. When the missile is launched, the
flight tracks of the independent vehicles carried by it are different, and their targets
can be the same area. It is natural appealing to minimize the first time of hitting the
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target by these vehicles. This can be described by the time optimal control problem
with multiple solutions.

This paper differs from the above-mentioned references as follows: (i) References
[2–6] deal with time independent control systems governed by elliptic partial dif-
ferential equations. But this paper concerns the time-dependent control systems. (ii)
References [9–12] examine blowup or quenching time optimal control problems for
ordinary differential equations with unique solutions. Although we studied in [7] an
optimal control problem for ordinary differential equations with multiple solutions
after quenching, it concerns the problem without terminal constraints of states, and
the intention of using controls after quenching is to make a corresponding cost func-
tional to achieve a minimum. But this paper, to our best knowledge, is the first paper
on time optimal control problems for differential equations with multiple solutions.
(iii) The solutions in [7] to the control system quench at finite time. This is caused
by the discontinuity of the nonlinear term of the system. Since the nonlinear term of
the system considered in this paper is continuous corresponding to the state variable,
the solutions to this system and their derivatives in time are bounded. However, this
system may still possess multiple solutions.

2 Definitions and Examples of Equations with Multiple Solutions

For convenience, for anRn-valued vector function f = ( f 1 f 2 . . . f n)T on a domain
of Rn , ft and fy are defined the same as in [7,12].

In this paper, the following controlled system will be considered,

dy(t)

dt
= f (t, y(t), u(t)), t > 0, (1)

y(0) = y0, (2)

where the state function y is a vector-valued function, the control function u has values
in a set U ⊂ R

m .
We make the following assumptions throughout the paper.

Assumption 2.1 U ⊂ R
m is a bounded and closed set.

Assumption 2.2 The target Q is a non-empty, closed, and convex set in Rn , y0 ∈ R
n

with y0 /∈ Q.

Assumption 2.3 f (t, y, u) is a function which is measurable in t ∈ [0,+∞[, and
continuous in (y, u) ∈ R

n × U . y1 ∈ R
n , with y1 /∈ Q, is the singular point of the

function f (t, y, u) corresponding to y. There exist constants 0 < α < 1, L1 > 0 and
L2 > 0 such that

| f (t, y, u)| ≤ L1|y|α + L2, ∀ (t, y, u) ∈ [0,+∞[×R
n ×U.
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Moreover, for any connected set E ⊂⊂ [0,+∞[×(Rn \ {y1}), there exists a constant
LE > 0 and a uniform modulus of continuity ωE such that

| f (t, y, u) − f (t, x, v)| ≤ LE |y − x | + ωE (|u − v|), ∀ (t, x, v), (t, y, u) ∈ E ×U.

Assumption 2.4 f (t, y, u) is continuously differentiable in y ∈ R
n \ {y1}. For any

r > 0, there exists Lr > 0 such that

| fy(t, y, u)| ≤ Lr , if t ∈ [0,+∞[, |y − y1| ≥ r and u ∈ U.

Moreover, for any connected set E ⊂⊂ [0,+∞[×(Rn \ {y1}), there exists a uniform
modulus of continuity ω̃E such that

| fy(t, y, u) − fy(t, x, v)| ≤ ω̃E (|y − x | + |u − v|), ∀ (t, x, v), (t, y, u) ∈ E ×U.

Now, set U := {

u : [0,+∞[→ U ; u is Lebesgue measurable
}

.

Definition 2.1 Let y0 ∈ R
n and u ∈ U . We say that a function y(· ; y0, u) in

C([0, T ];Rn) is a solution to (1)–(2) with T > 0 iff

y(t; y0, u) = y0 +
∫ t

0
f (τ, y(τ ; y0, u), u(τ ))dτ, t ∈ [0, T ].

Under Assumptions 2.1–2.4, (1)–(2) may possess multiple solutions. For instance,
consider the following equation (taken from [13]) with n = 1 and y0 = y1 = 0,

dy(t)

dt
= y2/3(t), t > 0, (3)

y(0) = 0. (4)

It is easy to check that (3)–(4) possesses an infinite number of solutions given by
y(t) ≡ 0, and yc(t) = 0, 0 ≤ t ≤ c, yc(t) = (t − c)3/27, t > c, where c is an
arbitrary positive constant.

We can also construct another example. Take the following equation, with n = 1,
y0 = −1 and y1 = 0, into consideration,

dy(t)

dt
= y2/3(t) + u(t), t > 0, (5)

y(0) = −1, (6)

where u(t) = 1, 0 ≤ t ≤ 3(1 − π/4), and u(t) = 0, t > 3(1 − π/4).
In order to discuss (5)–(6), we first consider the following equation,

dỹ(t)

dt
= ỹ2/3(t) + 1, t > 0, (7)

ỹ(0) = −1. (8)
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Since the function g(s, t) := s2/3 + 1 is locally Lipschitz corresponding to s and
is bounded in the domain G = {(s, t); ] − 2, 0[×] − ∞,+∞[}, it holds by the
existence and continuation theory of ordinary differential equations (cf. [8]), (7)–(8)
holds a unique solution ỹ, which can be extended till the boundary of G. Because
g(s, t) > 0, (s, t) ∈ R×] − ∞,+∞[, we have from (7) that the solution ỹ to (7)–
(8) is strictly monotone increasing in its interval of existence, from which and (8), it
follows that the solution ỹ can be extended until it equals to 0, that is, can reach the
boundary of G, at some finite time˜t > 0.

Now, we claim that˜t = 3(1 − π/4). Indeed, it follows from (7) that

∫ t

0
1/

(

ỹ2/3(t) + 1
)

dỹ(t) =
∫ t

0
1dt, 0 < t <˜t .

ByDefinition2.1, ỹ has values inR1.Here and throughout the remainingof this section,
the calculations are in the framework of real numbers. Since by (8), ỹ(0) = −1, and
the real cube root of −1 is itself, it holds that ỹ1/3(0) = −1. Then, we have

3
(

ỹ1/3(t) − arctan ỹ1/3(t)
) =t + 3

(

ỹ1/3(0) − arctan ỹ1/3(0)
)

=t − 3(1 − π/4), 0 < t <˜t . (9)

Set g̃(s) := 3(s1/3 − arctan s1/3), s ∈ R. Then, g̃′(s) = 1/(1 + s2/3) > 0, s �= 0.
Thus, g̃(s) = 0 if and only if s = 0. This and (9) imply ˜t = 3(1 − π/4) and
ỹ(3(1 − π/4)) = 0. Hence, (5)–(6) also possesses an infinite number of solutions
given by y(t) = ỹ(t), 0 ≤ t ≤ 3(1 − π/4), y(t) = 0, t > 3(1 − π/4), and
yc(t) = ỹ(t), 0 ≤ t ≤ 3(1 − π/4), yc(t) = 0, 3(1 − π/4) < t ≤ c + 3(1 − π/4),
yc(t) = (t−3(1−π/4)−c)3/27, t > c+3(1−π/4), where c is an arbitrary positive
constant.

3 Pontryagin’s Maximum Principle

Set

T := {

(T, y, u) ∈]0,+∞[×C([0, T ];Rn) × U; (1)−(2) holds on [0, T ]}

and Tad := {

(T, y, u) ∈ T ; y(T ) ∈ Q
}

.

In this paper, we consider the following time optimal control problem,
Problem (P) Find (t∗, y∗, u∗) ∈ Tad such that t∗ = inf

(T,y,u)∈Tad
T .

t∗ is called the optimal time for Problem (P). A control u∗ ∈ U and a function
y∗ ∈ C([0, t∗];Rn) such that (t∗, y∗, u∗) ∈ Tad , are called an optimal control and an
optimal state corresponding to u∗ for Problem (P), respectively.

In this section, we shall establish the necessary conditions for Problem (P). Since
(1)–(2)may possessmultiple solutions, and fy may be unbounded in the neighborhood
of y1 (cf. the examples in the introduction), it is difficult getting Pontryagin’smaximum
principle for Problem (P) in the non-autonomous case of (1)–(2). However, we can get
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the following necessary conditions for Problem (P) in the autonomous case, which is
denoted by (Pa).

Consider the following autonomous system,

dy(t)

dt
= f (y(t), u(t)), t > 0, (10)

y(0) = y0. (11)

First, the following theorem concerns the case where y0 = y1.

Theorem 3.1 Suppose thatAssumptions 2.1–2.4 hold, and y0 = y1, t∗ is the optimal
time, and (u∗, y∗) is an optimal pair for Problem (Pa). Then, there exists a non-trivial
function ψ ∈ C(]0, t∗];Rn) satisfying

dψ(t)

dt
= − fy(y

∗(t), u∗(t))ψ(t), t ∈]0, t∗], (12)

〈ψ(t), f (y∗(t), u∗(t))〉 = max
u∈U 〈ψ(t), f (y∗(t), u)〉, a.e. t ∈]0, t∗], (13)

〈ψ(t∗), z − y∗(t∗)〉 ≥ 0, for each z ∈ Q, (14)

〈ψ(t), f (y∗(t), u∗(t))〉 ≥ 0, a.e. t ∈]0, t∗]. (15)

Proof Under the assumptions of this theorem, we first claim that

y∗(t) �= y1, for each t ∈]0, t∗]. (16)

Since y∗(t∗) ∈ Q and y1 /∈ Q, it holds that y∗(t∗) �= y1. On the other hand, suppose
that there exists a time t1 ∈]0, t∗[ such that y∗(t1) = y1.We set v̂(t) := u∗(t+ t1), 0 ≤
t ≤ t∗ − t1. Since (10)–(11) is an autonomous system, it holds that ŷ(t) := y∗(t + t1),
0 ≤ t ≤ t∗ − t1, is a solution to (10)–(11), corresponding to y0 = y1 and the control
v̂. Since y∗(t∗) ∈ Q, we have that ŷ(t∗ − t1) ∈ Q. This contradicts with the fact that
t∗ is the optimal time of Problem (Pa) and implies (16) holds.

Next, we complete the proof of Theorem 3.1 in the following two steps.
Step 1. We construct an approximate control problem for Problem (Pa).
For each δ ∈]0, t∗[ and for each u ∈ U , consider the following system,

dy(t)

dt
= f (y(t), u(t)), t > δ, (17)

y(δ) = y∗(δ). (18)

Since y0 = y1, the corresponding solutions to (10)–(11) may be multiple [cf.
example (3)–(4)]. However, by Assumptions 2.1–2.4 and (16), the local solution to
(17)–(18) is unique. This property enables us to construct an approximate control
problem for Problem (Pa). Set
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T δ := {

(T, y, u) ∈]δ,+∞[×C([δ, T ];Rn) × U; (17)−(18) holds on [δ, T ]}

and T δ
ad := {

(T, y, u) ∈ T δ; y(T ) ∈ Q
}

.

Consider the following approximate control problem for Problem (Pa),
Problem (Pδ) Find (t∗δ , y∗

δ , u∗
δ ) ∈ T δ

ad such that t∗δ = inf
(T,y,u)∈T δ

ad

T .

We claim that

t∗δ = t∗, (u∗
δ , y

∗
δ ) is an optimal pair of Problem (Pδ). (19)

Otherwise, there exist a tδ with δ < tδ < t∗ and a control such that uδ ∈ U such
that there exists a solution yδ of (17)–(18) corresponding to uδ , satisfying yδ(tδ) ∈ Q.

Set ûδ(t) :=
{

u∗(t), t ∈ [0, δ[,
uδ(t), t ∈ [δ, tδ] and ŷδ(t) :=

{

y∗(t), t ∈ [0, δ[,
yδ(t), t ∈ [δ, tδ].

Then, it is easy to check that (tδ, ûδ, ŷδ) ∈ Tad and ŷδ(tδ) ∈ Q. This contradicts
with the fact that t∗ is the optimal time of Problem (Pa).

Step 2. We get the necessary conditions for the optimal pair (u∗, y∗).
Since U is a bounded and closed set, and may not be convex, we introduce uρ as

follows, uρ(t) = u∗(t), t ∈ [δ, t∗] \ Eρ, uρ(t) = u(t), t ∈ Eρ, where ρ ∈]0, 1[,
Eρ ⊂ [δ, t∗] with meas(Eρ) = ρ(t∗ − δ), and u ∈ U . Then, by (16), we can use the
similar argument in the proof of the expression (28) in Proposition 3.1 of [7] to prove
the following fact: there exists a ρ0 > 0 such that for each ρ in ]0, ρ0[, (17)–(18) has a
unique solution yρ corresponding to uρ in [δ, t∗], satisfying yρ(t) �= y1, t ∈ [δ, t∗],
and yρ → y∗ uniformly in [δ, t∗] as ρ → 0. Hence, Problem (Pδ) can be viewed as
a classical time optimal control problem. Since t∗ is the optimal time, and (u∗, y∗)
is an optimal pair of Problem (Pδ), it holds by classical theories of time optimal
control problems (cf. [1]), that there exists a non-trivial function ψδ ∈ C([δ, t∗];Rn)

satisfying

dψδ(t)

dt
= − fy(y

∗(t), u∗(t))ψδ(t), t ∈ [δ, t∗], (20)

〈ψδ(t), f (y∗(t), u∗(t))〉 = max
u∈U 〈ψδ(t), f (y∗(t), u)〉, a.e. t ∈ [δ, t∗], (21)

〈ψδ(t∗), z − y∗(t∗)〉 ≥ 0, for each z ∈ Q, (22)

〈ψδ(t), f (y∗(t), u∗(t))〉 ≥ 0, a.e. t ∈ [δ, t∗]. (23)

Since ψδ is non-trivial, we may assume that

|ψδ(t∗)| = 1, for each δ ∈]0, t∗[. (24)

Then, by Assumption 2.4, (16) and (20), we can take a sequence {δn}∞n=1 from the set
{δ}0<δ<t∗ such that δn → 0, and the subsequence {ψδn } is uniformly convergent on
[η, t∗] for each η ∈]0, t∗[, as n → +∞.

Let ψ(t) = lim
n→+∞ ψδn (t), t ∈]0, t∗]. Then, by (20)–(24), we obtain that ψ is

non-trivial, and (12)–(15) hold. This completes the proof of Theorem 3.1. ��
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Next, Pontryagin’s maximum principle for Problem (Pa) in the case where y0 �= y1
will be considered. We need the following lemma. Set

T1 := {

(T, y, u) ∈]0,+∞[×C([0, T ];Rn) × U; (10)−(11) holds on [0, T ]}

and T 1
ad := {

(T, y, u) ∈ T1; y(T ) = y1
}

.

Problem (P1) Find (s, y, u) ∈ T 1
ad such that s = inf

(T,y,u)∈T 1
ad

T .

Lemma 3.1 Suppose that Assumptions 2.1–2.4 hold, and y0 �= y1. If s is the optimal
time, and (u, y) is an optimal pair of Problem (P1), then there exists a non-trivial
function ψ ∈ C([0, s[;Rn) holding the properties that

dψ(t)

dt
= − fy(y(t), u(t))ψ(t), t ∈ [0, s[,

〈ψ(t), f (y(t), u(t))〉 = max
u∈U 〈ψ(t), f (y(t), u)〉, a.e. t ∈ [0, s[,

〈ψ(t), f (y(t), u(t))〉 ≥ 0, a.e. t ∈ [0, s[.

Sketch proof of Lemma 3.1 Since y is the optimal state of Problem (P1), it holds that
y(t) �= y1, for any t ∈ [0, s[. For each δ ∈]0, s[, set

T δ

ad := {

(T, y, u) ∈ T1; y(T ) = y(s − δ)
}

.

Consider the following approximate control problem for Problem (P1),

Problem (P
δ
) Find (sδ, yδ, uδ) ∈ T δ

ad such that sδ = inf
(T,y,u)∈T δ

ad

T .

Then, we can use the similar argument in the proof of (19) to get that sδ = s, (u, y)

is an optimal pair of Problem (P
δ
). Furthermore, we can use the similar argument

in the proof of (20)–(24), which is the necessary conditions for Problem (Pδ), to get

Pontryagin’s maximum principle for Problem (P
δ
) in [0, s− δ]. Finally, we can prove

Lemma 3.1 as δ → 0. ��

Suppose that t∗ is the optimal time, and (u∗, y∗) is an optimal pair for Problem
(Pa) in the case where y0 �= y1. This problem can be divided into the following two
cases:

Case (i) y∗ does not pass the point y1 at any time in [0, t∗].
In this case, we can use the similar argument, which shows that Problem (Pδ) can be

viewed as a classical time optimal control problem (see the proof of Step 2 in Theorem
3.1), to prove that Problem (Pa) becomes a classical time optimal control problem,
and we can get the classical maximum principle for Problem (Pa) in this case.

Case (ii) y∗ passes the point y1 at some time.

Theorem 3.2 Suppose thatAssumptions 2.1–2.4 hold, and y0 �= y1, t∗ is the optimal
time, and (u∗, y∗) is an optimal pair of Problem (Pa). Moreover, the trajectory y∗
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passes the point y1 in [0, t∗]. Then, there exist a number s∗ ∈]0, t∗[, and two non-
trivial functions ψ1 in C([0, s∗[;Rn) and ψ2 in C(]s∗, t∗];Rn) such that

dψ1(t)

dt
= − fy(y

∗(t), u∗(t))ψ1(t), t ∈ [0, s∗[,
dψ2(t)

dt
= − fy(y

∗(t), u∗(t))ψ2(t), t ∈]s∗, t∗],
〈ψ(t), f (y∗(t), u∗(t))〉 = max

u∈U 〈ψ(t), f (y∗(t), u)〉, a.e. t ∈ [0, t∗],
〈ψ(t∗), z − y∗(t∗)〉 ≥ 0, for each z ∈ Q,

where ψ(t) = ψ1(t), t ∈ [0, s∗[, and ψ(t) = ψ2(t), t ∈]s∗, t∗]. Moreover,

〈ψ(t), f (y∗(t), u∗(t))〉 ≥ 0, a.e. t ∈ [0, t∗].

Proof Since y∗(t∗) ∈ Q, y1 /∈ Q and y0 �= y1, y∗ can only pass the point y1 in ]0, t∗[.
Suppose that s∗ ∈]0, t∗[ is the first time such that y∗(s∗) = y1. Then, y∗ satisfies
(17)–(18), where δ is substituted by s∗, and y∗(δ) is substituted by y1. Thus, since this
system is autonomous, we can use the similar argument in the proof of (16) to show
that y∗(t) �= y1, for each t ∈]s∗, t∗[, which implies that the trajectory y∗ passes the
point y1 only once in ]0, t∗[ at s∗. Then, we can use the similar argument in the proof
of (19) of Theorem 3.1 to prove that s∗ is the optimal time, (u∗, y∗) is an optimal pair
for Problem (P1), and we can get a necessary condition for the optimal time s∗ by
Lemma 3.1.

On the other hand, consider the following system,

dy(t)

dt
= f (y(t), u(t)), t > s∗, (25)

y(s∗) = y1. (26)

Set

T 2 := {

(T, y, u) ∈]s∗,+∞[×C([s∗, T ];Rn) × U; (25)−(26) holds on [s∗, T ]},

and T 2
ad := {

(T, y, u) ∈ T 2; y(T ) ∈ Q
}

.
Problem (P2) Find (˜t∗, ỹ∗, ũ∗) ∈ T 2

ad such that˜t∗ = inf
(T,y,u)∈T 2

ad

T .

It is also easy to check that t∗ is the optimal time, and (u∗, y∗) is an optimal pair
for Problem (P2). Then, we can use the similar argument in the proof of (12)–(15) in
Theorem 3.1 to get Pontryagin’s maximum principle for Problem (P2), from which
and Lemma 3.1. we can get Theorem 3.2. ��

4 Existence of Optimal Controls

Since (1)–(2) may have multiple solutions, the existence of optimal controls for Prob-
lem (P) is complex. However, if the system is affine, namely, f (t, y, u) is in the form
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g(t, y)+ B(t)u, and the control setU is convex, then we have the following existence
result for Problem (P).

Theorem 4.1 Suppose that f (t, y, u) is in the form g(t, y)+B(t)u, andAssumptions
2.1–2.3 hold, where B ∈ L∞(]0,+∞[;Rn×m). Moreover, assume that U is convex,
and Tad �= ∅. Then, there exists at least one optimal control for Problem (P).

In order to prove Theorem 4.1, we need the following lemma, which is Corollary
1.12.2 in [13].

Lemma 4.1 Assume that

(i) φ(x) is a non-negative and bounded function in [x0, x0 + a];
(ii) ψ(x) is a continuous non-decreasing function in [x0, x0 + a];
(iii) g(z) ≥ 0 is a continuous non-decreasing function for 0 ≤ z < +∞ and there

exists a φ0 > 0 such that g(z) > 0 for z ≥ φ0. Moreover, g(φ(x)) is integrable.
Then, for an arbitrary positive constant˜k, if there exists a number x1 ∈]x0, x0+a]
such that G(˜k)+ψ(x)−ψ(x0) belongs to the domain G−1, whenever x0 ≤ x ≤
x1, where G(φ) =

∫ φ

φ0

dz

g(z)
, φ ≥ φ0, and G−1 is the inverse function of G, and

the inequality

φ(x) ≤ ˜k +
∫ x

x0
g(φ(t))dψ(t), x0 ≤ x ≤ x0 + a

holds, then

φ(x) ≤ G−1(G(˜k) + ψ(x) − ψ(x0)), x0 ≤ x ≤ x1.

Proof of Theorem 4.1 Sincewe assume thatTad is not empty, it follows that t∗ < +∞.
Thus, we can utilize the definition of t∗ to get a sequence {uk}∞k=1 in U holding the
following properties: (i) t1 ≥ t2 ≥ · · · ≥ tk . . . and tk → t∗ as k → +∞; (ii)
y(tk; y0, uk) ∈ Q for all k, where for each k, y(· ; y0, uk) is a solution to (1)–(2)
corresponding to uk in [0, tk].

By Property (i), we may assume that

0 ≤ tk ≤ t∗ + 1, for all k. (27)

Because U is bounded, there exist a function u∗ in L2(]0, t∗ + 1[;Rm) and a
subsequence of the sequence {uk}∞k=1, still denoted in the same way, such that uk ⇀

u∗ weakly in L2(]0, t∗ + 1[;Rm), as k → +∞. Take a point u0 ∈ U . We extend the
function u∗ by setting it to u0 in the interval [t∗ + 1,+∞[, and denote the extension
by u∗ again. Since U is closed and convex, we have u∗ ∈ U (see the definition of U
in Assumption 2.1 and the definition of U before Definition 2.1 in Section 2).

For each k, but k fixed, write yk for y(· ; y0, uk). Then, we have

yk(t) = y0 +
∫ t

0

{

g(τ, yk(τ )) + B(τ )uk(τ )
}

dτ, t ∈ [0, tk],
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from which, Assumption 2.3 and (27), it follows that

|yk(t)| ≤ |y0| + L1

∫ t

0
|yk(τ )|αdτ + C, t ∈ [0, tk], (28)

where C ≥ 1 is a constant independent of k.
Take in Lemma 4.1 that ˜k = |y0| + C , ψ(t) ≡ t , g(z) = L1zα, z ≥ 0, φ(t)

= |yk(t)|, t ∈ [0, tk], x0 = 0, a = tk , and φ0 = 1. Thus, we have

G(φ) =
∫ φ

1

z−α

L1
dz = φ1−α − 1

L1(1 − α)
, φ ≥ 1, G−1(η)

= (L1(1 − α)η + 1)
1

1−α , η ≥ 0,

G(˜k) + ψ(t) − ψ(0) = (|y0| + C)1−α − 1

L1(1 − α)
+ t, t ∈ [0, tk].

It is clear that for each t ∈ [0, tk], G(˜k) + ψ(t) − ψ(0) belongs to the domain G−1.
Then, it holds by (27)–(28) and Lemma 4.1 that for each k,

|yk(t)| ≤G−1(G(˜k) + t),

≤(

(|y0| + C)1−α + (t∗ + 1)L1(1 − α)
) 1
1−α , t ∈ [0, tk].

Hence, there exists a constant M > 0 such that

|yk(t)| ≤ M, for all k and for each t ∈ [0, tk]. (29)

Then, we can also get the equicontinuity of {yk}∞k=1 in [0, t∗]. Thus, there exist a
subsequence of the sequence of {yk}∞k=1, still denoted in the same way, and a function
y∗ ∈ C([0, t∗];Rn), such that

yk(·) → y∗ uniformly in [0, t∗], as k → +∞, (30)

y∗(t) = y0 +
∫ t

0

{

g(τ, y∗(τ )) + B(τ )u∗(τ )
}

dτ, t ∈ [0, t∗].

That is, y∗ is a solution to (1)–(2) corresponding to u∗ in [0, t∗].
On the other hand, it holds from Assumption 2.3 and (29) that

|yk(tk) − y∗(t∗)| ≤|yk(tk) − yk(t
∗)| + |yk(t∗) − y∗(t∗)|

≤
∫ tk

t∗
|g(τ, yk(τ )) + B(τ )uk(τ )|dτ + |yk(t∗) − y∗(t∗)|

≤(

L1M
α + C1

)

(tk − t∗) + |yk(t∗) − y∗(t∗)|,
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where C1 > 0 is a constant, from which, Property (i), and (30), we have

|yk(tk) − y∗(t∗)| → 0, as k → +∞. (31)

Since Q is closed, we get by Property (ii) and (31) that y∗(t∗) ∈ Q. This implies
that u∗ is an optimal control and completes the proof of Theorem 4.1. ��

5 Conclusions

In this work, a time optimal control problem for a class of ordinary differential equa-
tions with multiple solutions was studied.

We first gave two examples of equations with an infinite number of solutions. Then,
Pontryagin’s maximum principle for the autonomous controlled system for Problem
(Pa) under Assumptions 2.1–2.4 was established. However, the non-autonomous case
was not considered in this paper and deserves to be researched. Then, we got the
existence of optimal controls for Problem (P) under Assumptions 2.1–2.3, and the
assumption that the system is affine, and the control set U is convex. How to prove
the existence of optimal controls of Problem (P) for general systems, and in the case
where U is non-convex, is a more complex and interesting problem.

The controllability problem, that is, whether Tad = ∅ or T 1
ad = ∅, is an interesting

problem, since y1 is a singular point. When y0 �= y1, we proved the Pontryagin
maximum principle under the assumption that y∗ passes the point y1 in [0, t∗]. How
to judge whether y∗ passes y1 is worth of study.
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