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1 Introduction

In this paper, we consider an optimization problem posed in a real locally convex
Hausdorff topological vector space (IcHtvs in short), called space of decisions, with
a vector-valued objective function f to be minimized on a feasible set A with respect
to a given weak partial ordering on a second IcHtvs, called space of criteria, enlarged
with a smallest element and a greatest element. The weak ordering on the extended
space of criteria is defined from a given pointed, convex cone with non-empty interior
and the task “minimize” consists of computing the weak infimum of the set f (A) in
the sense of [1, p. 93] (see also [2, p. 366]).

Different reasons for using a weak ordering in vector optimization are pointed out
by many authors. From [3, p. 1421], we quote the following sentence: “The advan-
tages and disadvantages of the different concepts [of solutions] are severely discussed
among experts. Efficient solutions are usually motivated by applications and weakly or
properly efficient solutions are motivated to be beneficial for the theory and sometimes
easier to calculate.” In particular, in multiobjective optimization they are characterized
and computed by means of scalarization (assigning weights to the different objectives).
Moreover, weak orders are essential in the construction of a complete lattice, giving
rise to a conjugate duality approach for set-valued optimization problems, which is
considerably close to the conjugate duality for scalar optimization problems (see, for
instance, [2, p. 360]). Conjugate maps and Farkas-type results are crucial in any duality
theory, and this is why they constitute the main tool and the main objective, respec-
tively, of our research. The state of the art in vector optimization is described, e.g., in
[2-5] and references therein.

The Farkas-type results are well-known basic theoretical tools in scalar optimiza-
tion. The classical Farkas lemma [6] characterizes the containment of a polyhedral
convex cone into a given half-space whose boundary contains the origin. The non-
homogeneous version of this famous result [7] characterizes the containment of a
polyhedral convex set into a given half-space and was used in the mid-1900s to provide
simple proofs of the duality theorem of linear programming and the KKT optimality
theorem of nonlinear programming. Since then, many Farkas-type results have been
proposed to characterize the inclusion of a give set A, described by some kind of
system, into another set B, typically the solution set of a single inequality, in order
to obtain optimality and duality theorems in different frameworks (see, e.g., the sur-
vey papers [8—10] and references therein). A Farkas-type result is called asymptotic
whenever the characterization of the inclusion involves the closure of certain sets,
and it is called P4/Pp whenever P4 and Pp are properties satisfied by A and B,
e.g., convexity, non-convexity or being the inverse image by some function of finitely
many complements of convex sets (reverse-convexity in brief). In particular, each
convex/reverse-convex non-asymptotic Farkas’ lemma provides a different optimality
theorem of the KKT-type.

The objective of this paper is to provide Farkas-type results for vector optimization
and to show that, like their scalar counterparts in scalar optimization, these results
have interesting applications in vector optimization and other fields.

Section 2 contains the necessary preliminaries on epigraphical calculus with scalar
functions, calculus rules for the extrema of sets in the sense of [1], and the definitions
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of conjugate and subdifferential of vector-valued maps. In Sect. 3, we characterize the
inclusion of the feasible set A into some reverse-convex set B. Since A is generally
non-convex and the characterizations of the inclusion of A in B include closures, The-
orems 3.1 and 3.2 are asymptotic non-convex/reverse-convex Farkas’ lemmas. From
these two main results, we obtain asymptotic non-convex/linear and convex/reverse-
convex Farkas’ lemmas as well as a stable convex/reverse-convex Farkas’ lemma,
where the term stability means that the mentioned inclusion is preserved by arbitrary
linear perturbations of the convex function defining the reverse-convex set B. Sec-
tion 4 provides reverse and non-asymptotic Farkas-type results, stable or not, under
alternative qualification conditions involving the data. Section 5 is devoted to the char-
acterization of the weak solutions of vector optimization problems, paying attention
to some particular types (scalar and multiobjective, constrained, and unconstrained)
of optimization problems. Finally, Sect. 6 provides applications to vector variational
inequalities and vector equilibrium problems.

2 Preliminaries

Let X be a IcHtvs, whose origin is denoted by Oy, and with topological dual space
represented by X*. The only topology we consider on dual spaces is the weak™-
topology. For a set U C X, we denote by clU, convU, and clconvU the closure,
the convex hull, and the closed convex hull of U, respectively. Note that clconvU =
cl(convU). We assume that all the cones under consideration contain the origin of the
corresponding space.

Given f : X — R U {%o0}, the epigraph of f is the set

epif :={(x,r) e X xR: x edomf, f(x) <r},

wheredom f := {x € X : f(x) # +oo}. The functionis said to be proper ifepi f #
and —oo ¢ f (X), itis convex if epif is convex, and it is lower semicontinuous (Isc,
in brief) ifepi f is closed. We denote by I" (X) the class of 1sc proper convex functions
on X.

The Legendre—Fenchel conjugate of f is the weak™-1sc convex function f* : X* —

R := R U {—00, +00} defined by

5 (x*) = sup ((x*,x) — f(x)), Vx* € X*. (1)

xeX

Let f1, f>» € I' (X) be such that (dom f1) N (dom f>) # @. Then

epi(f1 + fo)" =cl (epif]* + epifz*) , 2)

and, if one of these functions is continuous at a point in the intersection of their
domains, we actually have [11, (2.63)]

epi (fi + f2)* =epi fi + epi f5- 3)
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Let {f;, i € I} C I" (X), where [ is an arbitrary index set, and suppose that there

exists xo € X such that sup f;(xg) < 4o00. Then one has [12, Lemma 2.2]
iel

epi <sup fi> = cl conv (U epi fl*> . (€))

iel iel

Now we extend the above concepts to vector-valued functions as it is done in [2]
and [1]. Let Y be a second IcHtvs, with origin Oy and topological dual space Y*. Let
K be a non-empty, closed, pointed, convex cone in ¥ with non-empty interior, i.e.,
intK # (J. We now define a weak ordering in Y, associated with intK, in the following
way:

y1 <k y2 if and only if y; — y» € —intK.

Equivalently, y; £k v, if and only if y; — y» ¢ —intK.

We enlarge Y by attaching a greatest element 4+ooy and a smallest element
—ooy with respect to <k, which do not belong to Y, and we denote Y* :=
Y U {—o0oy, +ooy}. By convention, —ooy <g y and y <k (4ooy) forany y € Y.
We also assume by convention that

— (+o0y) = —ooy, —(—0o0y) = +00y,
(4ooy)+y =y + (+ooy) = +ooy, forally € Y U {+ooy},
(—ooy) +y =y + (—ooy) = —ooy, forally € Y U {—ooy}. (5)

The sums (—ooy) + (+o00y) and (+00y) + (—ooy) are not considered in this paper.
Given a vector-valued mapping f : X — Y, the domain of f is defined by

domf :={x € X: f(x)# +ooy},

and f is proper whendom f # () and —ooy ¢ f(X). The K —epigraph of f, denoted
by epi g f, is defined by

epig f ={(x,y) e X xY:ye f(x)+K}.

Moreover, we say that f is K —epi closed when epig f is a closed set in the product
space, and also that f is K — convex, if, epig f is a convex set (equivalently, if for any
x1,x2 € Xandp € [0, Jonehas f(pxi+(1—p)x2)—pf (x1)—A—wp) f(x2) € —K).

Given M C Y*, we shall recall the following definitions (e.g., [2, Definition 7.4.1]):

Definition 2.1 (a) Anelement v € Y* is said to be a weakly infimal element of M if
for all v € M we have v £k ¥ and if for any ¥ € Y* such that ¥ <k 7, then there
exists some v € M satisfying v <g V. The set of all weakly infimal elements of M is
denoted by WInfM, and it is called the weak infimum of M.

(b) An element v € Y* is said to be a weakly supremal element of M if for allv € M
we have v £k v, and if for any U € Y*® such that ¥ <g v, then there exists some
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v € M satisfying U <k v. The set of all weakly supremal elements of M is denoted
by WSupM, and it is called the weak supremum of M.

Definition 2.2 (a) The weak minimum of M is the set
WMinM = M N WInfM,

and its elements are the weakly minimal elements of M.
(b) The weak maximum of M is the set

WMaxM = M N WSupM,

and its elements are the weakly maximal elements of M.

Remark 2.1 (a) For any M C Y, thanks to the conventions —ooy <k y and
y <k (4ooy) for any y € Y, it is easy to check that WInfM = WInf(M U
{4o0oy}), WMinM = WMin(M U {+ocoy}), WSupM = WSup(M U {—ocoy}) and
WMaxM = WMax(M U {—ocoy}).

(b)If M # @, sincev <k (+ooy) forallv € M, +ooy ¢ WInfM (similarly, —ooy ¢
WSupM). Otherwise, if M = @, and according to the definition, WInfM = {4-ooy}
and WSupM = {—ooy} [2, Remark 7.4.1].

(c) (Y*, <k) turns out to be a complete lattice.

(d) If M # @, it is easy to see that if WSupM # {4ooy}, then v € WSupM if and
onlyifv € Y\(M —intK)and v —intK C M —intK (similarly, if WInfM # {—ooy}
then v € WInfM if and only if v € Y\(M + intK) and v + intK C M + intK).

Recall (e.g., from [13, Lemma 5.3]) that, given two non-empty sets N, V C Y such
that V is open, one has

CIN+V=N+V. (6)

If K is a non-empty, closed, convex cone in Y with non-empty interior, i.e., intK #
4, taking in (6) N = V = int K, we get

K +intK = intK, )
and consequently,
yekK ;.
y—}—y’géintK} — )y’ ¢ intK. (8)

Definition 2.3 Given § # M C Y*°, we define the set A(M) of all points above M,
and the set B(M) of all points below M by

A(M):{EEY':U<K ﬁforsomeveM}
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and
B(M):{f)eY':z')<K vforsomeveM}.

Remark 2.2 (a) One has

Y U {400y}, if — ooy € M,
AM) = { 9, if M = {400y}, 9)
{4ooy} U (M + intK), otherwise,
and
Y U{—ooy}, if + ooy € M,
BM) =10, if M = {—ooy}, (10)

{—o0y} U (M — intK), otherwise.
(b) In particular,

—ooy ¢ M # {+ooy} = A(M) = {400y} U (M +intK), (11)
ooy ¢ M # {—ooy} = B(M) = {—ooy}U (M —intK). (12)

(c) Moreover, it is easy to check that

WSupM = {+ooy} <= B(M) =Y U{—ooy}
<— +ooyeMorM —intK =Y
<= YveVY, v e M suchthatv <g 7. (13)

Analogously, we can characterize the case WInfM = {—ooy} . The first equivalence
in (13) is Proposition 2.2 (ii) in [1].

Lemma 2.1 Letd A M C Y andv € Y. Then
(v—intK C M —intK) <= v €cl(M — intK).

Proof [—>] Assume that v—intK C M —intK, andlet U be a barrelled neighborhood
of Oy . We will show that (v + U) N (M — intK) # (. Take ko € intK (remember
that intK # ). Then, there exists A > 0 such that —Aky € U. Since Akg € intK, we
getv — kg € v —intK C M — intK, and hence, v — Akg € (v 4+ U) N (M — intK).

[<=] Assume that v € cl(M — intK), and let k¥ € intK. We will show that
v—k € M —int K. Since Oy € —k + intK, there is a neighborhood U of Oy such
that U C —k +intK, and hence, v + U C v — k + intK. Now, as v € cl(M — intK),
(v — k +intK) N (M — intK) # (. Therefore, v — k + k' € M — intK for some
k' € intK, and so

t—keM—-—intK—kCcM—-—intK — intKk CcM—intK

(as intK is a convex cone), and we are done. O
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Proposition 2.1 Given 9 = M C Y* such that +0oy ¢ M # {—ooy}, the following
statements hold:

(i) @ #WSupM C Y U {+ooy}. [f WSupM # {4ooy}, then

WSupM = {v € Y\ (M —intK) : v —intK C M — intK }
=cl(M —intK)\ (M —int K), (14)

in other words, WSupM is the boundary in Y of the set M — int K.
(ii) The weak maximum of M is

WMaxM = M\ (M — intK) , (15)

so that WMaxM is a closed (compact) set whenever M is a closed (compact,
respectively) set of Y.
(iii)

Y® ={—ooy} UM —intK) U (WSupM) U A (WSupM) .
Moreover, if WSupM # {4ooy}, then
Y = (M —intK) U (WSupM) U (WSupM + intK), (16)

and the three sets in the right-hand side are disjoint.
(iv) Let M C Y be such that cIM = cl(int M) (e.g., if M is convex and intM # (),
then

WSup(intM) = WSupM = WSup(clM). a7

Proof The assumptions on M entail M NY # ¢.

(i) Tt is obvious that WSupM # ¢ and —ooy ¢ WSupM (see Remark 2.1(b)).
Thus, @ = WSupM C Y U {4+ooy} and the first claim holds.

Let WSupM # {+ooy} or, equivalently (13), B(M) # Y U {—ooy}. The first
equality in (14) comes from Remark 2.1(d) and the assumption WSupM #*
{400y}, while the second one comes from the first one and Lemma 2.1.

(ii) It is a straightforward consequence of WMaxM = M N WSupM.

(iii) According to Proposition 7.4.1(b)(d) in [2], and using (12),

Y® = (WSupM) U B (WSupM) U A (WSupM)
= (WSupM) U B (M) U A (WSupM)
— {—ooy} U (M — intK) U (WSupM) U A (WSupM) . (18)

The first assertion in (iii) holds.
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Assume now that WSupM # {+ooy}. Applying (11) to the set WSupM (note that
—ooy ¢ WSupM), we get

A (WSupM) = (WSupM + intK) U {+ooy}. (19)
According to (18) and (19),
Y® ={—ooy} U(M —intK) U (WSupM) U (WSupM + intK) U {+ooy},

and dropping —ooy and +ooy in both sides we get (16), together with the conclusion
that the three sets in the right-hand side are disjoint (see again Proposition 7.4.1(d) in
[2]).

(iv) Itis a consequence of (14) and (6), applying the last one to the sets N := intM
and V := —intK. O

Observe that (14), (15), and (17) remain true by replacing WSup, WMax, and
—intK with WInf, WMin, and intK, respectively.

We denote by L(X, Y) the space of linear continuous mappings from X to Y, and
0, € L(X,Y) is the zero mapping defined by O, (x) = Oy for all x € X. Obviously,
when Y = R, then £(X,Y) = X*.

Definition 2.4 Given f : X — Y°, the set-valued map f* : £(X,Y) = Y* defined
by

JH(L) := WSup{L(x) — f(x) : x € X} = WSup{(L — f)(X)},
is called the conjugate map of f. The domain of f* is
domf* ={L € L(X,Y): f*(L) # {+oor}}
and the K —epigraph of f* is
epig [ ={(L,y) e LX,Y)x Y : ye f(L)+K}.

Remark 2.3 (a) In[1, Definition 3.1] and in [2, Definition 7.4.2], the conjugate map
is defined for a set-valued map F : X =3 Y°.
(b) In the scalar case, when ¥ = R and K = R, the notion of conjugate map
introduced in Definition 2.4 collapses to (1) just identifying y € R with {y} € 2K.
(¢) According to Remark 2.1(a), f*(L) = WSup{(L — f)(dom f)}. Moreover,
by Proposition 2.1(i), f*(L) is the boundary of {(L — f)(dom f)} — intK if
f is a proper function and WSup{(L — f)(dom f)} # {+ooy}. The necessity
of the latter assumption can be shown by considering the finite-valued function
f :R — Rsuch that f(x) = — |x|. In fact, given L = x* € R, one has

Ry, ifx* € [—1, 1],

(L—f)(domf):{x*x+|x|: XER}:{ R, if x* ¢ [—1,1]
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so that
{(L = f)(dom f)} —intK =R,
with
bd {{(L — f)(dom f)} —intK} =@ # {+o0} = f*(L).

Proposition 2.2 Leth : X — Y*® be properand (L, y) € L(X,Y) x Y. The following
implication holds

y+hx) £k L(x)Vx € X = (L, y) € epigh”,
or equivalently
y+h(x)—Lx)¢—intKk Vx e X = y e h*(L) + K.

Proof Leth : X — Y* be proper and (L, y) € L(X,Y) x Y be such that

y+h(x) — L(x) ¢ —intK, forall x € X. (20)
Observe that (20) is equivalent to

y ¢ (L — h) (domh) — intK, 21
and then WSup{(L — &) (domh)} # {+ooy}. Indeed, assume the contrary, i.e., that
WSup{(L — h) (domh) = {+ooy}.

Then as y <g 400y, by the definition of the weak supremum there exists x € domh
such that

y <k L(x) = h(x),
or equivalently, there is x € X satisfying
y+ h(x) — L(x) € —intK,
which contradicts (20).
Now, since ¥ # (L — h) (domh) C Y and WSup{(L — h) (domh)} # {+ocoy}, we

get from Proposition 2.1(iii) the following partition of Y :

Y = {(L — h) (domh) — intK'} U WSup{(L — h) (domh))}
U {WSup{(L — h) (domh)} + intK}.
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Then, (21) yields

y € WSup{(L — h) (domh)} U {WSup{(L — h) (domh)} + intK}
C WSup{(L — h) (domh)} + K
=h*(L) + K,

and we are done. |

The following notion of subdifferential of a vector-valued function particularizes
the corresponding one for set-valued maps given in [2, Definition 7.4.2(c)] and in [1,
Definition 4.1].

Definition 2.5 Given f : X — Y*® and x € domf, we say that L € £(X,Y) is a
subgradient of f at x if

L(x) — f(x) € WSup{(L — f)(X)}.

The set of all subgradients of f atx is called subdifferential of f atx, and itis denoted
by 9f (x).

When ¥ = R and K = R, the above definition of subdifferential of f at x is
nothing else but the classical subdifferential of f at x, i.e., x* € 9f(x) if only if
f(x)— f(x) > x*,x—x)forallx € X.

Proposition 2.3 Given L € L(X,Y) and x € dom f, one has
L €df(x) <= L(x) — f(x) e WMax{(L — f)(X)}
& L(x)— f(x) € f*(L)
& (L, L(x) — f(X)) € epig ™.
Proof From Definitions 2.2, 2.4, and 2.5,
L edf(x) <= L(x)— f(x) e WMax{L(x) — f(x): x € X}
& L(x) — f(x) € f*(L)
= (L, L(x) — f(X)) € epig f™.

Now we assume that (L, L(x) — f(x)) € epig f*. Then L(X) — f(x) € f*(L) +
K, and there exists k € K such that

L(X) — f(¥) —k € f*(L) = WSup{L(x) — f(x) : x € X}.
From the definition of WSup
L(¥) — L(x) + f(x) — f(¥) —k ¢ —intK, Vx € X,
and it follows from (8) that

L(X) — L(x) + f(x) — f(X) ¢ —intK, Vx € X.
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Thus,
L(x) — f(x) € WSup{L(x) — f(x): x € X},

i.e., L € df (x). The proof is complete. O

Strong versions of the above notions of conjugate and subdifferential of a vector-
valued function can be found in the recent book [10]. O

3 Reverse and Asymptotic Farkas-Type Results
Let X, Y and Z be IcHtvs, 0z be the zero in Z, S be a non-empty convex cone in Z,

and K be a non-empty, closed, pointed, convex cone in ¥ with intK # @. Let <g be
the ordering on Z induced by the cone S, i.e.,

z1 Sg zpifand only if z; — zp € —S.
We also enlarge Z by attaching a greatest element 4007 and a smallest element —ooz
with respect to <, which do not belong to Z, and define Z® := Z U {—o00z, +00z}.
In Z°, we adopt the same sign conventions as in (5).
Let f: X > YU{4ooy}, g: X - Z U {400z}, and consider a non-empty set

CcCX.
In this paper, we associate with the data triple (f, g, C) the constraint system

{reC glx)e=S}={xeC, g =50z}
with associated feasible set
A:=Cng (=9,
and the vector optimization problem
(VOP) WMin{f(x): x € C, g(x) € -5}, (22)

where WMin concerns the weak ordering on Y® associated with K. A feasible solution
X € A is said to be a weak solution to (VOP) if

f(x) € WMinf(A).
We assume from now on that A N dom f # @J; in other words, (VOP) is feasible and
non-trivial.
When Y = R and K = R, we say that the data triple (f, g, C) is scalar. In that

case, (VOP) collapses to the scalar optimization problem

(SOP) Min{f(x) :x € C, g(x) € =S}, (23)
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where Min stands for the task consisting of identifying standard optimal solutions to
(SOP). Here Y* is nothing else than the extended real line R ordered by <g +While
L € L£(X, R) is usually written as L = x* € X*.

When ¥ = R? and K = Rfi, p > 2, we say that the data triple (f, g, C) is
componentwise. Then (VOP) becomes the multiobjective optimization problem

(MOP) “Min” {f(x) : x € C, g(x) € =S}, (24)
where “Min” stands for the task consisting of computing x € A such that

(f (x) —RLF) N f(A) = @, ie., weakly efficient solutions to (MOP), which
coincide with the weak solutions to (VOP). Here, given y = (yl, e yp) and

¥ = <y;, y;,) e R,
y<pr Y &y <y Vjiell....p}
and, consequently,
Yy £rp ¥ &= 3jo € {1, ..., p} such that yj, > y’,.
In this paper, we establish Farkas-type results from which we deduce necessary and
sufficient conditions for the existence of weak solutions to problem (VOP) and some
particular instances as (MOP) and (SOP). With this purpose, we provide next some

fundamental results which will be used in the following sections.
For T € L(Z,Y), we define the composite function T o g : X — Y* as follows:

_ JT(W), ifg(x) € Z,
(Tog)x) = { tooy, ifg(x) =400z
The indicator map ip : X — Y*® of aset D C X is defined by

Oy, ifxeD,
+ooy, otherwise.

ip(x) = {

In the case Y = R, ip is the usual indicator function.
Let us consider

Li(S,K):={T e L(Z,Y): T(S) C K).

IfY =Rand K = R, then £, (S, K) = ST, where S™ is the (positive) dual cone
of S in the sense of convex analysis, i.e.,

St={z*eZ*: (z*,5) >0 forall s € S}.

The sets of the form (f +ic + T og)*(L), with T € L, (S, K)and L € L(X,Y),
play an important role in this paper. The next example, to be used later, illustrates the
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way to calculate analytically such sets when the three involved IctHtvs, X, Y, and Z,
are finite-dimensional.

Example 3.1 LetX =R, Y =R?, Z=R, K =R%, S =Ry, and C =] — 1, +o<.
Let f : R > R? U {+oop:} and g : R — R U {400} defined by

(0, 1), if x #£0, B if x #£0,
= X =
Fx) {—i—ooRz, otherwise, and  g(x) +OOX, otherwise.

The linear mappings T € L (Ry, R%_) and L € L(R,R?) can be represented as
T(z) = (az, bz) forall z € R, witha,b € R4, and L(x) = (cx, dx) for all x € R,
with ¢, d € R. We now calculate (f + ic + T o g)*(L) for one typical case where
a>0,0<b<1,¢c=0,d <0,andd < b — 1. One has

(f+ic+Tog)"(L)
= WSup {L(x) — f(x) = (T og)(x) : x € C}

— WSup | (0, dx) — (o, l) + (“|x+ 1 Blet 1') x e C\{O}}
X X X

— WSup <a(x+l>,dx—%+b(le>> :xe]—l,—i—oo[\{O}}

X

b
= WSup yeRz:y2:<T>y1+l+

da }
,vi<0Oor y;>a
—a

V1
b—1 da ad
= yeRz:y2=ﬂ+l+ , vy <a+
a —a 1-b
or >a—+ _d}
= a+ta
V1 T—%

U([a—i—%,o} x{l—d})U({O}x [b—zm,l_d])

U([O’aﬂl%} x [b—Zm}) (25)

The set (f +ic + T o g)*(L) in (25), witha = 1, b =, c = 0, andd = —1 is
represented in Fig. 1.

We are now in the position to prove the main results of this section: two versions of
reverse Farkas lemma for vector-valued functions. Remember that we are assuming
all the time that the triple (f, g, C) satisfies A Ndom f # @ with A = C N g~ (=S).

Theorem 3.1 (Reverse Farkas Lemma I) Let (L, y) € L(X,Y) x Y. Then, the fol-
lowing statements are equivalent:

(a1) gx) € =S, xeC = f(x)—L(x)+y ¢ —intK,
(b1) (L,y) €epig(f+ia)*.
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Fig. 1 Representation of the set (f +ic + (1, %) 0g)*(0,—1)

Proof Taking h := f + iz, one has domh = AN domjf # (. Then, by Proposition
2.2, the following implication holds:
y+ (f+ia)x)—Lx) ¢ —intK, Vx € X = y e (f+ia)"(L)+ K. (26)
[(a;) = (b1)] Assume (aj) holds, i.e.,
gx)e -S,xeC = f(x)—L(x)+y¢ —intK,
or, equivalently,
y+(f+ia)(x) — L(x) ¢ —intK,Vx € X.

It then follows from (26) that (L, y) € epig (f +ia)*.
[(b1) = (a1)] Assume (by) holds, i.e.,

ye(f+ind*(L)+ K.
This accounts for the existence of k € K such that
y—ke(f+in)"(L)=WSup{L(x) — (f +ia)(x): x € X}.
By the definition of WSup, one has
y—k—(L(x)—(f+ia)(x)) ¢ —intK, Vx € X.
It follows from this and (8) that

y+ (f +ia)(x) — L(x) ¢ —intK, Vx € X,
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which is equivalent to
gx)e—-S, xeC=y+ f(x) — L(x) ¢ —intK.

The proof is complete. O

Theorem 3.2 (Reverse Farkas Lemma II) Let x € A N dom f. The following state-
ments are equivalent:

(1) gx) € =5, x € C = f(x)— f(X) ¢ —intK,
(d1) Oz € 3(f +ia)(x),
(e1) (Og, —f (X)) € epig (f +ia)"

Proof [(c1) <= (e1)] follows from Theorem 3.1 with L =0, andy = — f(X).
[(d1) <= (ey)] follows from Proposition 2.3 applied to L = 0, and the function
f+ia. O

In the absence of the vector-valued function g (or, equivalently, when g (x) = 0z
for all x € X), Theorem 3.2 yields the following immediate corollary:

Corollary 3.1 Let x € C Ndom f. Then the following statements are equivalent:

(f1) f(x)— f(X) ¢ —intK Vx € C,
(g1) 0z €d(f +ic)x),
(h1) (Og, —f(x)) € epig(f +ic)".

When we apply Theorem 3.2 to the scalar optimization problem (SOP), we obtain
the characterization of optimality given in the following corollary, which does not
require the classical closedness and convexity assumptions on C, f € I' (X), and
S—epi closedness and S—convexity of g. It is worth noting that the first statement (i)
in the next corollary means that X is an optimal solution of (SOP).

Corollary 3.2 Let (f, g, C) be a given scalar triple and x € A Ndom f. Then the
following statements are equivalent:

(i) gx)e =S, xeC = fx) - f(x) =0,
(0 Ox+ € 3(f +ia)(X),
(k1) (Ox+, —f (X)) €epi (f +ia)"

In the rest of this section, we consider some special cases where the results above
collapse to several well-known asymptotic Farkas-type results in the literature ([14,
15]). These results have been used to get optimality conditions, duality theorems, and
set containment characterizations for (SOP). In particular, Corollary 3.2 leads us back
to the following asymptotic Farkas lemma in [16] (see also [8]).

Corollary 3.3 (Asymptotic linear Farkas Lemma) Let g € L(X, Z), with adjoint

operator denoted by g*, and assume that the cone S is closed. Given x* € X*, the
following statements are equivalent:
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() glx) e =S = (x*,x) >0,
(my) —x* € cl(g?(ST)).

Proof The conclusion follows from Corollary 3.2. Indeed, let us take f(-) := (x*, -),
and x =0y € g_1 (—=S). Then f(x) = 0, and it follows from Corollary 3.2 that

() < (0x+,0) € epi(f +ia)", 27

where A = g~ 1(—S). It is a standard fact that i, = sup,«cg+(z* o g), and hence, by
(4), one obtains

epiiy = clconv U epi(z* o g)*

Z*esSt
We now have, by the last equality and the convexity of ST:
epi(f +ia)* = epif* +epiif  (by (3)

= {x*} x Ry + clconv U epi(z* o g)*

7*eSt

= {(x*} x Ry +cleonv | | J {z"og) x Ry

7*eSt

= (") xRy el | [ (zFog) xRy

7*eSt

= {x*} x Ry +cl(g*(ST)) x Ry
Therefore,
(0x+,0) € epi(f +ia)* &= —x* € cl(g"(5T)).
The conclusion follows from the last equivalence and (27). O

Next we are approaching scalar asymptotic Farkas-type results for convex systems.
Now, Y =R, K =Ry, f € I'(X), and C is a non-empty, closed, convex set in X.
Additionally, we assume that g is S—epi closed and S—convex. Note that, under these
assumptions, g 1(—S) is a closed, convex set and ic € I"(X).

As a consequence of Theorem 3.1, we now can provide an asymptotic Farkas
lemma for convex systems with linear perturbations which extends some results in the
literature ([15,17]).

Corollary 3.4 (Asymptotic convex Farkas Lemma for linear perturbations) Let
(f, g, C) be a scalar triple such that f € I'(X), C is a closed, convex set, and g
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is S-convex and S-epi closed. Then, for any pair x* € X* and o € R, the following
statements are equivalent:

m) gx)e -8, xeC = f(x)— (x*,x)+a>0,
(01) x*, o) ecl| U epi(f+ic+z"0g)"|,

7*eSt
(p1) there exists a net (z;“),-el C ST such that

f(x) 4+ liminf;(zf o g)(x) — (x*,x) +a > 0, Vx € C.
Proof We apply Theorem 3.1 with Y =R, K =R, L = x* and y = «. Then, (ny)

is equivalent to (x*, o) € epi(f + i4)*. The equivalence of (n;) and (o1) follows
from the following formula (28) in [18, Theorem 8.2]:

epi(f +in)* =cl| |J epi(f +ic+z" 00| (28)

7¥eSt

[(01) = (p1)] Assume that (01) holds. Then, there exist nets (z})ie; C St,
(x],ri)ier C X* x R such that x7 — x* and r; — « and that

(f+ic+zfog)"(x]) <r, Viel,
which leads to
F) + (Zfog)x) — (x/',x)+ri >0,Vx € CandVi € I.
Since x — x* and r; — «, (p1) follows from the last inequality.
[(p1) = (ny)] For any x € C such that g(x) € —S one has (z* o g)(x) < 0 for

all z* € ST. Hence, if (p1) holds, one has for such x, f(x) — (x*, x) + « > 0 which
means that (ny) holds. The proof is complete. O

Remark 3.1 Since we also have [19, p. 328]
epi(f +ia)* =cl | epif* +epiif+ | epizog)*|. (29)
7*eSt
it follows that (np) is also equivalent to
(x*, ) ecl|epif* +epiij+ U epi(z* o g)*
7*eSt

The Farkas lemma for linearly perturbed convex systems in Corollary 3.4 extends
the sequential Farkas lemma for convex systems given in [17, Proposition 4] and in
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[15, Theorem 2.1], where (x*, @) = (Ox+, 0) (in [15], also C = X). When the set in
the right-hand side of (01) is closed, Corollary 3.4 leads to the stable Farkas lemma
for convex systems ([14, Theorem 3.1], [20, Corollary 4]). Extensions of this result
to non-convex systems will be established in the next section. It is worth observing
that conditions (28) and (29) have been used in the framework of duality theory (see,
e.g., [18,19]) while some of their generalizations have been used for extensions of
Farkas-type results (see, [20,21]). Moreover, when taking x* = Ox+ in Corollary 3.4,
the result collapses to an asymptotic Farkas lemma in the next corollary that extends
the sequential Farkas lemma established in [15, Theorem 2.1], where C = X and the
map g was assumed to be continuous (assumption which is much stronger than the
S-epi closedness required below).

Corollary 3.5 (Asymptotic convex Farkas Lemma) Let (f, g, C) be a scalar triple
and a € R. Assume that f € I'(X), the convex set C is closed and g is S-convex and
S-epi closed. Then the following statements are equivalent:

(q) gx)e =S, xeC = fx¥)+a=0,

(r)) Ox+, @) ecl| U epi(f+ic+z"0g)]),
7*est
(s1) there exists a net (z})ier C ST such that

f(x) + liminf; (zf o g)(x) +a >0, Vx € C.

The next stable Farkas lemma for convex systems under linear perturbations [14]
is a direct consequence of the previous results.

Corollary 3.6 (Stable convex Farkas Lemma) [14] Let (f, g, C) be a scalar triple
such that f € I'(X), the convex cone S is closed, and g is S-convex and S-epi closed.
Then, the following statements are equivalent:

(t1) The set |J epi(f +ic+z*og)* is weak*-closed,
z¥eSt
(v1) For any pair (x*, a) € X* x R, it holds

{gx)ye—-S, xreC= f(x)— (" x)+a >0}
¢
{3z* e ST Vx e C: f(x)+ (ZFog)(x) — (x*, x) +a > 0}.

Proof The result is a direct consequence of the equivalences in Corollary 3.4. O

4 Farkas-Type Results for Vector-Valued Functions

In this section, we consider the triple (f, g, C) corresponding to problem (VOP) in
(22),with A =CnN g_l (—S) such that A Ndom f # @, and we establish a version
of Farkas lemma for vector-valued functions corresponding to the mentioned problem
(VOP). We firstly give some preliminary lemmas.
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Lemma 4.1 It holds

L epix(f +ic+T og)* Cepig(f +ia)". (30)
TeLl,(S,K)

Proof Take arbitrarily (L, y) € U epig (f +ic + T o g)*. Then there exists
Tel (S,K)

To € L(S,K) suchthaty € (f +ic + Tp o g)*(L) + K. Hence, there is kg € K

such that

y—koe(f+ic+Toog) (L) =WSup{L(x)— f(x) — (Toog)(x):x €C}.
By the definition of WSup, one has
L(x)— f(x)—(Thog)(x) —y+ko ¢ intK, Vx € C. a3

Observe that if x € A, then —(Tp o g)(x) € K (as Tp € L4(S, K)). From this, (31)
and (8), we get

L(x)— f(x)—y¢intK, Vx € A,
or equivalently,
y+(f+ia)(x) — L(x) ¢ —intK, Vx € X.
According to Proposition 2.2, we conclude
(L,y) €epig(f+ia),
and so the inclusion (30) has been proved. m]

The next example shows that the inclusion (30) can be strict.

Example 4.1 Let X, Y, Z, K, S,C, f, and g, be as in Example 3.1. Now we shall
prove that

(L. (=1, -2)) eepig(f +in)™\  |J epixg(f +ic+Tog)"
TeLi(S,K)

for L = (0, —1), by showing that

(—1,-2) ¢ [(f+iA)*(Z)+Ri]\ U [(f+ic+Tog)*(D +R2+].

TeLly(S.K)
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On the one hand, since A = C N g‘l(—S) =]0, +oo[, we have

(f +ia)*(L) = WSup {L(x) — f(x) : x € A}

—WSup{(O, —Xx) — ( %) X > 0}
x {=

= WSup

ol (1r-2) -

2) U ({0}x] — o0, -2,

so that
(-1,-2)e(f+ iA)*(L) +R2 = R_ x [-2,400) U (R4 x R).

On the other hand, recalling that (7 o g)(0) = T (400) = 4-00R2, we can write, for
any T = (a,b) € R2,

(f+ic+Tog)"(L)=WSup{L(x)— f(x) = (Tog)x): x € C}
:WSup{(O, ) — <0, %) + <“|x +1 b|xx+ 1') xe C\{O}}

X

=WSup{(a <x+1),—x—l+b(x+1>> :xe]—1,+oo[\{0}}.
X X X

Table 1 describes U [(f +ic+Tog)* ( ) + RR2 ] as a union of sets of the
Tel,(S,K)

form (f +ic + (a,b) o g)* (Z) + Ri for (a, b) € L;, where {Lq, ..., Lg} is the
partition of Rﬁ_ in the second column of Table 1. Observe that (25) allows to express
(f+ic+(a, b)og)* (Z) —HRi asitappearsinrow 6, column 3 of Table 1, corresponding
to the harder case that (a, b) € Lg. Similar calculations provide (f + ic + (a, b) o
* (L) +R%fori=1,..8,i#6.

The conclusion follows from the fact that no set in column 3 of Table 1 contains
(-1, -2).

We shall need the following technical lemmas:

Lemma 4.2 Let (L,y) € L(X,Y)x Y and T € L(Z,Y). The following implication
holds:

y+(f+ic+Tog)x) £k Lx)Vx € X = (L.y) € epig(f +ic+Tog)",
or equivalently,

y+(f+ic+Tog)(x)—L(x) ¢ —intKVx € X
= ye(f+ic+Tog)"(L)+K,
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Table 1 Description of (f +ic + (a, b) o g)* (Z) —+ ]R%r

i (a,b) € L; (f+ic+(a,b)0g)*(D+Ri

1 {©,0)} Ry xR

2 {0} x]0, 1] Ry xR

3 {0, 1) (R— x [2, 400 U (R4 x R)

4 {0} x]1, +o0[ Ry xR

510, +oolx (0} [y e B2y 2 5 — 70 1 10, 2al} U (0. 201 x 2. ool

2. b=1 S - & —A=

6 10, -+o0[x10, 1[ e = (B )0 +1 - 5t v dla - 5t i

U([a— 145.0] x 12, +ool) U ([0, + s ] % 15— 2V T= . +ovl)

7 10, +oo[x {1} (R- x[2, +00]) U (R4 x [1, +o0[)
8 10, +oo[x]l,+oo[  {+oog2}

Proof 1t comes from Proposition 2.2 by taking & := f 4+ ic + T o g and observing
that dom(7T o g) = g~ 1(Z), so that

dom(f +ic+Tog) = (domf)NCNg ' (Z) > (domf)N A # ¢.

Lemma 4.3 Let (L, y) € L(X,Y) x Y, and consider the following statements:

(a1) gx) e =S, xeC = f(x) — L(x)+y ¢ —intK,
(az) 3T € L1 (S, K) such that

(L,y) € epig(f +ic+Tog)"
(b2) AT € L (S, K) such that
fx)+ (Tog)(x)—L(x)+y¢ —intK, Vx € C.
We have the following relationships among them:
(a1) < (a) < (by).

Proof [(a1) <= (az)] It follows from Lemma 4.1 and Theorem 3.1

(a2) < (L,y) € UM+ 5.1, SPIK(f Fic+Tog)"
= (L.y) €epig(f+in)* < (ap). 32)

[(az) = (b2)] Assume that (az) holds; in other words, there exist T € L4 (S, K)
and k € K such that

y—ke(f+ic+Tog)*L).
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Therefore,
y—k—Lx) + f(x) +ictx)+ (T og)(x) ¢ —intK, Vx € X.
Now, again by (8), we get
y—Lx)+ f(x) +iclx)+ (T og)x) ¢ —intK, Vx € X, (33)

which is nothing else but (b3).
[(b2) = (a2)] This implication follows from Lemma 4.2. O

Next we present the main result in this section.
Theorem 4.1 (Stable reverse Farkas Lemma)

{ePiK(f +ia)*= U epig(f+ic+Tog)"
TeLy(S,K)

V(L,y) e LX,Y) x Y, (a1) < (az) < (b2)}.

Proof () Now the implication in (32) is an equivalence.
(1) The implication (a;) = (az) yields

epig (f +in)* C | J epixg(f+ic+Tog"
Teli(S,K)

and we finish the proof by applying (30). O

Remark 4.1 The equivalence (a1) <= (az) in Theorem 4.1 is called stable as it holds
forall (L,y) € L(X,Y) x Y.

Remark 4.2 When we are confined to the convex (SOP) (ie., f € I'(X), Cis a
closed, convex set, and g is S-convex and S-epi closed), the equality

epixg (f +ia)* = | J epixg(f+ic+Tog" (34)
Tel (S,K)

is equivalent to the weak*-closedness of | J epi(f +ic + z* o g)*. This condition
Z*eSt

is necessary and sufficient for the stable Farkas lemma and stable Lagrange duality

for (SOP) in [14] (see also [20]). The following example illustrates the fulfillment of

(34).

Example4.2 Let X = R, Y = R, Z = R, K = R}, S = Ry, C =10, 1],
f(x) =(x,x),and g(x) = —x. Weaddto Y = R2a greatest and smallest elements
with respect to the ordering defined by K = R?, denoted by —oog> and +oog:,
ie,Y® =R2U {—oog2} U {+00R2}. Observe first that A = C N g '(=S) =10, 1.
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Let L € £(X,Y) = L(R,R?) be defined by L(x) = (ax, fx) forallx € X =R
(a, B € R). Then one has

(f +in)*(L) = WSup {((@ — Dx, (B — Dx) e R*: x € A=]0, 1[}.

On the other hand, for any 7 € L4(S,K) = Li(Ry, Ri) (it is easy to see that
T(z) = (az,bz) forall z € Z =R witha > 0 and » > 0), one has

(f +ic+Tog)" (L) = WSup{((@ +a— Dx, (B+b—1x) : x €10, 1[}.

Routine calculations show that condition (34) holds.

Theorem 4.2 (Partially stable reverse Farkas Lemma) The following statements are
equivalent:

(c2) epig (f+HA)*"N({0}xY)= ( U epig(f+ic+To g)*)ﬁ({OL}XY)~
TeLl(S,K)
(d2) Foranyy €Y,

{gx)e =S, xeC = f(x)+y¢—intK}

&2
(3T € Li(S,K) suchthat y + f(x) + (T o g)(x) ¢ —intK Vx € C}.

Proof 1t is similar to the proofs of Lemma 4.3 and Theorem 4.1, but taking L = O.
O

Remark 4.3 Again for the convex (SOP) (i.e., f € I'(X), C is a closed, convex set,
and g is S-convex and S-epi closed), condition (c¢z) accounts for the closedness of
U epi(f +ic + z* o g)* regarding the set {Ox=} x R (recall that a set A is said to

Z¥eSt
be closed regarding to the set B if BN clA = BN A, see, e.g., [18, p. 56]), and this
condition is sufficient for generalized Farkas lemma for systems involving extended

real-valued functions (see, e.g., [14,20,21]).

The following example illustrates the fulfillment of (c3).
Example4.3 Let X =R, Y =R?>, Z =R, K =R%, S =Ry, C =]—-11],
f(x) = (x,x%),and g(x) = —x. Weaddto Y = R%?a greatest and smallest elements

with respect to the ordering defined by K = R? , denoted by —oog. and +oopa, i.e.,
Y* =R?*U {—ooR2} U {4-00R2}. Observe firstly that A = C Ng~'(—=8) =10, 1[ and

(f +ia)*(0g) = WSup {(—x, —x?) : x € A=10, 1[}
= (I —00,0] x {0}) U ({0} x] — 00, 0D).

Therefore,

(f +ia)*0g) +R2 =R\ (-R%,).
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So,
epig (f +ia)* N (102} x V) = (02} x (RP\(-RL))). (35)
On the other hand, given T = (a, b) € L+ (R4, Rﬁ_) = Rﬁ, one has

(f +ic+T og)*(0g) :WSup{((a— 1)x, bx —x2> xel—1, 1[}.

New routine calculations, together with (35), show that (¢z) holds.

For problem (SOP), Theorems 4.1 and 4.2 yield, respectively, the following ver-
sions of well-known Farkas-type results where we succeeded to eliminate superfluous
convexity and lower semicontinuity assumptions. In particular, in [22] the authors
require convexity of the involved sets and functions but, in page 1313, they claim that
“most results remain valid even if one drops the convexity assumptions.” Of course,
for problem (SOP) in (23), we also assume that A N dom f # @.

Corollary 4.1 [22, Theorem 6.7] For problem (SOP) in (23), the following statements
are equivalent:
(e2) epi(f +ia)*= U epi(f+ic+z"og)"
*esSt
(£2) Forany x* € X* and any o € R,

{gx)e =S, xe C = f(x)—{(x*,x)+a=>0}

(3
{EI 7* € ST suchthat f(x) + (zF o g)(x) — (x*,x) +a >0, Vx € C}.

Corollary 4.2 [22, Theorem 6.6] For problem (SOP) in (23), the following statements
are equivalent:

(g2) epi(f +ia)*N({0x+} x R) = ( U epi(f +ic+z*o g)*) N({0x+} xR).
7*eSt

(hp) Foranya € R,

{fgx)e-S,xeC = f(x)+a=>0}

(3
{Elz* € St such that f(x) + (¥ o g)(x) +a >0, Vx EC}.

Condition (ep) is called in [22] weak conical epigraph hull property relative to f,
whereas (f2) is called stable Farkas rule with respect to f. The mentioned paper does
not assume the lower semicontinuity of the involved functions. In [22], the following
condition, similar to (e2), and called conical epigraph hull property relative to f, is
also exploited:

(€2) epi(f +ia)* =epif™+ epiif+ |J epi(z*og)*.

7*eSt
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The conditions in Corollaries 4.1 and 4.2 are the weakest ones (necessary and
sufficient conditions) for such Farkas-type results. They are conditions (ez) and (g2),
which correspond to the scalar versions of (34) and (c2), respectively, but without
convexity (see Remark 4.2).

5 Applications to Vector Optimization

This section focuses on the vector optimization problem (VOP) in (22):
(VOP) WMin{f(x): x € C, g(x) € =S},

assuming once again A Ndomf # ¥, where A = C N g~ (—S5) is the feasible set.
Recall that an element X € A is said to be a weak solution to (VOP) if

f(x) € WMinf(A).
By Proposition 2.1(ii),

X is a weak solution of (VOP) <= f(x) — f(x) ¢ —intK, Vx € A
—f{gx)e -5, xeC= f(x) — f(x) ¢ —intK}.
(36)

The next result is a straightforward consequence of Theorem 3.2.

Proposition 5.1 Let x € A Ndomf. The following statements are equivalent:

(a3) x is a weak solution to (VOP),
(b3) Oz € 3(f +ia)(X),
(e3) (O, —f (X)) € epig (f +ia)*

Example 5.1 ([23, Example 8.6]) Consider the multiobjective optimization problem
(MOP) in 24), with C =X =Y =R%, Z =R, K =R}, S =Ry, f(x1,x2) =
(x1, x2), and g(x1, x2) = max{—xq, 0} —x2. WeaddtoY = RZa greatest and smallest
elements with respect to the ordering defined by K = R, denoted by —oog> and
+00R2, L.e., Y* = R? U {—oog2} U {+00R2}. Obviously, the elements of L(X, Y)
can be identified with 2 x 2 matrices and O, with the null matrix. It is clear that
A={x¢€ RZ . x2 >0, x; +xp > 0}, and hence

(f +ia)*(0g) = WSup {—(f +ia)(x) : x € R?} = WSup {—A}
=(1—00,0] x {0}) U{x e R? : x| > 0, x| +x, =0}

So, given x € A, (Oz, —f (X)) € epig (f +ia)* if and only if
—fG)=—Xxe(f+in* (05)+R2 ={xeR*:x,>00rx; +x >0}
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if and only if x is a boundary point of A. Thus, by Proposition 5.1, we see in this
example that the set of weak solutions to (MOP) is nothing else than the boundary of
A. Observe that these boundary points satisfy

0£(x) — f(x) = —x € WSup {01; (xX) = (f+indk) :x € Rz} .
or equivalently,

O € 0(f +ia)(x).
Next we establish our main result for (VOP).

Theorem 5.1 (Optimality conditions for (VOP)) Consider the problem (VOP) in (22),
and let x € A Ndom f. Then the following statements are equivalent:

(d3) epig (f +ia)" N{Og, —f(X)} = ( U epig(f+ic +Tog)*> N

TeLl(S,K)
{Og, —f XN}
(e3) x is a weak solution of (VOP) if and only if there exists T € L. (S, K) such
that

—fE)e(f+ic+Tog)*Og)+ K.

(f3) X is a weak solution of (VOP) if and only if there exists T € L4(S, K) such
that

fxX)+(Tog)(x)— f(x) ¢ —intK, Vx € C.
Moreover, if one of the three statements holds, then the linear operator T €
L (S, K) whose existence is stated in (e3) and (£3) can be chosen such that
—(T o g)(x) € K\intK.
Proof [(d3) <= (e3)] It follows from Proposition 5.1 that
X is a weak solution of (VOP) <= (0, —f(¥)) € epig (f +ia)". 37

On the other hand, it is clear that

Oz, —f(x) € U epig (f +ic+Tog)*
TeLl(S,K)

4 (33)
AT € Li(S,K): —f(xX)e(f+ic+Tog)*0p) +K,
and hence, the equivalence of (d3) and (e3) follows from (37) and (38).

[(e3) = (f3)] Assume that (e3) holds and x is a weak solution of (VOP). Then
there exists 7 € L4(S, K) such that —f(x) € (f +ic + T o g)*(0z) + K. Then,
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there exists k € K such that — f(x) —k € (f +ic + T o g)*(0). By the definition
of the conjugate function, one has

(f+ic+Tog)x)— f(¥) —k ¢ —intK, Vx € X,
so that
(f+ic+Tog)x)— f(x) ¢ —intK, Vx € X,
or equivalently,
)+ (T og)(x) — f(X) ¢ —intK, Vx € C. (39)

Conversely, let us take 7 € L£4(S, K) such that (39) holds. Now if x € C and
g(x) € =S, then —(Tog)(x) € K (as T € L4(S, K)), and it follows from (8) and
(39) that f(x) — f(x) ¢ —intK, which shows that x is a weak solution of (VOP).
[(f3) = (e3)] It follows from Lemma 4.2 with L = 0, and y = — f(X).
Lastly, by substituting x = x into (39), we get —(T o g)(x) ¢ intK. On the other
hand, g(x) € =S, T € L(S, K) yield —(T o g)(x) € K, and so, —(T o g)(x) €
K\intK . The proof is complete. O

Remark 5.1 If we consider the (SOP) problem in (23) with the assumptions that f €
I'(X), the convex set C is closed, g is S-convex and S-epi closed, Proposition 5.1
offers an asymptotic optimality condition for (SOP): X is an optimal solution of (SOP)
if and only if

(Ox+, —f(®) € epi(f +in)* =cl| | epitf +ic+2*09)*

7*eSt

(the last equality follows from [18, Theorem 8.2], see also (28)). So in this case, the
weak*-closedness of the set UZ*€S+ epi(f +ic + z* o g)* implies that (d3) holds at
Xx. Moreover, in this specific case, one get a non-asymptotic optimality condition for
(SOP): x is an optimal solution of (SOP) if and only if there is z* € S such that
(Ox*, —f(x)) € epi(f +ic + z* o g)*. This simple example illustrates the use and
significance of condition (d3).

In the case g = 0z and C = X, the problem (VOP) becomes the unconstrained
vector optimization problem

(UVOP) WMin { f(x) : x € X}. (40)

Corollary 5.1 Let x € domf. Then x is a weak solution of the problem (UVOP), if
and only if Oy € af (X).

Proof The conclusion follows from Proposition 5.1 with g = 0z and C = X. O
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If we take ¥ = R and K = Ry, then the problem (UVOP) collapses to the
unconstrained scalar optimization problem

(USOP) Min{f(x) : x € X}.
Then, according to Corollary 5.1, X € X is an optimal solution to (USOP) if and only
if Ox+ € af (x).

We now turn back to the (SOP) problem in (23). The optimality conditions above
lead us to the corresponding ones for (SOP), which are new and interesting in the sense

that they are obtained in the absence of assumptions on convexity, lower semicontinuity
of functions/mappings, and closedness of the constraint set.

Corollary 5.2 Let x € A Ndomf. The following statements are equivalent:

(8) Cpi(f+ia)") N {Ox, —f()N} = ( U epi(f +ic +Z*08)*>

z¥eSt
N{Ox=, = f ()}
(h3) X is an optimal solution to (SOP) if and only if there exists 7* € ST such that

Ox+ € 0(f +ic+7F0g)X) and (¥ o g)(x) =0.
(i3) X is an optimal solution to (SOP) if and only if there exists z* € S such that
FX)+ @ og)x) — f(X) >0, Vx € C.
Proof The conclusion follows from Theorem 5.1, taking into account the equivalence

between (h3) and (e3) (see, e.g., Proposition 2.4.2(iii) in [11]) since (z* o g)(x) = 0
as K\ intK = Ry \(intR;) = {0}. O

6 Other Applications
In this last section, we apply the Farkas-type results for vector-valued functions estab-
lished in Sect. 4 to vector variational inequalities and vector equilibrium problems.

We are under the same assumptions of the previous sections, i.e., X, Y are IcHtvs, C
is a non-empty subset in X, and K is a pointed, convex cone in Y such that intK # (.

6.1 Vector Variational Inequalities
Now we consider the so-called extended vector variational inequality
(EVVI) Find x € C such that F(x)(z —x) £x H(x) — H(z) forall z € C,

where F : X — L(X,Y)and H : X — Y.
If H = 0, we obtain the vector variational inequality

(VVI) Find x € C such that F(x)(z —x) £x Oy forallz € C.
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Remark 6.1 (a) (EVVI) was introduced in [2, p.356] with the efficient ordering in Y
generated by K (y; <k y2 <= y2 — y1 € K\{0y}) in a more general form (with H
being a set-valued mapping).

(b) When Y = R and K = R, then the problem (EVVI) becomes the general
variational inequality

Find x € C such that F(x)(z —x) > H(x) — H(z) forallz € C.

Such a model covers the special case when F is a continuous linear operator from X
to X*, and H is a proper, Isc and convex function considered in [24,25]. In this case,
the problem (VVI) collapses to the ordinary variational inequality problem

Find x € C such that F(x)(z —x) >0 forallz € C.
For a fixed x € C, we consider the vector optimization problem
(VOP(F, H, x)) WMin {F(x)(z —x)+ H(z) — H(x) : z€ C}.

It is worth observing that x € C is a solution of the problem (EVVI) if only if x is a
weak solution to the vector optimization problem (VOP(F, H, X)).

Theorem 6.1 (Characterization of solutions of (EVVI)) Let x € C. Then the following
statements are equivalent:

(aq) x is a solution of (EVVI),
(by) —F(X) € 3(H +ic)(%),
(ca) — (F(x), H(x) + F(x)(x)) € epig (H +ic)*.
Proof Let fx: X — Y be the vector-valued function defined by
fx()=FX)(—Xx)+H()— HX). (41)
Obviously,
(ag) < fx(x) =0y € WMin fx(C).

[(ag) <= (cq)] In order to apply Proposition 5.1, we need to make some previous
calculations. By the definition of conjugate function, we get

(fr +ic)"(L) = WSup{L(z) — f¥(z) —ic(z) : z € X}
= WSup{(L — F(x))(2) — (H +ic)(2) 1z € X} + H(X) + F(X)(X)
= (H +ic)* (L — F(X)) + H(X) + F(X)(X).

(The second equality above holds by [1, Proposition 3.2(i)]). Hence,

epig (fr +ic)" = epig (H +ic)" + (F(¥), H(X) + F(X)(X)). (42)
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Proposition 5.1 yields the equivalence between (a4) and the condition (O, Oy) €
epik(fx + ic)*, but from (42)

Oz, 0y) € epik(fx +ic)* <= — (F(x), H(X) + F(¥)(X)) € epig (H +ic)",

(43)
which is (cg).
[(ag) <= (by4)] It also follows from Proposition 5.1, which establishes
(ag) <=0, € d(fz +ic)(x),
or, equivalently,
Oy = 02(X) — (f& +ic)(X) € (fe +ic)* (Og) (44)
= (H +ic)" (-F (X)) + H(X) + F(X)(X). (45)
This is also equivalent to
—F(@X)(xX) = H(X) —ic(X) € (H +ic)* (=F(¥)),
which accounts for (see Proposition 2.3)
—F(x)ed(H+ic)(x),
and the equivalence is proved. The proof is complete. O

Example 6.1 Consider the following problem (VVI) with X =Y =R? K =R? :

. X1 X1 71 — X1 0
Find x € C such that <x2 O) (Zz B x2> <Ri (O) , VzeC,

where C = {z e R? : 71 4+ 22 < 2}, and again Y°* = R? U {—ooR2} U {+00R2}. Now
we show that x = (1, 0) is a solution of (VVI). Indeed,

iE(—F (@) = WSup [~ F(®)() —ic(2) : z € R?}

11
=WSup{—<00> (2) 2y +Zz§2}

= WSup { (—110— Z2> i1t < 2}

= WSup {[-2, +-00[x{0}}
=R x {0}.

Itis easy to see that —F (x)(x) —ic(x) = (—1,0) € ié(—F()E)), which is equivalent
to —F(x) € dic(x). By Theorem 6.1, x = (1, 0) is a solution of (VVI) (here H = 0).
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6.2 Vector Equilibrium Problem

Let F : X x X — Y* be a bifunction satisfying F'(x,x) = Oy forall x € C. We
consider the vector equilibrium problem

(VEP) Find x € C such that F(x,z) £x Oy forall z € C.

Remark 6.2 (a) (VEP) was introduced in [2, p.380] for a set-valued map F :
X x X =Y U{+ooy}.
(b) When Y =R and K = R, (VEP) collapses to the equilibrium problem

Find x € C such that F(x,z) >0 forall z € C.

For a fixed x € C, we consider the vector optimization problem associated with
(VEP):

(VOEP (F, %)) WMin{F(¥,z):z € C}.

Observe that x € C is a solution of (VEP) if and only if X is a weak solution of
(VOEP(F, x)). The following result is a straightforward consequence of Proposition
5.1

Theorem 6.2 (Characterization of solutions of (VEP)) Let x € C. Then the following
statements are equivalent:

(as) x is a solution of (VEP),

(bs) Oz € I(F(x, ) +ic) (X),

(cs) (0z,Oy) € epig (F(x,-) +ic)*
Example 6.2 Consider the following (VEP) problem, with X = ¥ = R?, K = R% :

(VEP1):  Find x € C such that F(x,z) = X} = xz 200 (0) . vzec
' R N Ri\0) "

0
show that x = (1, 0) is a solution of (VEP). Indeed, observe that

where C = [—1, 1] x [—1, 1]. Obviously, F(x, x) = <O> for all x € R%. We shall

(F@E, ) +ic)* (0p) = WSup{ CFE2) —ic(D) iz e RZ]

— WSup{ (ZI; 1) cze[=1, 1] x[~1,1] }

= WSup{[—2, 0] x [—1, 11}
= (] — 00, 0] x {1}) U ({0} x] — o0, 1]).
It is easy to see that 02(¥) — (F(%,%) + ic(¥)) = (0,0) € (F(&,-) +ic)"(0g),

which is equivalent to O, € B(F (x,) + ic)(i). It follows from Theorem 6.2 that
x = (1, 0) is a solution of the problem (VEP1).
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7 Perspectives

In this paper, we provided Farkas-type results for the vector optimization problem
(VOP), which are applied subsequently to derive characterizations of the weak solu-
tions of (VOP) and other specific vector optimization problems.

A key goal was to establish vectorial versions of Farkas Lemma; more precisely, to
characterize the implication

gx)e—-S, xeC = f(x)—L(x)+y¢ —intK, (46)

where L € L(X,Y) and y € Y. Let us enunciate three large open problems and
guidelines for further research:

— The main applications to (VOP) in this paper, Proposition 5.1 and Theorem 5.3,
involve the set epig (f + i4)*, where A = {x € C: g(x) € —S} denotes the
feasible set of (VOP). In the absence of a suitable description of A, checking the
fulfillment of the required properties from epig (f + i4)* becomes a hard task.
So, it is necessary to get representations of epig (f + i4)* which are expressed
in terms of the triple data (f, g, C), leading to verifiable Farkas-type results (i.e.,
checkable characterizations of (46)) and corresponding optimality conditions. To
be more precise, we conjecture that, under suitable assumptions, the inclusion in
Lemma 4.1 could become an equation, maybe modifying the left-hand side set by
either taking its closure or by eliminating convenient subsets.

— In most real-life applications, the data in (VOP) are uncertain due to estimation
errors, prediction errors, or lack of information. When the uncertainty only affects
the constraint function g, the robust approach consists of replacing it with a family
of perturbed constraint functions {g,, u € U}, where the parameter u (scenario)
ranges on some uncertainty set U. Then the robust counterpart is the deterministic
problem

(RVOP) WMin{f(x): x € C, gu(x) € =S, Yu € U},

Getting new robust Farkas-type results for vector-valued functions, and corre-
sponding characterizations of the weak minimum solutions, is a challenging
problem.

— For the sake of mathematical simplicity, we have considered up to now exclusively
weakly efficient solutions to (VOP) in vector optimization, but most problems con-
sidered in this paper (as well as the above open problems) make sense for other
types of solutions, some of them (e.g., the Pareto efficient solutions) at least as
important in real-life applications as the weakly efficient ones.

8 Conclusions

We resume next the main conclusions that we can extract from the paper:
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— Since the Farkas-type results in our setting rely on the set epig (f +ia)*, the

description of this epigraph in terms of the data (f, g, C) is essential in order to
derive results which are crucial in vector optimization.

In this sense, we exploited this idea and succeeded to derive, from our main
Theorem 3.2, optimality conditions for (VOP). In fact, if we take L = 0O, and
y = — f(x) where x € ANdom f, the implication (46) is equivalent to the fact x
is a weak solution of (VOP) (respectively, (SOP) when Y = R). If L € L(X,Y)
and y = — f(x)+ L(x) withx € ANdom f, (46) means that x is a weak solution
of the linearly perturbed (VOP) with objective function f — L. The fulfillment
of (46) forevery (L, y) € L(X,Y) x Y is a very strong stability property which is
characterized in Theorem 4.5 by means of a specific expression of epig (f +ia)*.
Most of our results are free of standard assumptions in the literature, as the con-
vexity and closedness of C, the convexity and lower semicontinuity of f, and the
S—convexity and S—epi closedness of g.

A series of important vector optimization problems as the extended vector varia-
tional inequality problem (EVVI) and the vector equilibrium problem (VEP) can
be reformulated as a (VOP). Hence, the existence of weak solutions for them can
be characterized via (46) and its subsequent results in this paper.
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