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Abstract In this paper, we turn our attention to formulating and studying a new class
of variational inequalities in a nonconvex setting, called regularized nonconvex mixed
variational inequalities. By using the auxiliary principle technique, some newpredictor
corrector methods for solving such class of regularized nonconvex mixed variational
inequalities are suggested and analyzed. The study of convergence analysis of the
proposed iterative algorithms requires either pseudomonotonicity or partially mixed
relaxed and strong monotonicity of the operator involved in regularized nonconvex
mixed variational inequalities. As a consequence of our main results, we provide the
correct versions of the algorithms and results presented in the literature.
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1 Introduction

In [1], Signorini posed a fundamental contact problem. This suggested to Fichera to
study some importantMathematical Physics problems and to coin the term “variational
inequality” (in short, VI) [2]. At this point, Stampacchia [3] began the development
of variational inequalities, by establishing the first, important theorem. VI has been
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recognized as suitable mathematical models for dealing with many problems arising
in different fields, such as optimization theory, partial differential equations, eco-
nomic equilibriummechanics; see, for example, Refs. [4–6] and the references therein.
Because of its importance and active impact in the nonlinear analysis and optimization,
VI has been intensively extended and studied since the beginning of this theory in the
1960s. It has been used as a tool to study different aspects of optimization problems;
see, for example, Refs. [6,7] and the references therein. A useful and significant gen-
eralization of variational inequalities is called the mixed variational inequality (or the
variational inequality of the second kind) involving a nonlinear term. In order to see
the applications, formulations, and numerical methods, we refer the reader to Refs.
[8–12] and the references therein.

In recent years, the concept of convex set has been generalized in many directions,
which has potential and important applications in various fields. It is well known that
the uniformly prox-regular sets are nonconvex and include the convex sets as special
cases; formore details, see, for example, Refs. [13–19]. In the recent past, many efforts
have been devoted to the development of efficiency and of implementable numerical
methods for solving variational inequalities and their generalizations in the context of
a nonconvex set. For instance, Bounkhel et al. [15], Moudafi [20], Ansari and Balooee
[21], Ansari et al. [22], Balooee [23] and Balooee and Cho [24] have considered
variational inequalities and different types of their generalizations in the context of
uniformly prox-regular sets. In order to solve the problems introduced in the above-
mentioned papers, they suggested and analyzed some iterative algorithms based on
the projection method and auxiliary principle technique.

Recently, Noor [25] considered and studied a nonconvex variational inequality in
the context of uniformly prox-regular sets. He suggested and analyzed some predictor–
corrector methods for solving it by using the auxiliary principle technique. Further, he
studied the convergence analysis of the proposed iterative algorithms under the con-
ditions of pseudomonoticity and partially relaxed strong monotonicity of the operator
involved in the considered nonconvex variational inequality.

In this paper, we pursue two goals. Our first goal is to consider and study a new
class of variational inequalities in the context of uniformly prox-regular sets, named
regularized nonconvex mixed variational inequalities (RNMVI). With the help of
the auxiliary principle technique, some predictor–corrector algorithms for solving
RNMVI are proposed and analyzed. The study of convergence analysis of the sug-
gested iterative algorithms requires only either jointly pseudomonotonicity or partially
mixed relaxed and strongmonotonicity of type (I) of the operator involved in RNMVI.
Our second goal is to investigate and analyze the nonconvex variational inequality
problem considered in [25]. We point out that the results given in [25] are not valid.
In the meanwhile, as a consequence of our main results, the correct versions of the
corresponding results presented in [25] are provided.

2 Preliminaries and Basic Facts

Throughout the paper, unless otherwise specified, we let H be a real Hilbert space
whose inner product and norm are denoted by 〈., .〉 and ‖.‖, respectively. Let K be
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a nonempty closed subset of H. We denote by dK (.) or d(., K ) the usual distance
function from a point to the set K , that is, dK (u) = inf

v∈K ‖u − v‖.
Definition 2.1 Let u ∈ H be a point not lying in K . A point v ∈ K is called a
projection of u onto K if dK (u) = ‖u − v‖. The set of all such points is denoted by
PK (u), that is,

PK (u) := {v ∈ K : dK (u) = ‖u − v‖} .

Definition 2.2 The proximal normal cone of K at a point u ∈ K is given by

N P
K (u) := {ξ ∈ H : ∃α > 0 such that u ∈ PK (u + αξ)}.

The following lemma gives a characterization of the proximal normal cone.

Lemma 2.1 [17, Proposition 1.1.5] Let K be a nonempty closed subset of H. Then
ξ ∈ N P

K (u) if and only if there exists a constant α = α(ξ, u) > 0 such that 〈ξ, v−u〉 ≤
α‖v − u‖2 for all v ∈ K.

Clarke et al. [18] introduced a nonconvex set, called proximally smooth set. Subse-
quently, it has been investigated by Poliquin et al. [19] but under the name of uniformly
prox-regular set. Such kind of sets are used in many nonconvex applications in opti-
mization, economic models, dynamical systems, differential inclusions, etc.

Definition 2.3 [18] For a given r ∈ (0,+∞], a subset Kr ofH is said to be normalized
uniformly prox-regular (or uniformly r -prox-regular) if for all x̄ ∈ Kr and all 0 	=
ξ ∈ N P

Kr
(x̄),

〈
ξ

‖ξ‖ , x − x̄

〉
≤ 1

2r
‖x − x̄‖2, for all x ∈ Kr .

The class of normalized uniformly prox-regular sets includes the class of convex
sets, p-convex sets [26],C1,1 submanifolds (possibly with boundary) ofH, the images
under a C1,1 diffeomorphism of convex sets and many other nonconvex sets [18].

Lemma 2.1 [18] A closed set K ⊆ H is convex if and only if it is uniformly r-prox-
regular for every r > 0.

If r = +∞, then in view of Definition 2.3 and Lemma 2.1, the uniform r -prox-
regularity of Kr is equivalent to the convexity of Kr . That is, for r = +∞, we set
Kr = K .

The union of two disjoint intervals [a, b] and [c, d] is uniformly r -prox-regular
with r = c−b

2 , see, for example, [17,19].

3 Formulations, Algorithms and Convergence Results

In this section, our attention is turned to introduce a new class of nonconvex variational
inequalities in the context of uniformly prox-regular sets.With the help of the auxiliary
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principle technique, which is mainly due to Glowinski et al. [4], we suggest some
predictor–corrector methods for solving them and study the convergence analysis of
the proposed iterative algorithms under some appropriate conditions.

From now onward, we suppose that K is a uniformly r -prox-regular set inH, unless
otherwise specified. Let T : K → H be a nonlinear operator. For a given nonlinear
proper extended real-valued bifunction ϕ : K × K → R ∪ {+∞}, we consider the
problem of finding u ∈ K such that

〈Tu, v − u〉 + ‖Tu‖
2r

‖v − u‖2 + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K , (1)

which is called the regularized nonconvex mixed variational inequality (RNMVI).
By taking different choices of the operators T and ϕ in the above problem, one can

easily obtain the problems studied in [3,10,11,27] and the references therein.
In the sequel, we denote by RNMVI(T, ϕ, K ) the set of solutions of RNMVI (1).
Let T and ϕ be the same as in RNMVI (1). For a given u ∈ K , consider the

following auxiliary regularized nonconvex mixed variational inequality problem of
finding w ∈ K such that

〈ρTw + w − u, v − w〉 + ρ‖Tw‖
2r

‖v − w‖2 + ρϕ(v,w)

−ρϕ(w,w) ≥ 0, ∀v ∈ K , (2)

where ρ > 0 is a constant. We observe that if w = u, then clearly w is a solution of
RNMVI (1). This observation enables us to propose the following predictor–corrector
method for solving RNMVI (1).

Algorithm 3.1 Let T and ϕ be the same as in RNMVI (1). For a given u0 ∈ K ,
compute un+1 ∈ K by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 + ρ‖Tun+1‖
2r ‖v − un+1‖2

+ρϕ(v, un+1) − ρϕ(un+1, un+1) ≥ 0, ∀v ∈ K , (3)

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

In order to establish the strong convergence of the sequence generated byAlgorithm
3.1 to a solution of RNMVI (1), we need the following definitions.

Definition 3.1 Let T : K → H be a nonlinear operator and let ϕ : K × K →
R ∪ {+∞} be a nonlinear bifunction. Then T is said to be

(a) pseudomonotone iff

〈Tu1, u2 − u1〉 + ‖Tu1‖
2r

‖u2 − u1‖2 ≥ 0

implies that

〈Tu2, u1 − u2〉 + ‖Tu2‖
2r

‖u2 − u1‖2 ≤ 0, ∀u1, u2 ∈ K ;
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(b) pseudomonotone with respect to ϕ iff

〈Tu1, u2 − u1〉 + ‖Tu1‖
2r

‖u2 − u1‖2 + ϕ(u2, u1) − ϕ(u1, u1) ≥ 0

implies that

〈Tu2, u1 − u2〉 + ‖Tu2‖
2r

‖u2 − u1‖2 + ϕ(u1, u1)

−ϕ(u2, u1) ≤ 0, ∀u1, u2 ∈ K .

Definition 3.2 The bifunction ϕ : K × K → R∪{+∞} is said to be skew-symmetric
iff

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) ≥ 0, ∀u, v ∈ K .

The next proposition plays a key role in the study of convergence analysis of the
iterative sequence generated by Algorithm 3.1.

Proposition 3.1 Let T andϕ be the sameas inRNMVI (1), and let u ∈ K bea solution
of RNMVI (1). Suppose further that {un} is a sequence generated by Algorithm 3.1.
If the operator T is pseudomonotone with respect to the bifunction ϕ, and ϕ is skew-
symmetric, then

‖u − un+1‖2 ≤ ‖u − un‖2 − ‖un − un+1‖2, ∀n ≥ 0. (4)

Proof Since u ∈ K is a solution of RNMVI (1), we have

ρ〈Tu, v − u〉 + ρ‖Tu‖
2r

‖v − u‖2 + ρϕ(v, u) − ρϕ(u, u) ≥ 0, ∀v ∈ K ,

where ρ > 0 is an arbitrary constant as in Algorithm 3.1. In light of the fact that the
operator T is pseudomonotone with respect to the bifunction ϕ, the above inequality
implies that

ρ〈T v, u − v〉 + ρ‖T v‖
2r

‖v − u‖2 + ρϕ(u, u) − ρϕ(v, u) ≤ 0, ∀v ∈ K . (5)

Taking v = un+1 in (5) and v = u in (3), we obtain

ρ〈Tun+1, u − un+1〉 + ρ‖Tun+1‖
2r

‖un+1 − u‖2
+ ρϕ(u, u) − ρϕ(un+1, u) ≤ 0 (6)

and

〈ρTun+1 + un+1 − un, u − un+1〉 + ρ‖Tun+1‖
2r ‖u − un+1‖2

+ ρϕ(u, un+1) − ρϕ(un+1, un+1) ≥ 0. (7)

123



J Optim Theory Appl (2017) 172:774–801 779

By combining (6) and (7) and taking into consideration the fact that ϕ is skew-
symmetric, it follows that

〈un+1 − un, u − un+1〉
≥ −ρ〈Tun+1, u − un+1〉 − ρ‖Tun+1‖

2r
‖u − un+1‖2

+ρϕ(un+1, un+1) − ρϕ(u, un+1)

≥ ρ
(
ϕ(u, u) − ϕ(un+1, u)

−ϕ(u, un+1) + ϕ(un+1, un+1)
)

≥ 0. (8)

On the other hand, letting x = un+1 − un and y = u − un+1 and by utilizing the
well-known property of the inner product, we have

2〈un+1 − un, u − un+1〉 = ‖u − un‖2 − ‖un+1 − un‖2 − ‖u − un+1‖2. (9)

By using (8) and (9), we deduce that

‖u − un+1‖2 ≤ ‖u − un‖2 − ‖un − un+1‖2,

which is the required result (4). This completes the proof. ��
We now prove the convergence of the sequence generated by Algorithm 3.1 to a

solution of RNMVI (1).

Theorem 3.1 Let H be a finite-dimensional real Hilbert space and let T : K → H
be a continuous operator. Suppose that the bifunction ϕ : K × K → R ∪ {+∞}
is continuous in both arguments and let all the conditions of Proposition 3.1 hold.
Further, let RNMVI(T, ϕ, K ) 	= ∅. Then, the iterative sequence {un} generated by
Algorithm 3.1 converges to a solution û ∈ K of RNMVI (1).

Proof Let u ∈ K be a solution of RNMVI (1). By using the inequality (4), it follows
that the sequence {‖u − un‖} is nonincreasing and so the sequence {un} is bounded.
Meanwhile, by means of the inequality (4), we get

∞∑
n=0

‖un − un+1‖2 ≤ ‖u0 − u‖2,

which implies that ‖un − un+1‖ → 0, as n → ∞. Let û be a cluster point of the
sequence {un} . The boundedness of {un} guarantees the existence of a subsequence
{uni } of {un} such that uni → û, as i → ∞. By virtue of (3), we yield

ρ〈Tuni+1 + uni+1 − uni , v − uni+1〉 + ρ‖Tuni+1‖
2r ‖v − uni+1‖2

+ρϕ(v, uni+1) − ρϕ(uni+1, uni+1) ≥ 0, ∀v ∈ K . (10)
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Thanks to the facts that lim
n→∞ ‖un − un+1‖ = 0, and the mappings T and ϕ are

continuous, by taking the limit in the relation (10) as i → ∞, we obtain

〈T û, v − û〉 + ‖T û‖
2r

‖v − û‖2 + ϕ(v, û) − ϕ(û, û) ≥ 0, ∀v ∈ K ,

that is, û ∈ K is a solution of RNMVI (1). Hence, Proposition 3.1 implies that

‖û − un+1‖ ≤ ‖û − un‖, ∀n ≥ 0. (11)

From (11) it follows that un → û, as n → ∞. Consequently, the sequence {un} has
exactly one cluster point û ∈ K . This gives us the desired result. ��

It is well known that to implement the proximal point methods, one has to calculate
the approximate solution implicitly, which is itself a difficult problem. In order to
overcome this drawback, we consider another auxiliary nonconvex problem and with
the help of it, we suggest another iterative algorithm for solving RNMVI (1).

Let T and ϕ be the same as in RNMVI (1). For a given u ∈ K , we consider the
following auxiliary regularized nonconvex mixed variational inequality problem of
finding w ∈ K such that

〈ρTu + w − u, v − w〉 + ρ‖Tu‖
2r

‖v − w‖2 + ρϕ(v,w)

−ρϕ(w,w) ≥ 0, ∀v ∈ K , (12)

where ρ > 0 is a constant. It should be pointed out that the problems (2) and (12) are
quite different. If w = u, then clearly w is a solution of RNMVI (1). This observation
allows us to suggest the following iterative algorithm for solving RNMVI (1).

Algorithm 3.2 Let T and ϕ be the same as in RNMVI (1). For a given u0 ∈ K ,
compute un+1 ∈ K in the following way:

〈ρTun + un+1 − un, v − un+1〉 + ρ‖Tun‖
2r ‖v − un+1‖2

+ρϕ(v, un+1) − ρϕ(un+1, un+1) ≥ 0, ∀v ∈ K , (13)

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

Before turning to the convergence result related toAlgorithm3.2,we need to present
the following definition.

Definition 3.3 A nonlinear operator T : K → H is said to be

(a) monotone iff

〈Tu1 − Tu2, u1 − u2〉 ≥ 0, ∀u1, u2 ∈ K ;

(b) κ-strongly monotone iff there exists a constant κ > 0 such that

〈Tu1 − Tu2, u1 − u2〉 ≥ κ‖u1 − u2‖2, ∀u1, u2 ∈ K ;
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(c) partially �-strongly monotone iff there exists a constant � > 0 such that

〈Tu1 − Tu2, z − u2〉 ≥ �‖z − u2‖2, ∀u1, u2, z ∈ K ;
(d) partially ς -relaxed monotone of type (I) iff there exists a constant ς > 0 such

that

〈Tu1 − Tu2, z − u2〉 ≥ −ς‖z − u1‖2, ∀u1, u2, z ∈ K ;
(e) partially (α, β)-mixed relaxed and strongly monotone of type (I) iff there exist

two constants α, β > 0 such that

〈Tu1 − Tu2, z − u2〉 ≥ −α‖z − u1‖2 + β‖z − u2‖2, ∀u1, u2, z ∈ K .

If z = u1, then partially strong monotonicity and partially mixed relaxed and
strong monotonicity of type (I) reduce to strong monotonicity, and partially relaxed
monotonicity of type (I) reduces to monotonicity.

The following assertion plays an important and key role in the study of the conver-
gence analysis of Algorithm 3.2.

Proposition 3.2 Let T and ϕ be the same as in RNMVI (1) and let u ∈ K be a
solution of RNMVI (1). Suppose that {un} is a sequence generated by Algorithm
3.2 and let the sequence {Tun} is bounded. If ϕ is skew-symmetric and the operator
T is partially (α, β)-mixed relaxed and strongly monotone of type (I) with constant
β = 1

2r (‖Tu‖ + sup
n≥0

‖Tun‖), then

‖u − un+1‖2 ≤ ‖u − un‖2 − (1 − 2αρ)‖un − un+1‖2, ∀n ≥ 0. (14)

Proof Since u ∈ K is a solution of RNMVI (1), we have

ρ〈Tu, v − u〉 + ρ‖Tu‖
2r

‖v − u‖2 + ρϕ(v, u) − ρϕ(u, u) ≥ 0, ∀v ∈ K ,

where ρ > 0 is an arbitrary constant the same as in Algorithm 3.2.
Taking v = un+1 in the above inequality, we yield

ρ〈Tu, un+1 − u〉 + ρ‖Tu‖
2r

‖un+1 − u‖2 + ρϕ(un+1, u) − ρϕ(u, u) ≥ 0. (15)

Letting v = u in (13), we obtain

ρ〈Tun + un+1 − un, u − un+1〉 + ρ‖Tun‖
2r ‖u − un+1‖2

+ρϕ(u, un+1) − ρϕ(un+1, un+1) ≥ 0. (16)

Applying (15) and (16) and taking into consideration the facts that the operator T
is partially (α, β)-mixed relaxed and strongly monotone of type (I) with constant
β = 1

2r (‖Tu‖ + sup
n≥0

‖Tun‖), and the bifunction ϕ is skew-symmetric, it follows that
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〈un+1 − un, u − un+1〉
≥ ρ〈Tun, un+1 − u〉 − ρ‖Tun‖

2r
‖u − un+1‖2

+ρϕ(un+1, un+1) − ρϕ(u, un+1)

≥ ρ〈Tun, un+1 − u〉 − ρ〈Tu, un+1 − u〉
−ρ‖Tun‖

2r
‖u − un+1‖2 − ρ‖Tu‖

2r
‖un+1 − u‖2

+ρ
(
ϕ(u, u) − ϕ(un+1, u) − ϕ(u, un+1) + ϕ(un+1, un+1)

)

≥ ρ〈Tun − Tu, un+1 − u〉 − ρ

(‖Tu‖ + ‖Tun‖
2r

)
‖u − un+1‖2

≥ −αρ‖un − un+1‖2. (17)

Employing (9) and (17), we deduce that

‖u − un+1‖2 ≤ ‖u − un‖2 − (1 − 2αρ)‖un − un+1‖2,

the required result (14). This completes the proof. ��
In next theorem, the required conditions for establishing the convergence of the

iterative sequence generated by Algorithm 3.2 to a solution of RNMVI (1) are stated.

Theorem 3.2 Let H be a finite-dimensional real Hilbert space and let T : K → H
be a continuous operator. Assume that the bifunction ϕ : K × K → R ∪ {+∞}
is continuous in both arguments and let all the conditions of Proposition 3.2 hold.
Moreover, let RNMVI(T, ϕ, K ) 	= ∅. If ρ ∈]0, 1

2α [, then the iterative sequence {un}
generated by Algorithm 3.2 converges to a solution û ∈ K of RNMVI (1).

Proof Let u ∈ K be a solution of RNMVI (1). The inequality (14) implies that the
sequence {‖u − un‖} is nonincreasing and hence the sequence {un} is bounded. In the
meantime, from the inequality (14) yields

∞∑
n=0

(1 − 2αρ)‖un − un+1‖2 ≤ ‖u0 − u‖2,

whence we deduce that ‖un − un+1‖ → 0, as n → ∞. If û is a cluster point of the
sequence {un}, then in a similar way to that of proof of Theorem 3.1, one can prove
that û is a solution of RNMVI (1) and the sequence {un} has exactly one cluster point
û ∈ K . This completes the proof. ��

4 Nonvex Variational Inequalities and Some Extra Comments

This section concerned with the study the nonconvex variational problem and the reg-
ularized nonconvex variational inequality considered in [25]. The iterative algorithms
and convergence results given in [25] are examined and by detecting some fatal errors
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in them, the invalidity of the assertions presented in [25] is pointed out. As a conse-
quence of our main results mentioned in the previous section, we derive the correct
versions of the algorithms and results in [25].

Let K be a uniformly r -prox-regular set in H. For a given nonlinear operator
T : H → H, Noor [25] considered the problem of finding u ∈ K such that

T (u) ∩ {−N (K ; u)} 	= ∅, (18)

which is called the nonconvex variational problem (NVP).
If r = ∞, that is, K is a convex set inH, then by utilizing Lemma 2.1, it is easy to

see that NVP (18) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K , (19)

which is known as the classical variational inequality (VI), introduced and studied
by Stampacchia [3] in 1964.

Noor [25] claimed that even for the case when K is a uniformly r -prox-regular set
inH, the problems (18) and (19) are equivalent. In fact, he derived his claim based on
the following lemma.

Lemma 4.1 [25, Lemma 2.2] If K is a uniformly r-prox-regular set, then the non-
convex variational problem (18) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K . (20)

The inequality (20) is known as the regularized nonconvex variational inequality.
By a careful reading, we found that there are two fatal errors in the proof of Lemma

4.1 (that is, [25, Lemma 2.2]). In the first place, Noor [25] asserted that every solution
of the regularized nonconvex variational inequality (20) is a solution of NVP (18).
In fact, by assuming that u ∈ K is a solution of the problem (18) and Tu 	= 0, he
deduced that

〈Tu, v − u〉 ≤ 1

2r
‖v − u‖2, ∀v ∈ K . (21)

Then, by invoking Lemma 2.1, he claimed that

− Tu ∈ N (K ; u), (22)

that is, u ∈ K is a solution of NVP (18). It is easy to see that unlike the claim of the
author in [25], by assuming u ∈ K as a solution of the problem (20), what yields is
the inequality

〈Tu, v − u〉 ≤ 1

2r
‖v − u‖2, ∀v ∈ K ,
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not the inequality (21). Even without considering this fact, it should be pointed out by
using the inequality (21) and in virtue of Lemma 2.1, one cannot deduce the relation
(22). This fact is illustrated in the following example.

Example 4.1 LetH = R and K = [0, α]∪[β, γ ] be the union of two disjoint intervals
[0, α] and [β, γ ]where 0 < α < β < γ . Then K is a uniformly r -prox-regular set inH
with r = β−α

2 and so we have 1
2r = 1

β−α
. Let the operator T : H → H be defined by

T x = λemx + �xn, ∀x ∈ H,

where m ∈ R, n ≥ 0, 0 < � < 1
αn and 0 < λ ≤ 1−�αn

emα are arbitrary real constants.
Taking u = α, for all v ∈ H, we have

− 〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − α)

(
−λemα − �αn + 1

β − α
(v − α)

)
.

(23)

If v ∈ [0, α], then −α ≤ v − α ≤ 0 and

− λemα − �αn − α

β − α
≤ −λemα − �αn + 1

β−α
(v − α)

≤ −λemα − �αn . (24)

For the case when v ∈ [β, γ ], we have β − α ≤ v − α ≤ γ − α and

− λemα − �αn + 1 ≤ −λemα − �αn + 1
β−α

(v − α)

≤ −λemα − �αn + γ−α
β−α

. (25)

Applying (24) and (25) and taking into account of the facts that 0 < � < 1
αn and

0 < λ ≤ 1−�αn

emα it follows that

(v − α)

(
−λemα − �αn + 1

β − α
(v − α)

)
≥ 0, ∀v ∈ [0, α] ∪ [β, γ ]. (26)

From (23) and (26), we deduce that

〈Tu, v − u〉 ≤ 1

2r
‖v − u‖2, ∀v ∈ K .

Let us now take x = α+β
2 . Then, we have PK (x) = {α, β} and

N P
K (u) = N P

K (α) = {t (x − α) : t ≥ 0} = [0,+∞[.

Clearly, −Tu = −λemα − �αn ∈ [−1, 0[/∈ N P
K (u) = N (K ; u). Relying on this fact,

it follows that every solution of the regularized nonconvex variational inequality (20)
need not be a solution of NVP (18).
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In the second place, in addition to the above-mentioned fatal error, there is another
fatal error in the proof of Lemma 4.1. In fact, Noor [25] claimed that if u ∈ K is a
solution of NVP (18), then Definition 2.3 guarantees that u ∈ K is a solution of the
regularized nonconvex variational inequality (20).

However, the following example shows that every solution of NVP (18) need not
be a solution of the regularized nonconvex variational inequality (20).

Example 4.2 Let H and K be the same as in Example 4.1 and let the operator T :
H → H be defined by

T x =
⎧⎨
⎩

θ, x ∈ [0, α],
μ, x ∈ [β, γ ],
x, x ∈ H\K ,

where θ < −1 and μ > 1 are arbitrary real constants. Taking x = α+β
2 , we have

PK (x) = {α, β},

N P
K (α) =

{
t (x − α) : t ≥ 0

}
= [0,+∞[

and

N P
K (β) =

{
t (x − β) : t ≥ 0

}
=] − ∞, 0].

Let us now take u = α. Then, we have −Tu = −θ ∈ N P
K (u) and

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − α)

(
θ + v − α

β − α

)
.

If v = β, we deduce that

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (β − α)(θ + 1) < 0.

By a similar argument, taking u = β, we have −Tu = −μ ∈ N P
K (u) and

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − β)

(
μ − β − v

β − α

)
.

Obviously, for v = α, it follows that

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (α − β)(μ − 1) < 0.

Therefore, the inequality

〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0
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cannot hold for all v ∈ K . Consequently, every solution of NVP (18) is not a solution
of the problem (20) necessarily.

It should be pointed out that the equivalence between the two problems (18) and
(20) has a key role in proposing algorithms and in getting the results in [25], and plays
a crucial and basic role in [25]. Indeed, all the results in [25] have been obtained based
on the equivalence between the two problems (18) and (20). But, unfortunately, it was
shown that the problems (18) and (20) are not equivalent.

In Section 3 from [25], the author considered the following auxiliary regularized
nonconvex variational inequality: For a given u ∈ K , find w ∈ K such that

〈ρTw + w − u, v − w〉 + 1

2r
‖v − w‖2 ≥ 0, ∀v ∈ K , (27)

where ρ > 0 is a constant. Noor [25] claimed that if w = u, then w is a solution of
the problem (20). Based on this fact, he suggested the following iterative algorithm
for solving the problem (20).

Algorithm 4.1 [25, Algorithm 3.2] For a given u0 ∈ K , compute the approximate
solution un+1 by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 + 1

2r
‖un+1 − un‖2 ≥ 0, ∀v ∈ K . (28)

By an easy checking, we found that unlike the claim in [25], if w = u then w is
not a solution of the problem (20) necessarily. In fact, if w = u, then the auxiliary
regularizednonconvexvariational inequality (27) reduces to the regularizednonconvex
variational inequality, which consists in finding u ∈ K such that

ρ〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K . (29)

However, the following example illustrates that every solution of the problem (29)
need to be a solution of the problem (20).

Example 4.3 LetH = R and K = [α, β]∪[γ, δ] be the union of two disjoint intervals
[α, β] and [γ, δ]where 0 < α < β < γ < δ. Then, K is a uniformly r -prox-regular set
with r = γ−β

2 and so we have γ = 1
2r = 1

γ−β
. Let us define the operator T : H → H

by

T x = ς(
s
√
xt + aqx ), ∀x ∈ H,

where s ∈ N\{1} and t ∈ N are two arbitrary but fixed natural numbers, and q ∈ R,
a > 1 and ς <

β−δ

(γ−β)( s
√

β t+aqβ)
are arbitrary real constants. Let ρ ∈ ]0,− 1

ς( s
√

β t+aqβ)
]

be a positive real constant. Then, taking u = β, for all v ∈ H, we have

ρ〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − β)

(
ρς(

s
√

β t + aqβ) + 1

γ − β
(v − β)

)
.
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In the case when v ∈ [α, β], the fact that ς < 0 < ρ implies that

ρς(
s
√

β t + aqβ) + 1

γ − β
(v − β) < 0

and so

(v − β)

(
ρς(

s
√

β t + aqβ) + 1

γ − β
(v − β)

)
≥ 0.

If v ∈ [γ, δ], taking into consideration the facts that 1
γ−β

(v − α) ∈ [1, δ−β
γ−β

] for all
v ∈ [γ, δ] and 0 < ρ ≤ − 1

ς( s
√

β t+aqβ)
, it follows that

ρς(
s
√

β t + aqβ) + 1

γ − β
(v − β) ≥ 0,

whence we deduce that

(v − β)

(
ρς(

s
√

β t + aqβ) + 1

γ − β
(v − β)

)
≥ 0.

Therefore,

ρ〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K .

On the other hand, for all v ∈ H, one has

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − β)

(
ς(

s
√

β t + aqβ) + 1

γ − β
(v − β)

)
.

Considering the facts that 1
γ−β

(v − β) ∈ [1, δ−β
γ−β

] for all v ∈ [γ, δ], and ς <
β−δ

(γ−β)( s
√

β t+aqβ)
, we obtain

ς(
s
√

β t + aqβ) + 1

γ − β
(v − β) < 0, ∀v ∈ [γ, δ],

which implies that

(v − β)

(
ς(

s
√

β t + aqβ) + 1

γ − β
(v − β)

)
< 0, ∀v ∈ [γ, δ].

Hence, the inequality

〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0
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cannot hold for all v ∈ K . In virtue of this fact, it follows that every solution of the
problem (29) is not necessarily a solution of the regularized nonconvex variational
inequality (20). Consequently, for a given u ∈ K , if w = u is a solution of the
auxiliary regularized nonconvex variational inequality problem (27), then w need not
be a solution of the problem (20).

In order to study the convergence analysis of Algorithm 4.1, Noor [25] used the
following definition.

Definition 4.1 [25, Definition 3.1] For all u, v, z ∈ H, an operator T : H → H is
said to be

(a) monotone iff

〈Tu − T v, u − v〉 ≥ 0;

(b) pseudomonotone iff

〈Tu, v − u〉 ≥ 0 implies that 〈T v, u − v〉 ≤ 0;

(c) partially relaxed strongly monotone iff there exists a constant α > 0 such that

〈Tu − T v, z − v〉 ≥ −α‖z − u‖2.

It should be remarked that there are two small mistakes in the context of Definition
3.1 from [25]. In fact, in parts (a) and (b) ofDefinition 3.1 from [25], 〈Tu−T v, v−u〉 ≥
0 and 〈Tu, u−v〉 ≥ 0must be replaced by 〈Tu−T v, u−v〉 ≥ 0 and 〈Tu, v−u〉 ≥ 0,
respectively, as we have done in Definition 4.1.

The next theorem played a crucial role in the study of the convergence analysis of
the iterative sequence generated by Algorithm 4.1.

Theorem 4.1 [25, Theorem 3.1] Let the operator T : K → H be pseudomonotone. If
un+1 is the approximate solution obtained from Algorithm 4.1 and u ∈ K is a solution
of (20), then

(
1 − 1

r

)
‖u − un+1‖2 ≤ ‖u − un‖2 −

(
1 − 1

r

)
‖u − un+1‖2. (30)

By a careful reading of the proof of Theorem 4.1 (that is, [25, Theorem 3.1]), we
discovered that there are fatal errors in it. By assuming that u ∈ K is a solution of
(20), Noor [25] deduced the inequality (8) in [25] by using the pseudomonotonicity
of the operator T as follows:

〈T v, v − u〉 + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K . (31)

In fact, letting u ∈ K as a solution of (20), Noor [25] claimed that the inequality (20)
implies the inequality

〈Tu, v − u〉 ≥ 0, ∀v ∈ K , (32)
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and then by utilizing (32) and the notion of pseudomonotonicity of the operator T , he
obtained the following inequality:

〈T v, v − u〉 ≥ 0, ∀v ∈ K . (33)

He derived at least the relation (31) with the help of (33).
However, the following example illustrates that unlike the claimof the author in [25],

by assuming u ∈ K as a solution of (20), the inequality (20) does not imply necessarily
the inequality (32). The fact that by using (20) and the notion of pseudomonotonicity
of the operator T , one cannot deduce necessarily the relation (31) is also shown.

Example 4.4 Let H and K be the same as in Example 4.3 and let the operator T :
K → H be defined by

T x =
{

ξ(eσ x + xl), x ∈ [α, β],
τ x, x ∈ [γ, δ],

where σ ∈ R, − 1
eσβ+βl ≤ ξ < 0 ≤ l and τ <

β−δ
γ (γ−β)

are arbitrary real constants.
Taking u = β, for all v ∈ K , we have

〈Tu, v − u〉 + 1

2r
‖v − u‖2 = (v − β)

(
ξ(eσβ + βl) + 1

γ − β
(v − β)

)
.

If v ∈ [α, β], then α − β ≤ v − β ≤ 0, then the fact that ξ < 0 implies that

ξ(eσβ + βl) + 1

γ − β
(v − β) ≤ 0

and so

(v − β)

(
ξ(eσβ + βl) + 1

γ − β
(v − β)

)
≥ 0.

For the case when v ∈ [γ, δ], considering the facts that 1 ≤ v−β
γ−β

≤ δ−β
γ−β

and

ξ ≥ − 1
eσβ+βl it follows that

ξ(eσβ + βl) + 1

γ − β
(v − β) ≥ 0,

whence we deduce that

(v − β)

(
ξ(eσβ + βl) + 1

γ − β
(v − β)

)
≥ 0.

Therefore,

〈Tu, v − u〉 + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K .
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Whereas, for all v ∈ [γ, δ], in light of the fact that ξ < 0, we have

ξ(eσβ + βl)(v − β) < 0,

that is,

〈Tu, v − u〉 < 0, ∀v ∈ [γ, δ].

Accordingly, the inequality 〈Tu, v − u〉 ≥ 0 cannot hold for all v ∈ K .
Suppose that u, v ∈ [α, β] are chosen arbitrary. If 〈Tu, v − u〉 ≥ 0 then ξ(eσu +

ul)(v − u) ≥ 0. Since eσu + ul > 0 for all u ∈ K , in virtue of the fact that ξ < 0 it
follows thatv−u ≤ 0.This fact guarantees thatu−v ≥ 0 and so ξ(eσv+vl)(u−v) ≤ 0,
that is , 〈T v, u − v〉 ≤ 0.

Let us now take u ∈ [α, β] and v ∈ [γ, δ] arbitrarily. If 〈Tu, v − u〉 ≥ 0, by an
argument analogous to the previous one, it follows that v − u ≤ 0 and so u − v ≥ 0.
Then the fact that τ < 0 implies that τv(u − v) ≤ 0, that is, 〈T v, u − v〉 ≤ 0.

In the case when u and v are arbitrary points belonging to [γ, δ], in a similar
fashion to the preceding analysis, one can show that 〈Tu, v − u〉 ≥ 0 implies that
〈T v, u − v〉 ≤ 0.

By virtue of the above-mentioned argument, we deduce that the operator T is
pseudomonotone.

On the other hand, for all v ∈ [γ, δ], one has

〈T v, v − u〉 + 1

2r
‖v − u‖2 = (v − β)

(
τv + 1

γ − β
(v − β)

)
.

Taking into consideration the facts that 1
γ−β

(v − β) ∈ [1, δ−β
γ−β

] for all v ∈ [γ, δ] and
τ <

β−δ
γ (γ−β)

, we obtain

τv + 1

γ − β
(v − β) < 0, ∀v ∈ [γ, δ],

which implies that

(v − β)

(
τv + 1

γ − β
(v − β)

)
< 0, ∀v ∈ [γ, δ].

Consequently, the inequality

〈T v, v − u〉 + 1

2r
‖v − u‖2 ≥ 0

cannot hold for all v ∈ K .
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We now go back to analyze the proof of Theorem 4.1 (that is, [25, Theorem 3.1]).
Taking v = un+1 in (31), Noor [25] obtained the relation (9) in [25] as follows:

〈Tun+1, un+1 − u〉 + 1

2r
‖un+1 − u‖2 ≥ 0. (34)

Setting v = u in (28) and by utilizing (34), he derived the relation (10) in [25] as
follows:

〈un+1 − un, u − un+1〉 ≥ ρ〈Tun+1, un+1 − u〉 − 1
2r ‖un − un+1‖2

≥ − 1
2r ‖u − un+1‖2 − 1

2r ‖un − un+1‖2. (35)

Letting v = u−un+1 and u = un+1−un andwith the help of the well-known property
of the inner product, the author got the relation (9) which is the relation (11) in [25].

In the end, by combining (9) and (35), Noor [25] deduced the relation (30).
However, picking v = u in (28) and by using (34), what we can obtain is the

following inequality:

〈un+1 − un, u − un+1〉 ≥ ρ〈Tun+1, un+1 − u〉 − 1
2r ‖un − un+1‖2

≥ − ρ
2r ‖u − un+1‖2 − 1

2r ‖un − un+1‖2, (36)

not the inequality (35).
Relying on the fact that the inequality (36) is the correct version of the inequality

(35), it should be remarked that unlike the claim in [25], the combination of (9) and
the inequality (36) do not give us the required result (30), but what one can get is the
following inequality:

(
1 − ρ

r

)
‖u − un+1‖2 ≤ ‖u − un‖2 −

(
1 − 1

r

)
‖un − un+1‖2.

In light of the above-mentioned arguments, it follows that Theorem 4.1 is not true in
the present form.

Noor [25] asserted that the sequence {un} generated by Algorithm 4.1 is convergent
to a solution of the problem (20).

Theorem 4.2 [25, Theorem 3.2] Let H be finite-dimensional subspace and let un+1
be the approximate solution obtained from Algorithm 4.1. If r > 1 and u ∈ K is a
solution of (20), then lim

n→∞ un = u.

Theorem 4.1 plays an important and key role in the proof of Theorem 4.2 (that is,
[25, Theorem 3.2]). However, as we have pointed out the statement of Theorem 4.1 is
not valid in general. Beside this fact, we also observe, by a careful reading, there are
fatal errors in the proof of Theorem 4.2.

Firstly, Noor [25] claimed that the inequality (30) together with the fact that r > 1
implies the boundedness of the sequence {un}. In fact, considering the fact that r > 1
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and by using the inequality (30), the author asserted that

‖un − un+1‖ ≤ ‖u − un‖, (37)

that is, the sequence {‖u − un‖} is nonincreasing and then he deduced the bounded-
ness of the sequence {un} by utilizing the inequality (37). However, in virtue of the
inequality (30), what we get is the inequality

‖un − un+1‖ ≤ 1√
1 − 1

r

‖u − un‖, (38)

not the inequality (37). Since r > 1, it follows that 1√
1− 1

r

> 1 and so the inequality

(38) does not imply that the sequence {‖u − un‖} is nonincreasing. Consequently,
unlike the claim of the author in [25], under the assumptions of Theorem 4.2, the
sequence {un} is not necessarily bounded.

Secondly, Noor [25] claimed that by using the inequality (30), one can deduce the
following inequality:

∞∑
n=0

(
1 − 1

r

)
‖un − un+1‖2 ≤ ‖u0 − u‖2, (39)

which implies that

lim
n→∞ ‖un − un+1‖ = 0. (40)

However, by using the inequality (30), what one can obtain is the following inequality:

∞∑
n=0

(
1 − 1

r

)
‖un − un+1‖2 ≤ ‖u − u0‖2 +

∞∑
n=0

1

r
‖u − un+1‖2, (41)

not the inequality (39). Obviously, the inequality (41) does not imply the relation
(40). Taking into account of the fact that the boundedness of the sequence {un} and
the relation (40) are main tools to prove the assertion of Theorem 4.2, it follows that
Theorem 4.2 is not correct in the present form.

For a given nonlinear operator T : K → H, we consider the problem of finding
u ∈ K such that

〈Tu, v − u〉 + ‖Tu‖
2r

‖v − u‖2 ≥ 0, ∀v ∈ K , (42)

which is called the regularized nonconvex variational inequality (RNVI). Rest of the
paper, we denote by RNVI(T, K ) the set of solutions of RNVI (42).

Nowwe present the correct version of Lemma 4.1 inwhich the equivalence between
NVP (18) and RNVI (42) is stated.

123



J Optim Theory Appl (2017) 172:774–801 793

Lemma 4.2 NVP (18) and RNVI (42) are equivalent.

Proof Let u ∈ K be a solution of RNVI (42). If Tu = 0, then 0 ∈ Tu + N P
K (u) =

Tu + N (K ; u), because the zero vector always belongs to any normal cone. For the
case when Tu 	= 0, we have

〈Tu, v − u〉 ≤ ‖Tu‖
2r

‖v − u‖2, ∀v ∈ K .

Lemma 2.1 implies that −Tu ∈ N P
K (u), and so 0 ∈ Tu + N P

K (u). Thanks to the
above-mentioned facts, we conclude that Tu ∩ {−N P

K (u)} = Tu ∩ {−N (K ; u)} 	= ∅,
that is, u ∈ K is a solution of NVP (18). Conversely, if u ∈ K is a solution of NVP
(18), then it follows that 0 ∈ Tu + N P

K (u) and so −Tu ∈ N P
K (u) = N (K ; u). Now,

Definition 2.3 guarantees that u ∈ K is a solution of RNVI (42). ��
Let T : K → H be a nonlinear operator. For a given u ∈ K , we consider the

auxiliary regularized nonconvex variational inequality, which consists in finding w ∈
K such that

〈ρTw + w − u, v − w〉 + ρ‖Tw‖
2r

‖v − w‖2 ≥ 0, ∀v ∈ K , (43)

where ρ > 0 is a constant. If w = u, then clearly w is a solution of RNVI (42).
This observation allows us to propose the following predictor–corrector algorithm for
solving RNVI (42).

Algorithm 4.2 Let T be the same as in RNVI (42). For a given u0 ∈ K , compute
un+1 ∈ K by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 + ρ‖Tun+1‖
2r

‖v − un+1‖2 ≥ 0, ∀v ∈ K ,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

We now present the correct versions of Theorems 4.1 and 4.2, respectively.

Theorem 4.3 Let T be the same as in RNVI (42) and let u ∈ K be a solution of
RNVI (42). Suppose further that {un} is a sequence generated by Algorithm 4.2. If the
operator T is pseudomonotone, then the inequality (4) holds for all n ≥ 0.

Proof Taking ϕ ≡ 0, we get the desired result from Proposition 3.1. ��
Theorem 4.4 Let H be a finite-dimensional real Hilbert space and let T : K → H
be a nonlinear continuous operator. Further, let all the conditions of Theorem 4.3 hold
and RNVI(T, K ) 	= ∅. Then the iterative sequence {un} generated by Algorithm 4.2
converges to a solution û ∈ K of RNVI (42).

Proof It follows from Theorem 3.1 immediately by taking ϕ ≡ 0. ��
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It is well known that to implement the proximal point method, one has to calculate
the approximate solution implicitly, which is itself a difficult problem. To overcome
the drawback, Noor [25] considered the following auxiliary regularized nonconvex
variational inequality problem:

For a given u ∈ K , find w ∈ K such that

〈ρTu + w − u, v − w〉 + 1

2r
‖v − w‖2 ≥ 0, ∀v ∈ K , (44)

where ρ > 0 is a constant.
Noor[25] asserted that ifw = u, then obviouslyw is a solution of the problem (20).

However, this claim of the author in [25] is also not true. Indeed, if w = u, then the
problem (44) reduces to the problem (29). But, it was shown in Example 4.3 that every
solution of the problem (29) need not be a solution of the problem (20). Hence, for a
given u ∈ K , if w = u is a solution of the auxiliary regularized nonconvex variational
inequality problem (44), then w is not necessarily a solution of the problem (20).

Based on the fact that in the problem (44), ifw = u then clearlyw is a solution of the
regularized nonconvex variational inequality (20), Noor [25] suggested the following
iterative algorithm for solving the problem (20).

Algorithm 4.3 [25, Algorithm 3.4] For a given u0 ∈ K , compute the approximate
solution un+1 by the iterative scheme

〈ρTun + un+1 − un, v − un+1〉 + 1

2r
‖v − un+1‖2 ≥ 0, ∀v ∈ K . (45)

Noor [25] claimed that using essentially the technique of Theorem 4.2, one can study
the convergence analysis of Algorithm 4.3. For this purpose, he first asserted that the
following statement holds.

Theorem 4.5 [25, Theorem 3.3] Let the operator T be partially relaxed strongly
monotone with constant α > 0. If un+1 is the approximate solution obtained from
Algorithm 4.3 and u ∈ K is a solution of (20), then

(
1 − 1

r

)
‖u − un+1‖2 ≤ ‖u − un‖2 −

(
1 − 2ρα − 1

r

)
‖u − un+1‖2. (46)

Nowwe analyze the proof of Theorem 4.5 (that is, [25, Theorem 3.3]). By a careful
reading the proof of Theorem 3.3 in [25], we discovered that under the assumptions
mentioned in Theorem 4.5, the relation (46) does not hold necessarily. By assuming
u ∈ K as a solution of the problem (20) and taking v = un+1 in (20), the author
deduced the inequality (17) in [25] as follows:

〈Tu, un+1 − u〉 + 1

2r
‖un+1 − u‖2 ≥ 0, ∀v ∈ K . (47)
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Picking v = u in (45), Noor [25] obtained the following inequality:

〈ρTun + un+1 − un, u − un+1〉 + 1

2r
‖u − un+1‖2 ≥ 0. (48)

Employing (47) and (48) and taking into account of the fact that T is partially relaxed
strongly monotone with constant α, the author derived the inequality (18) in [25] as
follows:

〈un+1 − un, u − un+1〉 ≥ 〈ρTun, un+1 − u〉 − 1

2r
‖u − un+1‖2

≥ ρ〈Tun − Tu, un+1 − un〉 − 1

2r
‖u − un+1‖2

− 1

2r
‖un − un+1‖2

≥ −αρ‖un−un+1‖2 − 1

2r
‖u−un+1‖2

− 1

2r
‖un − un+1‖2. (49)

In the end, by combining (9) (which is the relation (11) in [25]) and (49), Noor [25]
deduced the required result (46). However, unlike the claim in [25], by using (47) and
(48) and the definition of partially relaxed strong monotonicity of the operator T given
in part (c) of Definition 4.1, what we obtain is the inequality

〈un+1 − un, u − un+1〉 ≥ 〈ρTun, un+1 − u〉 − 1

2r
‖u − un+1‖2

≥ ρ〈Tun − Tu, un+1 − u〉 − 1

2r
‖u − un+1‖2

− 1

2r
‖u − un+1‖2

≥ −αρ‖un − un+1‖2 − 1

r
‖u − un+1‖2, (50)

not the inequality (49). Considering the fact that the relation (50) is the correct version
of the relation (49), by combining (9) and (50), we get the inequality

(
1 − 2

r

)
‖u − un+1‖2 ≤ ‖u − un‖2 − (1 − 2ρα)‖un − un+1‖2,

not the inequality (46).
Relying on the above-mentioned argument, Theorem 4.5 is not true in the present

form. In view of the fact that Theorem 4.5 plays a crucial role in the study of the
convergence analysis of Algorithm 4.3, by an argument analogous to the previous one
mentioned for the proof of Theorem 4.2, one can establish that unlike the claim of the
author in [25], using essentially the technique of Theorem 4.2 (that is, [25, Theorem
3.3]), one cannot study the convergence analysis of Algorithm 4.3.
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Let T : K → H be a nonlinear operator. For a given u ∈ K , we consider the
following auxiliary regularized nonconvex variational inequality problem:

Find w ∈ K such that

〈ρTu + w − u, v − w〉 + ρ‖Tu‖
2r

‖v − w‖2 ≥ 0, ∀v ∈ K , (51)

where ρ > 0 is a constant.
It should be pointed out that the problems (43) and (51) are quite different. Ifw = u,

then clearlyw is a solution of RNVI (42). This fact enables us to suggest the following
iterative algorithm for solving RNVI (42).

Algorithm 4.4 Let T be the same as in RNVI (42). For a given u0 ∈ K , define the
iterative sequence {un} in K in the following way:

〈ρTun + un+1 − un, v − un+1〉 + ρ‖Tun‖
2r

‖v − un+1‖2 ≥ 0, ∀v ∈ K ,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

In the following, the correct version of Theorem 4.5 is given.

Theorem 4.6 Let T be the same as in RNVI (42), and let u ∈ K be a solution of
RNVI (42). Assume that {un} is a sequence generated by Algorithm 4.4 and let the
sequence {Tun} is bounded. If the operator T is partially (α, β)-mixed relaxed and
strongly monotone of type (I) with constant β = 1

2r (‖Tu‖ + sup
n≥0

‖Tun‖), then the

inequality (14) holds for all n ≥ 0.

Proof The desired result follows immediately from Proposition 3.2 by taking
ϕ ≡ 0. ��

The next statement provides us the required conditions under which the iterative
sequence generated by Algorithm 4.4 converges to a solution of RNVI (42)

Theorem 4.7 Suppose that H is a finite-dimensional real Hilbert space and let T :
K → H be a nonlinear continuous operator. Let all the conditions of Theorem 4.6 hold
and let RNVI(T, K ) 	= ∅. If ρ ∈]0, 1

2α [, then the iterative sequence {un} generated
by Algorithm 4.4 converges to a solution û ∈ K of RNVI (42).

Proof Taking ϕ ≡ 0, we get the desired result from Theorem 3.2. ��
In the beginning of Section 4 from [25], for a given nonlinear operator T : K → H

and a univariate prox-regular function ϕ : K → R∪{+∞}, the author considered the
problem, which consists in finding u ∈ K such that

〈Tu, v − u〉 + ϕ(v) − ϕ(u) + 1

2r
‖v − u‖2 ≥ 0, ∀v ∈ K , (52)

which is known as the regularized mixed variational inequality.
Noor [25] claimed that using essentially the techniques and ideas developed in [25],

one can suggest the following iterative algorithms for solving the problem (52).
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Algorithm 4.5 [25, Algorithm 4.1] For a given u0 ∈ K , compute the approximate
solution un+1 by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 + 1

2r
‖v − un+1‖2 ≥ ϕ(un+1) − ϕ(v), ∀v ∈ K .

Algorithm 4.6 [25, Algorithm 4.2] For a given u0 ∈ K , compute the approximate
solution un+1 by the iterative scheme

〈ρTun + un+1 − un, v − un+1〉 + 1

2r
‖v − un+1‖2 ≥ ϕ(un+1) − ϕ(v), ∀v ∈ K .

Unfortunately, by an argument analogous to the previous one, we can prove that unlike
the claim of the author in [25], Algorithms 4.5 and 4.6 cannot be used for solving the
problem (52) and in the meanwhile one cannot study the convergence analysis of the
iterative sequences generated by them. In order to overcome this drawback, for a given
nonlinear operator T : K → H and a univariate proper extended real-valued function
ϕ : K → R∪{+∞}, we consider, instead of the problem (52), the problem of finding
u ∈ K such that

〈Tu, v − u〉 + ‖Tu‖
2r

‖v − u‖2 + ϕ(v) − ϕ(u) ≥ 0, ∀v ∈ K , (53)

which is called the regularized nonconvex mixed variational inequality (RNMVI). In
the sequel, we denote by RNMVI(T, ϕ, K ) the set of solutions of RNMVI (53).

Let T and ϕ be the same as in RNMVI (53). For a given u ∈ K , we consider
the auxiliary regularized nonconvex mixed variational inequality, which consists in
finding w ∈ K such that

〈ρTw + w − u, v − w〉 + ρ‖Tw‖
2r

‖v − w‖2 + ρϕ(v) − ρϕ(w) ≥ 0, ∀v ∈ K ,

(54)

where ρ > 0 is a constant. If w = u, then clearly w is a solution of RNMVI (53).
Based on this observation, we are able to propose a predictor–corrector method for
solving RNMVI (53) as follows.

Algorithm 4.7 Let T and ϕ be the same as in RNMVI (53). For a given u0 ∈ K ,
compute un+1 ∈ K by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 + ρ‖Tun+1‖
2r

‖v − un+1‖2
+ρϕ(v) − ρϕ(un+1) ≥ 0, ∀v ∈ K ,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

To study the convergence analysis of the iterative sequence generated by Algorithm
4.7, we need the following definition.
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Definition 4.2 Let T : K → H be a nonlinear operator and letϕ : K → R∪{+∞} be
a nonlinear proper extended real-valued function. Then T is said to be pseudomonotone
with respect to ϕ iff

〈Tu1, u2 − u1〉 + ‖Tu1‖
2r

‖u2 − u1‖2 + ϕ(u2) − ϕ(u1) ≥ 0

implies that

〈Tu2, u1 − u2〉 + ‖Tu2‖
2r

‖u2 − u1‖2 + ϕ(u1) − ϕ(u2) ≤ 0, ∀u1, u2 ∈ K .

The next proposition plays a key role in the study of convergence analysis of the
iterative sequence generated by Algorithm 4.7.

Proposition 4.1 Let T and ϕ be the same as in RNMVI (53) and let u ∈ K be a solu-
tion of RNMVI (53). Suppose further that {un} is a sequence generated by Algorithm
4.7. If the operator T is pseudomonotone with respect to ϕ, then the inequality (4)
holds for all n ≥ 0.

Proof We obtain the desired result from Proposition 3.1 by assuming that in Proposi-
tion 3.1 the functon ϕ is univariate. ��

In next theorem, the required conditions for establishing the convergence of the
iterative sequence generated by Algorithm 4.7 are provided.

Theorem 4.8 Let H be a finite-dimensional real Hilbert space and ϕ : K → R ∪
{+∞} be a continuous function. Suppose that the operator T : K → H is continuous
and pseudomonotone with respect to ϕ. Moreover, let RNMVI(T, ϕ, K ) 	= ∅. Then,
the iterative sequence {un} generated by Algorithm 4.7 converges to a solution û ∈ K
of RNMVI (53).

Proof Letting ϕ as a univariate function in Theorem 3.1, the desired result follows
immediately from Theorem 3.1. ��

As it was pointed out, to implement the proximal point method, one has to calculate
the approximate solution implicitly, which is itself a difficult task. To overcome this
drawback, we consider another auxiliary problem and then with the help of it we
suggest another iterative algorithm which requires only partially mixed relaxed and
strong monotonicity of type (I) of the operator involved in RNMVI (53) to study the
convergence analysis.

Let T and ϕ be the same as in RNMVI (53). For a given u ∈ K , we consider
the auxiliary regularized nonconvex mixed variational inequality, which consists in
finding w ∈ K such that

〈ρTu+w−u, v−w〉+ ρ‖Tu‖
2r

‖v − w‖2 + ρϕ(v) − ρϕ(w) ≥ 0, ∀v ∈ K , (55)

where ρ > 0 is a constant.
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It should be remarked that the problems (54) and (55) are quite different. If w = u,
then obviously w is a solution of RNMVI (53). By using this observation, we suggest
the following iterative method for solving RNMVI (53).

Algorithm 4.8 Let T and ϕ be the same as in RNMVI (53). For a given u0 ∈ K ,
define the iterative sequence {un} in K in the following way:

〈ρTun + un+1 − un, v − un+1〉 + ρ‖Tun‖
2r

‖v − un+1‖2
+ ρϕ(v) − ρϕ(un+1) ≥ 0, ∀v ∈ K ,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

The next proposition is a main tool for studying the convergence analysis of the
iterative sequence generated by Algorithm 4.8.

Proposition 4.2 Let T and ϕ be the same as in RNMVI (53), and let u ∈ K be a
solution of RNMVI (53). Suppose that {un} is a sequence generated by Algorithm 4.8
and let the sequence {Tun} is bounded. If the operator T is partially (α, β)-mixed
relaxed and strongly monotone of type (I) with constant β = 1

2r (‖Tu‖ + sup
n≥0

‖Tun‖),
then the inequality (14) holds for all n ≥ 0.

Proof It follows from Proposition 3.2 by taking ϕ as a univariate function in Propo-
sition 3.2. ��

We now close this section with the following theorem in which the required con-
ditions for studying the convergence analysis of the iterative sequence generated by
Algorithm 4.8 are stated.

Theorem 4.9 Let H be a finite-dimensional real Hilbert space and ϕ : K → R ∪
{+∞} be a continuous function. Suppose that the nonlinear operator T : K → H
be continuous and let all the conditions of Proposition 4.2 hold. Furthermore, let
RNMVI(T, ϕ, K ) 	= ∅. If ρ ∈]0, 1

2α [, then the iterative sequence {un} generated by
Algorithm 4.8 converges to a solution û ∈ K of RNMVI (53).

Proof By assuming that in Theorem 3.2 ϕ is a univariate function, we obtain the
desired result from Theorem 3.2. ��

5 Conclusions

Glowinski et al. [4] were the first to use the auxiliary principle technique, which plays
an efficient and important role in variational inequality theory, to study the existence
of a solution of the mixed variational inequalities. Most of the results related to the
existence of solutions and iterative methods for variational inequality problems and
their generalizations have been investigated and considered so far to the case where the
underlying set is convex. This paper is devoted to the construction of iterative meth-
ods for solving a new class of variational inequalities in a nonconvex setting, called
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regularized nonconvex mixed variational inequalities, with the help of auxiliary prin-
ciple technique. We have studied the convergence analysis of the suggested iterative
algorithms under some appropriate conditions. Our other motivation is reflected in the
final section of this article. In the last section, the nonconvex variational inequality and
nonconvex variational problem introduced and studied in [25] have been investigated
and analyzed. We have verified that unlike the claim of the author in [25], the noncon-
vex variational problem (2) and the nonconvex variational inequality (3) in [25] are
not equivalent. It should be pointed out that the equivalence between the problems (2)
and (3) in [25] has a key role in constructing algorithms and in getting the results in
[25], and plays a crucial and basic role in it. Indeed, all the results in [25] have been
obtained based of the equivalence between the problems (2) and (3). Thanks to this
fact, we have pointed that the main results in [25] are not valid. As a consequence of
our main results, we have provided the correct versions of the algorithms and results
presented in [25].
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