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Abstract This paper proposes a self-adaptive penalty function and presents a penalty-
based algorithm for solving nonsmooth and nonconvex constrained optimization
problems. We prove that the general constrained optimization problem is equivalent
to a bound constrained problem in the sense that they have the same global solutions.
The global minimizer of the penalty function subject to a set of bound constraints
may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive
penalty firefly algorithm, with a local intensification search, is designed, and its con-
vergence analysis is established. The numerical experiments and a comparison with
other penalty-based approaches show the effectiveness of the new self-adaptive penalty
algorithm in solving constrained global optimization problems.
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1 Introduction

A penalty technique transforms the constrained optimization problem into a sequence
of unconstrained subproblems, in a way that the sequence of solutions of the uncon-
strained subproblems converges to the optimal solution of the original constrained
problem [1]. The technique is simple to implement and takes advantage of existing
and powerful unconstrained optimization methods. However, defining a strategy to
initialize and update the penalty parameter is not an easy task. To address the con-
cerning issue related to setting the penalty parameter values within a penalty-based
algorithm, a new self-adaptive penalty function is derived.

This paper illustrates the behavior of a penalty technique that relies on a self-
adaptive penalty function, to solve constrained global optimization (CGO) problems.
To promote convergence to a global optimal solution, the resulting bound constrained
global optimization (BCGO) problems are solved by well-known population-based
meta-heuristics. Although they have been implemented with different constraint han-
dling techniques for solving CGO problems, mainly penalty-based methods [2–6],
this study shows that the proposed self-adaptive penalty technique, when combined
with the meta-heuristics, is also very effective in solving CGO problems. In particular,
we analyze the performance of the firefly algorithm (FA) [7] when combined with
the self-adaptive penalty technique. FA is a swarm intelligence-based algorithm that
became very popular over the last decade. Several variants of the FA [8–11], including
hybrid approaches [12,13], and applications have been recently reported in the liter-
ature [14–16]. The effect of the control parameters on the performance of the FA has
been studied in [17–19]. Themainmotivation for using the FA, besides being one of the
most recent meta-heuristics, is related to its success when solving practical and com-
plex problems [2,20–25]. Although other adaptive penalty-based functions have been
recently combined with stochastic population-based global optimizers [3,4,26–28],
our proposal is simpler to implement, and the convergence of the algorithm is sup-
ported by the theoretical results. The authors in [3] construct a parameter-free penalty
function. The therein proposed adaptive penalty gives the objective function value
alone if the point is feasible, and combines the sum of constraint violation with either
the objective value or an upper bound of the global minimum if the point is infeasible.
They prove that the CGO and the BCGO problems, based on their adaptive penalty
function, have the same global minimizers and present further theoretical results based
on the structure of the population-based differential evolution (DE) algorithm [29]. In
[4], the adaptive penalty method (APM) investigated in [26] is extended and applied
with the DE. The authors in [26] use information from the population, such as the
average of the objective function values and the level of violation of each constraint,
at each iteration, to define the penalty parameter. In [27,28], the normalized objective
function value and a sum of the normalized constraint violations are combined to
define a modified fitness value. In both papers, a real coded genetic algorithm (GA) is
used in the adaptive penalty algorithm. No theoretical convergence results are supplied
in the last-mentioned papers [4,26–28].

Our contribution goes beyond the self-adaptive penalty function proposal. First,
we prove that the CGO and the BCGO problems, based on the proposed self-adaptive
penalty function, are equivalent in the sense that they have the same global minimizers.
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A selected set of meta-heuristics, the FA, a DE strategy with self-adaptive control
parameters (jDE) [30], the particle swarm optimization (PSO) algorithm [31,32], an
evolution strategy with covariance matrix adaptation (CMA-ES) [33] and the artificial
bee colony (ABC) algorithm [34] are used to solve the BCGO problem. The issue
related to the adequacy of the computation of the parameters required to construct
the self-adaptive penalty function in a population environment is addressed. Second,
in the context of the FA, we provide a hybrid variant by using a local intensification
procedure. The convergence analysis of the algorithm that takes into consideration the
structure of the FA and the properties of the proposed self-adaptive penalty function
is established.

The paper is organized as follows. Section2 presents the new self-adaptive penalty
function, Sect. 3 elaborates on the computation of the penalty in a population-based
environment and Sect. 4 details the new hybrid self-adaptive penalty FA. Then, the
numerical experiments are shown in Sect. 5, and we conclude the paper in Sect. 6.

2 Self-Adaptive Penalty Function

This study aims to propose a self-adaptive penalty framework for solving a CGO
problem in the following form

min
x∈X⊂Rn

f (x) subject to g(x) ≤ 0, (1)

where f : Rn → R and g : Rn → R
p are continuous possibly nonlinear functions

in X := {x ∈ R
n : −∞ < ls ≤ xs ≤ us < ∞, s = 1, . . . , n} (a compact set) and

the feasible set is defined by S := {
x ∈ X : g j (x) ≤ 0, j = 1, . . . , p

}
. Let x∗ be a

global minimizer to the problem (1) and let f ∗ = f (x∗) be the global minimum. The
feasible set S ⊆ X is assumed to be nonempty with a positive measure. Problems
with equality constraints h(x) = 0 can be reformulated into the above form using
h(x) − δ ≤ 0 and −h(x) − δ ≤ 0, where δ is a small positive tolerance. Since we do
not assume that the functions f, g j , j = 1, . . . , p are differentiable, a derivative-free
technique that does not assume convexity and differentiability is required for solving
the problem (1).

The CGO problem (1) can be formulated as a BCGO problem with an objective
penalty function that is related to both f and the constraint violation. Thus, the prob-
lem (1) is equivalent to

min
x∈X⊂Rn

φ(x) (2)

in the sense that they have the same solutions, provided that the objective penalty
function φ satisfies some properties [3].

In this study, themain goal is to derive a penalty function, that is self-adaptive, in the
sense that the constraint violationweights, also considered as penalty parameter values,
are not provided by the user but rather they are computed using information gathered
from the violated constraints at the current point. Furthermore, the objective function
and the constraint violation values are normalized taking into consideration reference
values of the objective function and constraints achieved in the search space of the
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problem. The description of the self-adaptive penalty function follows. The objective
function value f at each point x is normalized making use of the two parameters
f min := minx∈X f (x) and f max := maxx∈X f (x) in a way that the new fitness F is
computed by:

F(x) = f (x) − f min

f max − f min . (3)

The violation of each constraint j , at each point x of the search space X , is given by
max{g j (x), 0}, and the total violation is the sum of the p violations:

�(x) =
p∑

j=1

max{g j (x), 0}, (4)

which is zero if x ∈ S (a feasible point) and positive if x /∈ S. However, to scale
the constraint violation to the same order of magnitude as the new fitness F , each
constraint violation is normalized using the following expression:

Vj (x) = max{g j (x), 0}
gmax
j

, where gmax
j := max

x∈X\S
{
max{g j (x), 0}

}
(5)

is the largest value for the violation of the constraint j for all x ∈ X\S, being the
subset X\S the relative complement of S in X . Finally, the penalty function to be
minimized is as follows:

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F(x), if x ∈ S,

F(z) + 1

p

p∑

j=1

Vj (x)r j , if x ∈ X\S and f (x) ≤ f (z),

F(x) + 1

p

p∑

j=1

Vj (x)r j , if x ∈ X\S and f (x) > f (z),

(6)

where z ∈ S is a fixed point such that f (z) ≥ f ∗ and each weight r j is defined by the
proportion of the search space X that violates the constraint g j :

r j :=
∣∣x ∈ X : g j (x) > 0

∣∣

|X | , j = 1, . . . , p. (7)

The next results show that problems (1) and (2) are equivalent, i.e., they have the
same global minimizers.

Theorem 2.1 Let x∗ ∈ S be a global solution to the problem (1) and let z ∈ S be
such that f (z) ≥ f (x∗). Then, x∗ is a global solution to the problem (2), where φ is
the penalty function defined in (6).
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Proof Let x∗ ∈ S be a global solution to the problem (1). By definition, we have
f (x∗) ≤ f (x) for all x ∈ S. Hence, for all x ∈ S, we get:

φ(x∗) = f (x∗) − f min

f max − f min ≤ f (x) − f min

f max − f min = φ(x).

We now consider the case when x ∈ X\S. Assuming that (a) f (x) ≤ f (z), we

have φ(x∗) = F(x∗) ≤ F(z) < F(z) + 1

p

∑p
j=1 Vj (x)r j = φ(x), since Vj and

r j are positive, f (x∗) ≤ f (z) and using the definition (6). Now, assuming that (b)
f (x) > f (z), we get

φ(x∗) = F(x∗) ≤ F(z) < F(x) < F(x) + 1

p

p∑

j=1

Vj (x)r j = φ(x),

, and therefore, φ(x∗) ≤ φ(x) for all x ∈ X , i.e., x∗ is a global solution to the
problem (2). 
�
Lemma 2.1 If x∗ is a global solution to the problem (2), where φ is the penalty
function defined in (6), then x∗ is a feasible point for the problem (1).

Proof By contradiction, we assume that x∗ ∈ X\S. When f (x∗) ≤ f (z) and

z ∈ S we get, from (6), φ(x∗) = F(z) + 1

p

∑p
j=1 Vj (x∗)r j > F(z) = φ(z);

on the other hand, when f (x∗) > f (z), we obtain the relation [using (6)]

φ(x∗) = F(x∗) + 1

p

∑p
j=1 Vj (x∗)r j > F(x∗) > F(z) = φ(z), which con-

tradict the definition of a global solution to the problem (2). Therefore, x∗ ∈ S.

�

We are now able to establish the reciprocal of Theorem 2.1.

Theorem 2.2 Let x∗ ∈ X be a global solution to the problem (2), where φ is the
penalty function defined by (6). Then, x∗ is a global solution to the problem (1).

Proof By Lemma 2.1 x∗ ∈ S ⊂ X . We have F(x∗) = φ(x∗) ≤ φ(x) for all x ∈ X ,
and in particular, for all x ∈ S, we have F(x∗) ≤ F(x), which implies f (x∗) ≤ f (x).
Therefore, x∗ is a global solution to the problem (1). 
�

3 Solving the BCGO Problem

The present penalty method aims to penalize the inequality constraints violation of
the problem (1) while the bound constraints are always satisfied when solving (2).
According to the Theorems 2.1 and 2.2, it is sufficient to find a global solution to the
problem (2), that is, a global minimizer of φ(x) in X . To solve the BCGO problem,
the meta-heuristics FA [7,9,15], jDE [30], PSO [31,32], CMA-ES [33] and ABC [34]
have been selected. Since they are population-based algorithms, we now show how to
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adequate the computation of parameters f min, f max, f (z), gmax
j and r j , j = 1, . . . , p,

shown in (3), (5), (6) and (7), to a technique that handles a population of solutions at
each iteration.

Let Xk := {x1k , . . . , xmk } represent the population of the m < +∞ current points
at iteration k, where xik ∈ R

n, i = 1, . . . ,m. To compute the normalized fitness F , as
defined in (3), at each point x of the population, the parameters f min := minx∈Xk f (x)
and f max := maxx∈Xk f (x) are required, where we note that the point with the lowest
function value will have F(x) = 0 and the point with largest objective function
value will have F(x) = 1. To compute the normalized violation of the constraint
j , the parameter gmax

j := maxx∈Xk

{
max{g j (x), 0}

}
is defined as the largest value

for the violation of the constraint j attained at all points in Xk . The reference point
z is the feasible point with the lowest objective function value found so far. If the
population has no feasible points, f (z) is initially and temporarily set to f max, so
that f (x) ≤ f (z) for all x ∈ Xk and F(z) = 1. The value of f (z) is updated only
when the first feasible point is encountered. Noting that, at each iteration k, the set
of m generated trial points is represented by Tk := {t1k , . . . , tmk }, if the generated Tk
contains feasible points, the one with least function value, say f (t lk), is compared
with f (z) and we set f (z) = f (t lk) if f (t lk) < f (z); otherwise f (z) is not updated.
Similarly, f (z) is maintained to the next iteration if there is no feasible points in
the trial population. Finally, each weight/penalty parameter r j is iteratively computed
as r j := (∣∣x ∈ Xk : g j (x) > 0

∣∣) /m ( j = 1, . . . , p) and represents the proportion
of points in the population that violate the constraint g j . Thus, a constraint that is
violated by a larger set of points of the population than any other will have a larger
weight.

4 Hybrid Self-Adaptive Penalty FA for CGO

This section details the algorithm that implements the self-adaptive penalty concept,
while using the meta-heuristic FA to compute the solution of the BCGO problem
(2) (see Algorithm 1. This is a hybrid FA in the sense that a local intensification
procedure based on a typical DE mutation operator [29] is implemented aiming to
exploit the region around the points of the population. The intensification procedure
starts by applying a mutation strategy to the position of the best firefly, x1, where
φ(x1) < φ(xi ), i = 2, . . . ,m, componentwise with probability pm , to create the
mutant best point, v1 = x1 + Fb

(
xi1 − xi2

)
, where i1 and i2 are two different indices

randomly selected from the set {2, . . . ,m} and Fb > 0 is a real parameter. A projection
onto X is carried out if necessary, v1 and x1 are compared and the preferred point
is selected as new x1. Here, the preferred point is the one that has the smallest f
value if both are feasible; otherwise is the point that has the smallest violation. The
DE/best/1 mutation is then applied to the remaining points of the population, vi =
x1+Fo

(
xi1 − xi2

)
, i = 2, . . . ,m, componentwise with probability pm , where Fo > 0

is a real parameter, and i1 and i2 are two different indices randomly chosen from the
set {1, . . . , i − 1, i + 1, . . . ,m}. The mutant vi and xi are compared and the preferred
point is maintained to the next iteration.
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Algorithm 1: Hybrid self-adaptive penalty FA
Data: kmax, ε, η, m, f ∗
Set k = 1. Randomly generate xik ∈ X , i = 1, . . . ,m, evaluate φ and rank fireflies (from lowest to
largest φ);

while (| f ∗ − f (x1k )| > ε or �(x1k ) > η) and k ≤ kmax do
forall the xik such that i = 2, . . . ,m do

forall the x j
k such that j = 1, . . . , i − 1 do

Move firefly i toward firefly j ;

Set t ik = Project xik onto X ;
Based on Xk ∪ Tk evaluate φ;
forall the i = 1, . . . ,m do

if φ(t ik ) < φ(xik ) then
Set xik+1 = t ik ;

else
Set xik+1 = xik ;

Based on Xk+1 evaluate φ and rank fireflies;
Invoke the local intensification procedure, evaluate φ and rank fireflies;
Set k = k + 1;

For the convergence analysis of the Algorithm 1, we follow the methodology pre-
sented in [3]. Attending to the properties of the FA, and the way the penalty function
φ is defined, we can establish the following results.

Theorem 4.1 Let Xk be the current population of m points at iteration k, Tk be the
set of trial points at iteration k, and Xk+1 be the population with the points selected
for the next iteration k + 1. Then f (zk) ≥ f (zk+1), where zk is the feasible point with
the lowest function value in the set Xk and zk+1 is the feasible point with the lowest
function value found in Tk. Furthermore, φ(zk) ≤ φ(t ik), for all infeasible t

i
k ∈ Tk.

Proof Let zk be the best feasible solution of Xk . Obviously, zk will never be replaced
by any infeasible point of Tk . We assume now that there exists a feasible point t ik ∈ Tk
such that φ(t ik) < φ(zk). Then,

φ(t ik) = F(t ik) < F(zk) = φ(zk) implies f (t ik) < f (zk), where f min and f max

(for the definition of fitness F) are selected from the set Xk ∪ Tk . We conclude that
f (zk) > f (t ik) ≥ f (zk+1). However, if the feasible point t ik ∈ Tk does not satisfy
φ(t ik) < φ(zk), then φ(t ik) = F(t ik) ≥ F(zk) = φ(zk) which implies f (t ik) ≥ f (zk)
and f (zk+1) = f (zk). In both cases, f (zk) ≥ f (zk+1). We consider now the case
where t ik ∈ Tk is infeasible. We analyze both cases: (a) f (t ik) ≤ f (zk) and (b) f (t ik) >

f (zk). In case (a), assume that φ(t ik) < φ(zk) which implies

F(zk) + 1

p

p∑

j=1

Vj

(
t ik

)
r j < F(zk) (8)

since t ik is infeasible and f (t ik) ≤ f (zk) [see (6)]. However, the last condition in (8) is a
contradiction because the second term on the left hand side of the equation is positive.
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When in case (b), we assume that φ(t ik) < φ(zk), we get F(t ik)+ 1

p

∑p
j=1 Vj (t ik)r j <

F(zk), and therefore,

1

p

p∑

j=1

Vj (t
i
k)r j < F(zk) − F

(
t ik

)
= f (zk) − f

(
t ik

)

f max − f min < 0

which is a contradiction. Hence, we must have φ(zk) ≤ φ(t ik) for all infeasible points
t ik ∈ Tk . 
�

In the next theorem, we prove that the sequence { f (zk)} converges and the limit is
the greatest lower bound, or infimum, f ∗.

Theorem 4.2 Let zk be the feasible point with the lowest objective function value
obtained at iteration k. Then, lim

k→∞ f (zk) = f ∗.

Proof By Theorem 4.1, { f (zk)} is a monotonically decreasing sequence. Since f ∗
is the infimum of the sequence, then for all δ > 0, f ∗ + δ is not an infimum of the
sequence. Hence, there exists K = K (δ) ∈ N, such that

f ∗ − δ < f ∗ ≤ f (zk) ≤ f (zK ) < f ∗ + δ

for all k ≥ K , meaning that f (zk) → f ∗ as k → ∞. 
�
In the Algorithm 1, to select between the current and the trial positions, both penalty

function values φ(xik) and φ(t ik) are compared. When both xik and t ik are feasible,
the point with the lowest f wins [recall (6) and that parameters f min and f max are
computed based on the set Xk ∪ Tk]. On the other hand, when xik and t

i
k are infeasible,

the selection is determined by their constraint violation and F values combined in the
penalty φ. However, when xik is feasible and t ik is infeasible, the probability that the
trial t ik is selected over xik as the current point for the next iteration k + 1 could be
determined.

Theorem 4.3 Let xik ∈ Xk, where Xk is the current population at iteration k, and
tik ∈ Tk, where Tk is the set of trial points at iteration k, be such that xik is feasi-
ble and tik is infeasible. Assume that there exists 0 < r̄ ≤ 1 such that eventually
r j ≥ r̄ for j = 1, . . . , p. Then, the probability of selecting tik over xik is zero,

i.e., Pr

[
1

p

∑p
j=1 Vj (t ik)r j < F(xik) − F(zk)

]
= 0 for r j , j = 1, . . . , p, that sat-

isfy r j ≥ r̄ .

Proof Assume that t ik ∈ Tk is almost always selected when compared with a feasible
xik ∈ Xk , i.e., φ(t ik) < φ(xik). Hence, (a) if f (t ik) ≤ f (zk), we have φ(t ik) = F(zk) +
�n(t ik) < φ(xik) = F(xik) which implies

0 < �n
(
t ik

)
< F

(
xik

)
− F(zk) ≤ 1, (9)
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where for simplicity �n(t ik) = 1

p

∑p
j=1 Vj (t ik)r j > 0. On the other hand, (b) if

f (t ik) > f (zk), we get φ(t ik) = F(t ik) + �n(t ik) < φ(xik) = F(xik) yielding

0 < �n
(
t ik

)
< F

(
xik

)
− F

(
t ik

)
< F

(
xik

)
− F(zk) ≤ 1. (10)

We note that in both (9) and (10), f (xik) − f (zk) > 0, provided that xik = zk . We
now study the probability of �n(t ik) < F(xik) − F(zk) being held. We assume that
the trial point T i

k is a random variable with realizations t ik and that �n(T i
k ) increases

uniformly away from the feasibility. Since F(xik) − F(zk) is a fixed number in the
range (0, 1], Pr [

�n(T i
k ) < F(xik) − F(zk)

]
> 0 holds for (9) and (10). The larger

the F(xik) − F(zk) is, the larger the probability is. However, this probability also
depends on �n(T i

k ). By contradiction, we assume that there exists 0 < r̄ ≤ 1 such

that Pr

[
1

p

∑p
j=1 Vj (T i

k )r j < F(xik) − F(zk)

]
> 0, when r j , j = 1, . . . , p satisfy

r j ≥ r̄ . This means that

1

p

p∑

j=1

Vj

(
t ik

)
r j < F

(
xik

)
− F(zk) for r j ≥ r̄ , j = 1, . . . , p. (11)

However, there certainly exists a value T i
k = t ik , such that for r j , j = 1, . . . , p

satisfying r j ≥ r̄ ,
1

p

p∑

j=1

Vj (t
i
k)r j ≥ F(xik) − F(zk), which contradicts (11). 
�

We now consider the situation when xik is infeasible and the trial t ik is feasible and
analyze the probability that the current xik is selected over t ik as the current point for
the next iteration k + 1.

Theorem 4.4 Let xik ∈ Xk, where Xk is the current population of m points at iteration
k, and tik ∈ Tk, where Tk is the set of trial points at iteration k, be such that xik is
infeasible and tik is feasible. Then, there exists 0 < r̄ ≤ 1 such that the probability of

selecting xik over t
i
k is zero, i.e., Pr

[
1

p

∑p
j=1 Vj (xik)r j < F(t ik) − F(zk)

]
= 0 when

r j , j = 1, . . . , p satisfy r j ≥ r̄ .

Proof Assume that xik ∈ Xk is almost always selected when compared with a feasible
t ik ∈ Tk , which means that φ(xik) < φ(t ik). When (a) f (xik) ≤ f (zk), φ(xik) =
F(zk) + �n(xik) < φ(t ik) = F(t ik) and �n(xik) < F(t ik) − F(zk) is obtained. When
(b) f (xik) > f (zk), φ(xik) = F(xik) + �n(xik) < φ(t ik) = F(t ik) implies �n(xik) <

F(t ik) − F(xik) or �n(xik) < F(t ik) − F(zk).
Assuming that the trial point T i

k and f (T i
k ) are random variables with realiza-

tions t ik and f (t ik), respectively, we have that F(T i
k ) − F(zk) is bounded (since

t ik is feasible, f (t ik) is bounded and f (z) is fixed). Thus, there exists a set of
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values T i
k = t ik such that �n(xik) < F(t ik) − F(zk) holds, which means that

Pr
[
�n(xik) < F(T i

k ) − F(zk)
]

> 0. However, there certainly exists 0 < r̄ ≤ 1

such that
1

p

p∑

j=1

Vj (x
i
k)r j > F(t ik) − F(zk) holds for r j , j = 1, . . . , p that sat-

isfy r j ≥ r̄ , implying that Pr

[
1

p

∑p
j=1 Vj (xik)r j < F(T i

k ) − F(zk)

]
= 0 for

r j ≥ r̄ , j = 1, . . . , p. 
�

5 Numerical Experiments

In this section, the performance of the self-adaptive penalty technique when solving
a benchmark set of CGO problems is investigated. Unless otherwise stated, we set
m = 50. In the context of defining the reference point z and the value of the penalty
in (6), a point x is considered feasible if �(x) ≤ 1e−8.

First, we aim to analyze the effectiveness of the technique when using a meta-
heuristic to compute a global minimizer of the penalty φ(x) in X , as defined by
the BCGO problem (2). The FA, jDE, PSO, CMA-ES and ABC meta-heuristics are
tested, using the parameter values as suggested in the papers [21,30,32–34]. For this
experiment, the set g01–g13 of the g-collection1 is used, noting that problems g03,
g05, g11 and g13 have equality constraints and the tolerance δ = 1e−4 is used. In
these comparisons, we stop the algorithms after 200,000 function evaluations. The
results are summarized in Table1, where ‘average’ and ‘SD’ represent the average
and the standard deviation of the function values obtained by the algorithms after 20
runs. The best known optimal solutions, ‘ f ∗’, are displayed in Table2. Best results
(the wins) are ‘Bold’, and ties are in the ‘italic’ style. From the table, it is possible to
see that the FA has a larger number of wins than the others in both criteria. Overall,
the self-adaptive penalty technique, with simple and easy to code meta-heuristics for
solving the BCGO problem, is effective in finding global optimal solutions to CGO
problems.

Second, we aim to compare the hybrid self-adaptive penalty FA with other algo-
rithms available in the literature. Three recently proposed adaptive penalty-based
stochastic global optimizers [3,4,27] are used. When invoking the local intensifi-
cation search in the FA, some parameters have been chosen to be problem dependent,
namely pm , Fb and Fo, with the goal of giving the best performances. To compare our
results with those reported in [3] (an adaptive penalty-based DE algorithm), we stop
the algorithm after 50,000 function evaluations (as indicated in [3]). The results are
summarized in Table2, where ‘bestE ’, ‘worstE ’ and ‘SDE ’ represent the best error
value, fbest − f ∗, the worst error and the standard deviation of the error values, based
on 100 runs, respectively. Although the results produced by our algorithm are satis-
factory, they are not superior to those reported in [3] except for problems g01 and g13,
being g12 a tie. A larger number of function evaluations would certainly be required

1 Liang et al. [35].
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for some problems. While the local search has provided good quality solutions, it has
raised the computational effort.

When comparing our results with those produced by DUVDE + APM in [4] (the
APM with dynamic use of DE variants), the subset g01–g11 is used. The results are
summarized in Table3, where the ‘best’, the ‘average’ and the ‘SD’ of the solutions
obtained in 20 independent runs are shown. The algorithms terminate after 350,000
function evaluations. The conclusions are that our algorithm is able to produce com-
parative and high-quality solutions when a larger number of evaluations are allowed.

Table4 shows the results obtained after 50 runs, produced by our algorithm when
solving the set g01–g13withm = 100 and amaximumof 500,000 function evaluations
(as in [27], where a self-adaptive penalty-based GA, is used). The results of our
study are in general superior to those reported in [27] and we reiterate the previous
conclusions.

Now, we compare our algorithm with a modified ABC algorithm that uses Deb’s
rules consisting of three simple heuristic rules for constraint handling [36]. The follow-
ing conditions are considered: m = 40, 30 runs and a maximum of 24,0000 function
evaluations (like in [36]). From the results in Table5, it is possible to conclude that
the hybrid self-adaptive penalty FA performs similarly to the modified ABC on nine
problems, is better on g06 and g13 and is worse on g05 and g10.

Finally, a set of 20 problems available in http://www.ime.usp.br/~egbirgin/2 is used. We
aim to compare the herein proposed hybrid self-adaptive penalty FAwith other penalty-
type approaches. The comparison involves the results presented in [38], where an
augmented Lagrangian framework is combined with a meta-heuristic, known as artifi-
cial fish swarm algorithm, and those reported in [39], where a nondifferentiable exact
penalty function framework is implementedwith the deterministicDIRECTalgorithm.
The results are summarized in Table6, where ‘best’ is the best solution found among
the 30 runs, ‘median’ is the median of the 30 solutions and ‘n.f.e.(b)’ is the number
of function evaluations to reach the value ‘best’. The solution, ‘sol.’, the number of
function evaluations, ‘n.f.e.’, reported in [39] and the best known solution available
in the literature, ‘ f ∗’, are also shown in the table. When we compare our results with
those in [38], we conclude that the quality of the obtained solutions is comparable
although a larger number of function evaluations are needed to reach those solutions.
On the other hand, the quality of our solutions is superior to the one displayed by the
penalty-based DIRECT algorithm [39].

6 Conclusions

We present a new self-adaptive penalty function that aims to penalize solutions, that
violate the constraints of the problem, and is user-independent in the sense that penalty
parameter values are set automatically by the information gathered from the violated
constraints at each iteration. We establish the existence of an equivalence between the
CGO problem and the BCGO problem with the self-adaptive penalty objective. The
paper also shows the practical performance of a set of well-known meta-heuristics

2 Birgin et al. [37].
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when solving the BCGO problem by demonstrating that they are effective in con-
verging to the global solutions. Due to the superior performance of the recent FA
meta-heuristic, the paper proposes a hybrid FA aiming to enhance the quality of
the solutions. The convergence analysis of the algorithm has also been established.
With the numerical experiments carried out with two sets of benchmark problems,
we demonstrate that the proposed self-adaptive penalty method is effective in solving
CGO problems. Future developments will be focused on solving higher dimensional
optimization problems and reducing the computational effort in terms of function
evaluations.
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