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Abstract In infinite-dimensional spaces, we investigate a set-valued system from
the image perspective. By exploiting the quasi-interior and the quasi-relative interior,
we give some new equivalent characterizations of (proper, regular) linear separation
and establish some new sufficient and necessary conditions for the impossibility of
the system under new assumptions, which do not require the set to have nonempty
interior. We also present under mild assumptions the equivalence between (proper,
regular) linear separation and saddle points of Lagrangian functions for the system.
These results are applied to obtain some new saddle point sufficient and necessary
optimality conditions of vector optimization problems.
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1 Introduction

In recent years, generalized systems (for short, GS), as a unified framework of equilib-
rium problems, optimization problems, variational inequalities, and complementarity
systems, have received more and more attention from the image perspective (see, e.g.,
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[1–4]). Such problems can be reduced to the impossibility of GS, which can be studied
by means of separation techniques in the image space associated with GS (see, e.g.,
[5–10]).

Traces of the idea of studying the images of functions, involved in a constrained
extremum problem, go back to the work of Carathéodory [11]. In the 1950s, Bellman,
introducing his famousmaximum principle [12], proposed to replace the unknowns by
new ones, which run in the space of the images of the functions, that define the given
problem, the image space. In the late 1970s and 1980s, Giannessi [13], Castellani,
Giannessi [14] and Hestenes [15], independently of each other, brought explicitly
such a study into the field of optimization.

In this paper, we shall investigate set-valued GSwith infinite-dimensional image by
means of the image space analysis (for short, ISA) [13]. As is well known, the “Slater”
condition, as the most straightforward constraint qualification of constrained opti-
mization problems or variational inequalities, is often not met in infinite-dimensional
spaces, even in finite-dimensional ones, because it requires the existence of an inte-
rior point of a convex set, which often has empty interior (see, e.g., [16]). This
is the case of constrained optimization problems or variational inequalities with
infinite-dimensional image, such as optimization problems or variational inequalities
connected with network equilibrium problems, the obstacle problem, the elastic–
plastic torsion problem, which use positive cones of spaces of all Lebesguemeasurable
functions or Sobolev spaces. The use of the quasi-interior and the quasi-relative interior
allows one to overcome the difficulty (see, e.g., [16–20]).

As is well known, a separation theorem plays a vital role in obtaining the necessary
conditions (i.e., linear separation) for the impossibility of GS. Though some separation
theorems related to the quasi-interior and the quasi-relative interior have been recently
proposed and discussed by several authors (see, e.g., [16–18,20–23]), no existing
separation theorems in terms of the quasi-interior and the quasi-relative interior can
be used to obtain the necessary conditions for the impossibility of GS. To this aim, we
first give some new equivalent characterizations of (proper, regular) linear separation
for set-valued GS with infinite-dimensional image by using the quasi-interior and the
quasi-relative interior, and then applied these results to establish new sufficient and
necessary conditions for the impossibility of set-valued GS with infinite-dimensional
image under a technical assumption (see, Theorem 4.3), which is different from the
standard way. We also present under some convexity and compactness assumptions
of the set-valued mapping the equivalence between (proper, regular) linear separation
and saddle points of Lagrangian functions for constrained set-valued GS with infinite-
dimensional image. Furthermore, we apply these results to obtain some new saddle
point sufficient and necessary optimality conditions of vector optimization problems
(for short, VOP), which are compared with that in [24,25]. The results presented in
this paper extend and generalize corresponding results in [3,4,7,13].

The paper is organized as follows. In Sect. 2, we recall some preliminary results of
the quasi-relative interior and the quasi-interior, and some concepts of set-valuedmap-
pings. We define the image of set-valued GS and the conical extension of the image,
and give the equivalence between the impossibility of set-valued GS and an empty
intersection of a subset of the image space and the conical extension of the image. In
Sect. 3, we characterize the (proper, regular) linear separation for set-valued GS by
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using the quasi-relative interior and the quasi-interior, and we present sufficient and
necessary conditions for the impossibility of set-valued GS in Sect. 4. Section 5 inves-
tigates under some convexity and compactness assumptions the equivalence between
(proper, regular) linear separation and saddle points of Lagrangian functions for set-
valued GS. Applications to VOP are given in Sect. 6, devoting particular attention to
linear separation and saddle point sufficient and necessary optimality conditions.

2 Preliminaries and ISA for Set-Valued GS

The following notations and definitions will be useful in the sequel.
LetRm be them-dimensional Euclidean space, wherem is a given positive integer.

Denote by R
m+ := {x ∈ R

m : each xi ≥ 0} and R
m++ := {x ∈ R

m : each xi > 0}.
Let A,B be subsets of a Hausdorff locally convex topological linear space U . The
closure, the interior, the boundary, and the convex hull of A are denoted by clA,
intA, bdA and convA, respectively. The relative interior of A, i.e., the interior of
A relative to the closed affine hull of A (see, e.g., [26]), is denoted by riA. Denote
by A + B := {a + b ∈ U : a ∈ A, b ∈ B} the Minkowski sum of A and B. Let
A+ b := A+ {b} and consider that A+ ∅ = ∅. According to the definition, one has
A+B = B+A. Denote by tA := {ta ∈ U : a ∈ A}, where t ∈ R. The setA is said to
be a cone, if λA ⊆ A for all λ > 0, and a convex cone if, in addition,A+A ⊆ A. We
say that a coneA is pointed, ifA∩ (−A) = {0} and proper, if U �= A �= {0}. Denote
by coneA := ∪t∈R+ tA the cone generated by A and let cone+ A := ∪t∈R++ tA.
Clearly, if A is a cone, so is clA. A∗ := {a∗ ∈ U∗ : 〈a∗, a〉 ≥ 0, ∀a ∈ A} is the
positive polar of A, where U∗ is the topological dual of U and 〈a∗, a〉 is the value of
a∗ at a. Clearly, A∗ = (clA)∗ = (convA)∗ = (A\{0})∗. NA(a) is the normal cone
to A at a ∈ A and is defined by NA(a) := {a∗ ∈ U∗ : 〈a∗, a′ − a〉 ≤ 0, ∀ a′ ∈ A}.
The support function of A is defined by σA(a∗) := supa∈A〈a∗, a〉, where a∗ ∈ U∗.
Clearly, σA(a∗) = σclA(a∗) = σconvA(a∗). Let U and V be Hausdorff locally convex
topological linear spaces. Define 〈(a∗, b∗), (a, b)〉 := 〈a∗, a〉 + 〈b∗, b〉, where a ∈
U , b ∈ V, a∗ ∈ U∗ and b∗ ∈ V∗. Define (A,B) := {(a, b) ∈ U × V : a ∈ A, b ∈ B}
if A �= ∅ and B �= ∅, where A ⊆ U and B ⊆ V .

The following definition is due to Borwein and Lewis.

Definition 2.1 [16, Definition 2.3] LetA be a nonempty subset of a Hausdorff locally
convex topological linear space V .
(i) We say that a ∈ A is a quasi-interior point of A, denoted by a ∈ qiA, if

cl cone (A − a) = V , or equivalently, NA(a) = {0};
(ii) We say that a ∈ A is a quasi-relative interior point of A, denoted by a ∈ qriA,

if cl cone (A − a) is a linear subspace of V , or equivalently, NA(a) is a linear
subspace of V∗.

Recall that if A ⊆ V is convex and a ∈ A, then cl cone (A − a) = TA(a) (see,
e.g., [27–29]), where TA(a) is the contingent cone (or the Bouligand tangent cone)
to A at a. It is easy to see that, for any a ∈ V , qri {a} = {a}. For any convex set
A ⊆ V , we have that qiA ⊆ qriA, and intA �= ∅ implies intA = qriA [16] and
intA = qiA [19], and if qiA �= ∅, then qiA = qriA [19,20]. Moreover, if V is a
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finite-dimensional space, then qiA = intA [19] and qriA = riA [16]. IfA ⊆ V is a
closed and proper cone, then 0 /∈ qiA, since 0 ∈ A and cl cone (A− 0) = A �= V . If
A ⊆ V with A �= {0} is a closed and pointed cone, then 0 /∈ qriA, since 0 ∈ A and
cl cone (A − 0) = A is not a linear subspace of V .

In this paper, without other specifications, let X and V be Hausdorff locally convex
topological vector spaces, Y be a parameter set, and R ⊆ X be a nonempty and convex
set. Let H ⊆ V be convex such that 0 /∈ H and clH is a cone (since H is convex, so
is clH), and let F : X × Y ⇒ V be a set-valued mapping. We consider the following
set-valued GS:

F(x; y) ∩ H �= ∅, x ∈ R, (1)

where y ∈ Y .
If F : X × Y → V is single-valued, then system (1) collapses to the system:

F(x; y) ∈ H, x ∈ R, where y ∈ Y , which has been investigated in [3,4,13].
System (1) is problem (4.9.1) in [1] (see also, [30]) when F(x; y) = F(x; z) for any

y, z ∈ Y and X and V are Euclidean spaces, which is related closely to the extension
of the well-known Farkas lemma (see, e.g., [31,32]). The following is an example of
system (1).

Example 2.1 Let X,V be Banach spaces, Y be a parameter set, and let V∗ be the dual
space of V. Let K ⊆ V be closed and convex, and let H ⊆ V∗ be convex such that
0 /∈ H and clH (with respect to theweak* topology) is a cone. LetF : X×Y → V∗ and
G : X → K. Given y ∈ Y, consider the following parametric variational inequality
(for short, VIy): find x ∈ X and h∗ ∈ H such that

〈F(x, y) − h∗, z − G(x)〉 ≥ 0, ∀z ∈ K.

Then, it is easy to see that x ∈ X and h∗ ∈ H solve VIy if and only if −F(x, y) +
h∗ ∈ NK(G(x)), or equivalently, 0 ∈ F(x, y) + NK(G(x)) − H, i.e., (F(x, y) +
NK(G(x))) ∩ H �= ∅. Set X := X, Y := Y, V := V∗, R := X,H := H and
F(x, y) := F(x, y) + NK(G(x)). Then, VIy is equivalent to system (1).

Without other specifications, we always suppose thatU and Z are Hausdorff locally
convex topological vector spaces, C ⊆ U is convex such that 0 /∈ C and clC is a cone
(since C is convex, so is clC), D ⊆ Z is a closed and convex cone, K ⊆ X is convex.
Suppose that G : X × Y ⇒ U and H : X ⇒ Z are set-valued mappings. In order
to investigate sufficient and necessary conditions and saddle points of Lagrangian
functions for system (1), we consider a special case of system (1) (i.e., system (1)
with set constraints) as follows:

G(x; y) ∩ C �= ∅, x ∈ R0 := {x ∈ K : H(x) ∩ D �= ∅}, (2)

where y ∈ Y . Setting V := U × Z , H := C × D, R := K and F(x; y) :=
(G(x; y), H(x)) yields the equivalence between systems (2) and (1).

We focus on the impossibility of systems (1) and (2), which consists in finding
ȳ ∈ Y such that systems (1) and (2) be impossible, and in finding methods, which
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prove the impossibility of such systems. As one of themost important tools, separation
techniques in the image space V are useful for investigating the impossibility of
systems (1) and (2).

Several problems, such as optimization problems and variational inequalities, can
be formulated by means of system (2).

Without other specifications, suppose always that P ⊆ U is a closed, convex, and
pointed cone with qri P �= ∅, K ⊆ X is convex and suppose that S : X ⇒ U is
set-valued mapping. We consider set-valued vector optimization problem (for short,
SVOP) as follows (see, e.g., [24,25,33,34]):

minCS(x), subject to x ∈ R0 := {x ∈ K : H(x) ∩ D �= ∅},

where C := P\{0} or qriP , and minC means the minimum with respect to C. We
say that a pair (x∗, y∗) with x∗ ∈ R0 and y∗ ∈ S(x∗) is a minimizer of SVOP, if
(y∗ − S(x)) ∩ (P\{0}) = ∅, ∀x ∈ R0. That is to say y∗ is a minimal element of the
set S(R0) := ∪x∈R0 S(x) with respect to P\{0} (see, e.g., [28]). Let x ∈ X and y ∈ Y .
Set Y := S(R0), C := P\{0}, G(x; y) := y − S(x). Then, (x∗, y∗) with x∗ ∈ R0
and y∗ ∈ S(x∗) is a minimizer of SVOP iff system (2) is impossible with y∗ ∈ Y .
Similarly, we can define the weak minimizer of SVOP by using C = qriP .

If S and H collapse to single-valued mappings f : X → U and g : X → Z ,
respectively, then SVOP reduces to the vector optimization problem (for short, VOP)
as follows:

minC f (x), subject to x ∈ R0 := {x ∈ K : g(x) ∈ D},

where C := P\{0} or qriP .We say that x∗ ∈ R0 is an efficient (res., a weakly efficient)
solution ofVOP, if f (x)− f (x∗) /∈ −(P\{0})(res., f (x)− f (x∗) /∈ −qriP), ∀x ∈ R0.

In the following, we first recall some concepts of set-valued mappings.

Definition 2.2 Let C ⊆ U be a closed and convex cone and K ⊆ X a convex set. A
set-valued mapping M : X ⇒ U is said to be

(i) C-map on K , if tM(x) + (1− t)M(y) ⊆ M(tx + (1− t)y) + C, ∀x, y ∈ K , t ∈
]0, 1[;

(ii) C-convexlike on K , if M(K ) + C is convex.

Remark 2.1 If M is a single-valued mapping, then (i) and (ii) reduce to the classi-
cal definitions of C-map and C-convexlike mappings, respectively. We also have the
following:

(a) Clearly, (i)⇒(ii); If M is C-map on K , then M + C is convex-valued on K , i.e.,
M(x) + C is convex for each x ∈ K ; Moreover, −M is C-map on K iff M is
−C-map on K (see, e.g., [7,35]);

(b) If H is−D-map on K , then the feasible set R0 of system (2) and SVOP is convex.
Let x, y ∈ R0, t ∈]0, 1[ and set z := tx + (1 − t)y. Then, H(x) ∩ D �= ∅ and
H(y) ∩ D �= ∅, i.e., 0 ∈ H(x) − D and 0 ∈ H(y) − D, and z ∈ K , since K is
convex. Since H is −D-map on K , it follows that
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0 ∈ t (H(x) − D) + (1 − t)(H(y) − D) = t H(x) + (1 − t)H(y)

−[t D + (1 − t)D] ⊆ H(tx + (1 − t)y) − D − D ⊆ H(z) − D,

or equivalently, H(z) ∩ D �= ∅, i.e., z ∈ R0. This proves R0 is convex.

We now define the image of system (1).

Definition 2.3 We call Ky := F(R; y), y ∈ Y , the image associated with system (1)
and call the space V the image space.

Let ȳ ∈ Y . Observe that system (1) is impossible with ȳ iff the intersection of H
and the image Kȳ is empty, i.e.,

Kȳ ∩ H = ∅. (3)

It is well known that if the imageKȳ is convex, then the classic method can be used
to prove (3) by showing that Kȳ and H lie in two disjoint level sets of a functional;
when such functional can be found linear,Kȳ andH will be said “linearly separable,”
or equivalently, we call a hyperplaneH separatesKȳ andH, ifKȳ is contained in one
of the closed half-spaces associated with H and H lies in the opposite closed half-
space. We call Kȳ andH are properly linearly separable, if a hyperplane H separates
Kȳ and H, and Kȳ and H are not both actually contained in H itself. However, the
image Kȳ is not convex in general, even if the mapping F(·; ȳ) is −(clH)-map or
−(clH)-convexlike on R. To overcome this difficulty, similar to [3,4], we introduce
a regularization of the image Kȳ , namely the extension with respect to the closed
and convex cone clH, denoted by Eȳ : Eȳ := Kȳ − clH. The introduction of the
extension of the image Kȳ allows us to obtain an equivalent formulation of (3) under
mild assumptions.

It is easy to check the following proposition (see, e.g., [1,3,6–8]).

Proposition 2.1 Let ȳ ∈ Y . Then the following statements are true:

(i) Assume that H + clH = H. (4)

Then, system (1) is impossible with ȳ, i.e., (3) holds, iff

Eȳ ∩ H = ∅; (5)

(ii) Let H := C × D and assume that

C + clC = C. (6)

Then, system (2) is impossible with ȳ, i.e., (3) holds, or equivalently, (5) holds, iff

Eȳ ∩ Hu = ∅, (7)

where Hu = C × {0}.
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Assumptions (4) and (6) play a vital role in proving the equivalence between (3),
(5), and (7). The following two examples show that (4) does not hold in Euclidean
and Hausdorff locally convex topological vector spaces.

Example 2.2 LetH := R
2++ ∪ {(0, 1)}. Then, 0 /∈ H,H is convex and clH = R

2+. It
is easy to see that H + clH ⊇ H. However, (0, 2) = (0, 1) + (0, 1) ∈ H + clH and
(0, 2) /∈ H, which yields the converse inclusion does not hold.

Example 2.3 Let

l2 := {(xn)n≥1 ⊆ R :
∞∑

n=1

x2n < +∞},

l2+ := {(xn)n≥1 ∈ l2 : each xn ∈ R+},
l2++ := {(xn)n≥1 ∈ l2 : each xn ∈ R++}.

Then, l2 is a Hilbert space, l2+ is a closed and convex cone and cl l2++ = l2+. LetH :=
l2++ ∪ {(1, 0, . . .)}. Then, it is easy to check that 0 /∈ H, H is convex, clH = l2+ and
as a consequence,H+ clH ⊇ H. But, (1, 1, 0, . . .) = (1, 0, 0, . . .) + (0, 1, 0, . . .) ∈
H + clH and (1, 1, 0, . . .) /∈ H, which implies that the converse inclusion does not
hold.

The following propositions provide some conditions such that assumptions (4) and
(6) hold.

Proposition 2.2 Assume that A ⊆ V is convex with 0 /∈ A, H := cone+ A and
H + clH\H ⊆ H. Then, assumption (4) is true.

Proof Since A is convex, so is H = cone+ A (see, e.g., [3]) and 0 /∈ H in view of
0 /∈ A. Then, clH = cl cone+ A and clH is a closed and convex cone. It follows from
0 ∈ clH that H ⊆ H+clH. We declare that H + H ⊆ H. Let x, y ∈ H. Then, there
are a, b ∈ A and s > 0, t > 0 such that x = sa and y = tb. Since A is convex and
H = cone+ A, it follows that

x + y = sa + tb = (s + t)(
s

s + t
a + t

s + t
b) ∈ (s + t)A ⊆ H,

which yields H + H ⊆ H. Now, from the assumption H + clH\H ⊆ H, we have
H + clH ⊆ H. This proves assumption (4) holds. ��
Proposition 2.3 LetH := C×D andassume thatC = cone+C andC+clC\C ⊆ C.
Then, assumption (4) is true. Especially, if any of the following statements holds:

(i) C := B\{0};
(ii) C := qri B �= ∅,
where B ⊆ U is a closed and convex cone, then assumptions (4) and (6) are true.
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Proof Note that 0 /∈ C , clC and D are closed and convex cones. Then, from the
assumption C = cone+ C we haveH = C × D = cone+ (C × D) = cone+ H. Since
C + clC\C ⊆ C ,

H + clH\H = C × D + cl (C × D)\(C × D) = C × D + (clC × D)\(C × D)

= C × D + (clC\C) × D ⊆ C × D = H.

Now, Proposition 2.2 implies assumption (4) holds.
(i) If C := B\{0}, then cone+ C = cone+ (B\{0}) = (cone+ B)\{0} = B\{0} = C
and clC = B, since B is a closed and convex cone. Therefore, C + clC\C =
B\{0} + {0} = B\{0} = C . As a consequence, previous conclusions yield that
assumptions (4) and (6) hold.
(ii) If C := qri B, then from [3,6,16,19,21,22], one has C is convex, clC =
cl (qri B) = B, C = cone+ C and C + clC\C ⊆ C + clC = C . Therefore, assump-
tions (4) and (6) follow immediately from previous conclusions. ��

The extension of the image Kȳ is convex under suitable convex assumptions.

Proposition 2.4 Let ȳ ∈ Y . Then, the following statements are true:

(i) Eȳ is convex iff F(·; ȳ) is −(clH)-convexlike on R;
(ii) If G(·; ȳ) and H are −(clC)-map and −D-map on K , respectively, then the

regularization of the image, i.e., Eȳ := (G(·; ȳ), H)(K )− (clC × D), is convex.

Proof Statement (i) is self-evident, and it is easy to check statement (ii) holds. ��
Corollary 2.1 For SVOP, if S and H are P-map and −D-map on K , respectively,
then the regularization of the image, i.e., Eȳ := (ȳ − S, H)(K ) − (P × D), is convex.

Proof From [16,19,21,22], one has clC = cl (qri P) = P . Moreover, if S is P-map
on K , then one has G(·; ȳ) := ȳ − S, which is −P-map on K . Thus the conclusion
follows immediately from Proposition 2.4 (ii). ��

3 Linear Separation for Systems (1) and (2)

In this section, we shall investigate the (proper, regular) linear separation of Kȳ and
H by using the quasi-relative interior and the quasi-interior. Some new results of the
(proper, regular) linear separation of Kȳ and H are given.

It is easy to prove the following proposition.

Proposition 3.1 The following statements are true:

(i) Kȳ andH are linearly separable iff there exists λ∗ ∈ H∗ \ {0} such that 〈λ∗, e〉 ≤
0, ∀e ∈ Kȳ, or equivalently, supx∈R σF(x,ȳ)(λ

∗) ≤ 0;
(ii) Eȳ andH are linearly separable iff there exists λ∗ ∈ H∗ \ {0} such that 〈λ∗, e〉 ≤

0, ∀e ∈ Eȳ .
Similar to Propositions 4.2 and 4.3 in [3], we have Propositions 3.2 and 3.3. The

proofs are omitted.
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Proposition 3.2 Assume that (4) holds. Then, the following statements are equivalent:

(i) Kȳ and H are linearly separable;
(ii) Eȳ and H are linearly separable;
(iii) Ncone convEȳ (0) �= {0}, i.e., 0 /∈ qi (cone conv Eȳ).
Proposition 3.3 Assume that (4) holds. Then, the following statements are equivalent:

(i) Kȳ and H are properly linearly separable;
(ii) Eȳ and H are properly linearly separable;
(iii) Ncone convEȳ (0) is not a linear subspace of V

∗, i.e., 0 /∈ qri (cone conv Eȳ).
We first prove the following lemma, which is useful in characterizing the (proper)

linear separation of Kȳ and H.

Lemma 3.1 Assume that (4) holds, and assume that 0 ∈ conv Eȳ and qiH �=
∅. Then, the following equalities hold: qri (cone conv Eȳ) = qi (cone conv Eȳ) =
qi (cone conv Eȳ) − clH.

Proof Since clH is a closed and convex cone, we have clH = clH+clH and so from
(4) we have Eȳ = Kȳ − clH = Kȳ − (clH + clH) = Eȳ − clH. Since 0 ∈ conv Eȳ ,
from [29], one has

cone conv Eȳ = cone conv (E ȳ − clH) = cone (conv Eȳ − clH) = cone conv Eȳ − clH. (8)

Since qiH �= ∅, qriH = qiH and it follows from [3,6] and (8) that

qi (cone conv Eȳ) = qi (cone conv Eȳ − clH) ⊇ cone conv Eȳ − qi (clH)

⊇ cone conv Eȳ − qiH �= ∅.

As a consequence, qri (cone conv Eȳ) = qi (cone conv Eȳ) = qi (cone conv Eȳ−clH).

Wedeclare that the equality holds: qi (cone conv Eȳ−clH) = qi (cone conv Eȳ)−clH.
In fact, again from [3] we have qi (cone conv Eȳ − clH) ⊇ qi (cone conv Eȳ) −
clH. Since qi (cone conv Eȳ) = qi (cone conv Eȳ − clH) and 0 ∈ clH, it fol-
lows that qi (cone conv Eȳ − clH) ⊆ qi (cone conv Eȳ) − clH. Consequently,
qri (cone conv Eȳ) = qi (cone conv Eȳ) − clH. This completes the proof. ��

We next give some new characterizations of the (proper) linear separation of Kȳ

and H.

Proposition 3.4 Assume that (4) holds. Then, the following statements are true:

(i) Assume that 0 ∈ conv Eȳ and qiH �= ∅. Then, Kȳ andH are linearly separable
iff Kȳ andH are properly linearly separable iff qi (cone conv Eȳ) ∩ (clH) = ∅;

(ii) Assume that intH �= ∅. Then,Kȳ and H are linearly separable iff Kȳ and H
are properly linearly separable iff conv Eȳ ∩ intH = ∅, which is equivalent to
int (cone conv Eȳ) ∩ (clH) = ∅ if the condition 0 ∈ conv Eȳ holds;

(iii) Assume that V := R
m. Then Kȳ and H are properly linearly separable iff

ri (conv Eȳ) ∩ riH = ∅.
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Proof (i) The conclusion follows immediately from Lemma 3.1, Propositions 3.2
and 3.3.
(ii) Suppose that intH �= ∅. By the standard separation theorem (see, e.g., [27,29]),
we have conv Eȳ ∩ intH = ∅ iff conv Eȳ and H are linearly separable. We declare
that this is equivalent to the fact that Eȳ and H are linearly separable. In fact, the
equivalence follows immediately from the following inequalities

sup
e∈convEȳ

〈λ∗, e〉 = sup
e∈Eȳ

〈λ∗, e〉 ≤ inf
h∈H

〈λ∗, h〉 = inf
h∈clH

〈λ∗, h〉 = 0, (9)

where λ∗ ∈ H∗ \ {0}. This proves that conv Eȳ ∩ intH = ∅ iff Eȳ and H are linearly
separable, or equivalently,Kȳ andH are linearly separable in view of Proposition 3.2.

Since 0 /∈ H and clH is a closed and convex cone, we have the following relations
hold:

inf
e∈Kȳ

〈λ∗, e〉 ≤ sup
e∈Kȳ

〈λ∗, e〉 ≤ inf
h∈H

〈λ∗, h〉 = inf
h∈clH

〈λ∗, h〉 = 0 < sup
h∈H

〈λ∗, h〉

= sup
h∈clH

〈λ∗, h〉 = +∞.

This yields that Kȳ and H are linearly separable iff Kȳ and H are properly linearly
separable.

From [36], one has int (clH) = intH �= ∅. Moreover, if 0 ∈ conv Eȳ , then from
[37] and (8) we have

int(cone conv Eȳ) = int (cone conv Eȳ − clH) = cone conv Eȳ − int (clH) �= ∅.

Therefore qi (cone conv Eȳ) = int (cone conv Eȳ), and the conclusion follows imme-
diately from (i).
(iii) Note that H is convex and clH is a closed and convex cone. By the standard
separation theorem (see, e.g., [38]), ri (conv Eȳ) ∩ riH = ∅ iff conv Eȳ and H are
properly linearly separable. We declare that this is equivalent to the fact that Eȳ and
H are properly linearly separable. In fact, the equivalence follows immediately from
(9) and the following relations:

inf
e∈convEȳ

〈λ∗, e〉 = inf
e∈Eȳ

〈λ∗, e〉 ≤ 0 < sup
h∈H

〈λ∗, h〉 = sup
h∈clH

〈λ∗, h〉 = +∞.

From Proposition 3.3, Kȳ and H are properly linearly separable iff Eȳ and H are
properly linearly separable. ��
Remark 3.1 If intH �= ∅ and either 0 ∈ conv Eȳ or clH is proper, then Proposition 3.4
(ii) can be proved by using the characterizations of the (proper) linear separation ofKȳ

andH presented in Propositions 3.2 and 3.3. In fact, from the proof of Proposition 3.4
(ii), one has the following relations hold: qri (cone conv Eȳ) = qi (cone conv Eȳ) =
cone conv Eȳ − int (clH) �= ∅. Therefore, from Propositions 3.2 and 3.3, it follows
that Kȳ and H are linearly separable iff Kȳ and H are properly linearly separable iff
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0 /∈ cone conv Eȳ−int (clH), i.e., cone conv Eȳ∩int (clH) = ∅.We declare that this is
equivalent to conv Eȳ ∩ int (clH) = ∅, or equivalently, conv Eȳ ∩ intH = ∅. It suffices
to prove that conv Eȳ ∩ int (clH) = ∅ implies cone conv Eȳ ∩ int (clH) = ∅. Suppose
conv Eȳ∩int (clH) = ∅ and suppose to the contrary that cone conv Eȳ∩int (clH) �= ∅.
Then, there are e ∈ conv Eȳ and t ≥ 0 such that te ∈ int(clH). Note that clH is a closed
and convex cone. If 0 ∈ conv Eȳ , then from the assumption that conv Eȳ∩int (clH) = ∅
we have 0 /∈ int (clH). If clH is proper, then 0 /∈ int (clH). As a consequence, t > 0
and so e ∈ 1

t int (clH) = int [ 1t (clH)] = int (clH), which is a contradiction.

Remark 3.2 Note that cl cone (cone convEȳ − 0) = cl cone (conv Eȳ − 0). If 0 ∈
conv Eȳ , then it easy to check that the conclusions in Propositions 3.2-3.4 and Lemma
3.1 also hold by replacing cone conv Eȳ by conv Eȳ .

Classically, one would appeal to Slater condition to assert the existence of
Lagrange multipliers. Unfortunately, in constrained optimization problems or vari-
ational inequalities, which use the positive cone P := {I ∈ L p([0, T ],R) : I (t) ≥
0, a. e. on [0, T ]} in L p([0, T ],R), where p ≥ 1 and T > 0, the interior of the posi-
tive coneP is empty and the classical Slater condition fails to hold. However, it is easy
to check qriP = qiP = {I ∈ L p([0, T ],R) : I (t) > 0, a. e. on [0, T ]} (see, e.g.,
[16–20]). A natural alternative to the classical Slater condition would be that there
is a feasible function in the quasi-interior or the quasi-relative interior of the positive
cone.

Recall that the classical Slater condition related to system (2) is:

∃x̄ ∈ K : H(x̄) ∩ int D �= ∅. (10)

Suppose that qi D �= ∅. Consider the following Slater condition related to system (2):

∃x̄ ∈ K : H(x̄) ∩ qi D �= ∅, (11)

or equivalently, 0 ∈ H(K ) − qi D. Note that since R0 �= ∅, 0 ∈ H(K ) − D ⊆
conv (H(K )−D). The generalized Slater condition (see, e.g., [3,39]) related to system
(2) is:

0 ∈ qi (H(K ) − D), (12)

or equivalently, cl cone [(H(K )−D)−0] = Z .We consider the following generalized
Slater condition (see, e.g., [3,20,23]) related to system (2):

0 ∈ qi [conv (H(K ) − D)] = qi [conv H(K ) − D], (13)

or equivalently, cl cone [conv (H(K )−D)−0] = Z . The equality in (13) follows from
[29]. Since Z = cl cone [(conv (H(K ) − D)) − 0] = cl cone [cl cone (conv (H(K ) −
D)) − 0], this is equivalent to 0 ∈ qi [cl cone (conv (H(K ) − D))]. From [3,6], we
have the following relations: (10)⇒ (11) ⇒ (12) ⇒ (13). But the converse is not true
in general.

We now investigate the (proper, regular) linear separation of system (2).
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Proposition 3.5 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that cone+ C = C, C + clC\C ⊆ C, qiC �= ∅, qi D �= ∅
and 0 ∈ conv Eȳ . Consider the following statements:

(i) Kȳ and H are linearly separable;
(ii) Eȳ and H are linearly separable;
(iii) Kȳ and H are properly linearly separable;
(iv) Eȳ and H are properly linearly separable;
(v) Kȳ andH admit a regular linear separation, i.e., there exists (λ∗, θ∗) ∈ C∗×D∗

with λ∗ �= 0 such that

〈λ∗, u〉 + 〈θ∗, v〉 ≤ 0, ∀(u, v) ∈ Kȳ; (14)

(vi) Eȳ andH admit a regular linear separation, i.e., there exists (λ∗, θ∗) ∈ C∗ ×D∗
with λ∗ �= 0 such that

〈λ∗, u〉 + 〈θ∗, v〉 ≤ 0, ∀(u, v) ∈ Eȳ . (15)

Then, (i)⇔(ii)⇔(iii)⇔(iv)⇐(v)⇔(vi). Furthermore, if the generalized Slater con-
dition (13) holds, then statements (i)-(vi) are equivalent.

Proof Since cone+ C = C , C + clC\C ⊆ C and D is a closed and convex cone,
from Proposition 2.3 one has assumption (4) is true. Since qiC �= ∅ and qi D �= ∅,
from [16,19,21,22] we have qiH = qriH = qriC × qri D = qiC × qi D �= ∅. Now
Propositions 3.2, 3.3 and 3.4 (i) yield that statements (i)–(iv) are equivalent. Clearly,
(vi)⇒(v)⇒(iii).

We prove (v)⇒(vi). Note that Eȳ := Kȳ − clH = Kȳ − cl (C × D) = Kȳ −
(clC) × D. Let (u, v) ∈ Eȳ . Then, there are (u0, v0) ∈ Kȳ and (c0, d0) ∈ (clC) × D
such that (u, v) = (u0 − c0, v0 − d0). From (v), it follows that 〈λ∗, u〉 + 〈θ∗, v〉 =
〈λ∗, u0〉 + 〈θ∗, v0〉 − [〈λ∗, c0〉 + 〈θ∗, d0〉] ≤ 0, which proves (vi).

We show (i)-(vi) are equivalent. Suppose thatKȳ andH are linearly separable, i.e.,
there exists (λ∗, θ∗) ∈ C∗ ×D∗\{(0, 0)} such that (14) holds. Suppose to the contrary
that λ∗ = 0. Then, θ∗ �= 0 and so from (14), one has 〈θ∗, v〉 ≤ 0, ∀v ∈ H(K ). Since
the generalized Slater condition (13) holds and θ∗ ∈ D∗, it follows that 〈θ∗, v〉 ≤
0, ∀v ∈ cl cone [conv (H(K ) − D)] = Z and therefore, θ∗ = 0, a contradiction. ��

The following proposition provides an equivalent characterization of regular linear
separation for system (2) under some mild assumptions, which extends that for con-
strained optimization problems in finite-dimensional spaces given by Giannessi and
Mastroeni [40]. A characterization of faces was employed in the proof of Theorem
3.5 in [40]. But here, we give a direct proof.

Proposition 3.6 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that assumption (4) is true. Consider the following state-
ments:

(i) cl cone conv Eȳ ∩ Hu = ∅;
(ii) Kȳ and H admit a regular linear separation.
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If the generalized Slater condition (13) holds, then (i)⇒(ii). If C := qi B, where
B ⊆ U is a closed and convex cone with qi B �= ∅, then (ii)⇒(i). If C := B\{0} and
there is (λ∗, θ∗) ∈ qi(C∗) × D∗ such that (14) holds, i.e., (ii) is true, then (i) holds.

Proof (i)⇒(ii). From (i), we have cl cone (cone conv Eȳ −0) = cl cone conv Eȳ �= V,

or equivalently, 0 /∈ qi (cone conv Eȳ). Applying Proposition 3.2 yields that Kȳ and
H are linearly separable. Since the generalized Slater condition (13) holds, from
Proposition 3.5 we have Kȳ and H admit a regular linear separation.
(ii)⇒(i). Assume that Kȳ and H admit a regular linear separation, from Propositions
3.2 and 3.5 there exists (λ∗, θ∗) ∈ C∗ × D∗ with λ∗ �= 0 such that (15) holds and so

〈λ∗, u〉 + 〈θ∗, v〉 ≤ 0, ∀(u, v) ∈ conv Eȳ . (16)

Suppose to the contrary that (i) is false, or equivalently, cl cone conv Eȳ ∩ Hu �= ∅.
Then, there is (u0, 0) ∈ cl cone conv Eȳ with u0 ∈ C , which implies that there is a net
{(ul , vl)}l∈I ⊆ conv Eȳ and tl ∈ R+(l ∈ I ) such that liml∈I tl(ul , vl) → (u0, 0). Now,
(16) implies 〈λ∗, tlul〉 + 〈θ∗, tlvl〉 ≤ 0, ∀l ∈ I , and as a consequence, 〈λ∗, u0〉 ≤ 0.
If C = qi B, then from [3,6] one has λ∗ ∈ C∗\{0} = B∗\{0}. Since u0 ∈ C = qiB,
it follows from [3,16] that 〈λ∗, u0〉 > 0, a contradiction. If C = B\{0} and there is
(λ∗, θ∗) ∈ qi(C∗)×D∗ such that (ii) is true, then u0 ∈ C = B\{0},C∗ = B∗ and (16)
holds for (λ∗, θ∗) ∈ qi(C∗) × D∗. Since B is a closed and convex cone in Hausdorff
locally convex topological vector space U , from [41] one has B = B∗∗ and it also
follows from [3,16,19,23] that 〈λ∗, u0〉 > 0, a contradiction. ��
Remark 3.3 In [6], the sets Kȳ and H with C := B\{0} are said to admit a strongly
regular linear separation, if there exists a point (λ∗, θ∗) ∈ qi(C∗) × D∗ such that (14)
holds. Moreover, we do not require 0 ∈ conv Eȳ in Proposition 3.6. In Theorem 3.5
of [40], Giannessi and Mastroeni proved the equivalence (i)⇔(ii) for a constrained
optimization problem in finite-dimensional spaces in the case that ȳ ∈ R0, X :=
Y := R

n, Z := R
m,U := R,C := R++, D := R

m+, G(x; y) := f (y) − f (x),
H(x) := g(x), f : X → R and g : X → Z . For related works, please see [7].

4 Conditions for Impossibility of Systems (1) and (2)

In this section, we present some sufficient and necessary conditions for the impos-
sibility of systems (1) and (2). Some results related to necessary conditions for the
impossibility of system (1) are new. We first consider the case where V is a finite-
dimensional space. This can easily be proved by the standard separation theorem (see,
e.g., [38]). But we prove it by using Proposition 3.4 (iii).

Theorem 4.1 Let V := R
m. Assume that cone+ H = H, H + clH\H ⊆ H and

assume F(·; ȳ) is −(clH)-convexlike on R. If system (1) is impossible with ȳ, then
Kȳ and H are properly linearly separable.

Proof Since H is convex with 0 /∈ H, cone+ H = H and H + clH\H ⊆ H, it
follows from Proposition 2.2 that assumption (4) is true. Since F(·; ȳ) is −(clH)-
convexlike on R, Proposition 2.4 (i) yields that Eȳ is convex, i.e., conv Eȳ = Eȳ . If
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system (1) is impossible with ȳ, then from Proposition 2.1 (i) we have Eȳ ∩ H = ∅.
As a consequence, ri (conv Eȳ) ∩ riH = ∅ and so from Proposition 3.4 (iii), one has
Kȳ and H are properly linearly separable. ��

In the case that V is an infinite-dimensional space, we also present the following
necessary condition for the impossibility of system (1) under the assumption that the
interior ofH is nonempty. This can easily be proved by using the standard separation
theorem (see, e.g., [27,29]). But we prove it by using Proposition 3.4 (ii).

Theorem 4.2 Assume that cone+ H = H,H+ clH\H ⊆ H and F(·; ȳ) is −(clH)-
convexlike on R and intH �= ∅. If system (1) is impossible with ȳ, then Kȳ andH are
properly linearly separable.

Proof Since H is convex with 0 /∈ H, cone+ H = H and H + clH\H ⊆ H, from
Proposition 2.2 we have assumption (4) holds. Since F(·; ȳ) is −(clH)-convexlike
on R, from Proposition 2.4 (i), one has Eȳ is convex, i.e., conv Eȳ = Eȳ . If system
(1) is impossible with ȳ, then from Proposition 2.1 (i) we have Eȳ ∩ H = ∅ and so
Eȳ ∩ intH = ∅. Now, the conclusion follows immediately from Proposition 3.4 (ii). ��

In Theorem 4.2, the interior ofH is supposed to be nonempty. Under the emptiness
of the interior of H, we next present the necessary condition for the impossibility of
system (1) by using the quasi-relative interior.

Theorem 4.3 Assume that cone+ H = H, H + clH\H ⊆ H, F(·; ȳ) is −(clH)-
convexlike on R and qi (cone conv Eȳ) ⊆ cone conv Eȳ−H (res., qri (cone conv Eȳ) ⊆
cone conv Eȳ−H). If system (1) is impossiblewith ȳ, thenKȳ andH are (res., properly)
linearly separable.

Proof SinceH is convex with 0 /∈ H, cone+ H = H andH+clH\H ⊆ H, it follows
from Proposition 2.2 that assumption (4) is true. Since F(·; ȳ) is −(clH)-convexlike
on R, Proposition 2.4 (i) implies that Eȳ is convex, i.e., conv Eȳ = Eȳ . If system
(1) is impossible with ȳ, then from Proposition 2.1 (i) we have Eȳ ∩ H = ∅. We
declare that this is equivalent to cone Eȳ ∩ H = ∅, or equivalently, the relations hold:
0 /∈ cone Eȳ − H = cone conv Eȳ − H. In fact, it suffices to prove that Eȳ ∩ H = ∅
implies that cone Eȳ ∩ H = ∅. Suppose to the contrary that cone Eȳ ∩ H �= ∅. Then,
letting h ∈ cone Eȳ ∩ H yields that there are t ≥ 0 and e ∈ Eȳ such that h = te ∈ H.
Since 0 /∈ H, t > 0 and it follows that e = 1

t h ∈ 1
t H ⊆ H, since cone+ H = H. This is

a contradiction. Thus from the assumption qi (cone convEȳ) ⊆ cone conv Eȳ−H (res.,
qri (cone conv Eȳ) ⊆ cone conv Eȳ−H), it follows from the fact 0 /∈ cone conv Eȳ−H
that 0 /∈ qi (cone conv Eȳ) (res., 0 /∈ qri (cone conv Eȳ)). Now Proposition 3.2 (res.,
Proposition 3.3) yields that Kȳ and H are (res., properly) linearly separable. ��

The assumption qi (cone conv Eȳ) ⊆ cone conv Eȳ − H (res., qri (cone conv Eȳ) ⊆
cone conv Eȳ−H) inTheorem4.3 plays a vital role in obtaining the necessary condition
for the impossibility of system (1).

Remark 4.1 We have the following:

(a) If qi (cone conv Eȳ) = ∅ (res., qri (cone conv Eȳ) = ∅), then qi (cone conv Eȳ) ⊆
cone conv Eȳ − H (res., qri (cone conv Eȳ) ⊆ cone conv Eȳ − H) holds trivially;
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(b) If 0 ∈ conv Eȳ and qiH �= ∅, then from the proof of Lemma 3.1 we have the rela-
tions hold: cone conv Eȳ − qiH ⊆ qri (cone conv Eȳ) = qi (cone conv Eȳ) =
qi (cone conv Eȳ) − clH. Then, qi (cone conv Eȳ) ⊆ cone conv Eȳ − H (res.,
qri (cone conv Eȳ) ⊆ cone conv Eȳ − H) can be replaced by the following:

qi (cone conv Eȳ) − clH\H ⊆ cone conv Eȳ
−H(res., qri (cone conv Eȳ) − clH\H ⊆ cone conv Eȳ − H);

(c) If 0 ∈ conv Eȳ and intH �= ∅, then from the proof of Proposition 3.4 (ii) we have
the relations: qri (cone conv Eȳ) = qi (cone conv Eȳ) = cone conv Eȳ − intH and
as a consequence, qri (cone conv Eȳ) = qi (cone conv Eȳ) ⊆ cone conv Eȳ − H
holds trivially;

(d) Assume that V := R
m . Then qi (cone conv Eȳ) = int (cone conv Eȳ) and so from

(c) it follows that qi (cone conv Eȳ) ⊆ cone conv Eȳ − H if 0 ∈ conv Eȳ and
intH �= ∅. Moreover, it is easy to check the following relations hold:

qri (cone conv Eȳ) = ri (cone conv Eȳ)
= ri (cone conv Eȳ − clH) = ri (cone conv Eȳ) − ri (clH)

= ri (cone conv Eȳ) − riH ⊆ cone conv Eȳ − H,

where the second equality follows from (8) and the last two equalities follow
from [38].

The following example is given to illustrate Theorem 4.3.

Example 4.1 Let X be a Hausdorff locally convex topological vector space, Y :=
L p([0, T ],R), V := L p([0, T ],R) × X , where ∞ > p ≥ 1 and T > 0. Let
C := {I ∈ Y : I (t) ≥ 0, a. e. on [0, T ]} and D be a closed and convex cone of X
such that it generates X , i.e., D − D = X (see, e.g., [28]). Note that C is a closed and
convex cone, Y ∗ = Lq([0, T ],R), where 1

q + 1
p = 1, and the canonical bilinear form

on Y ∗ × Y is given by

〈x∗, x〉 :=
∫

[0,T ]
x∗(t)x(t)dt, ∀(x∗, x) ∈ Y ∗ × Y.

Clearly, C∗ = {I ∗ ∈ Y ∗ : I ∗(t) ≥ 0, a. e. on [0, T ]} and qiC = {I ∈ Y : I (t) >

0, a. e. on [0, T ]} (see, e.g., [16,17,19]). Let H := qiC × D, R := D, F(x; y) :=
(y − (〈y∗, y〉 + 1)C, x − D) for any (x, y) ∈ X × Y , where y∗ ∈ Y ∗. Assume
that qi D �= ∅. Then, clH = C × D and it is easy to check (1) is impossible with
ȳ := 0, cone+ H = H, H + clH\H ⊆ H and F(·; ȳ) is −(clH)-convexlike on R.
Since qri D = qi D �= ∅ and D ⊆ X , from [6] we have ∅ �= qi D ⊆ qi X . Simple
computation yields Kȳ = Eȳ = −(C × X) and from [16,19,21,22] one has

qri (cone conv Eȳ) = qi (cone conv Eȳ) = −(qiC × qi X)

⊆ −(C × X) − (qiC × D) = cone conv Eȳ − H.
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Letting (λ∗, 0) ∈ H∗\{(0, 0)} = (qiC)∗ × D∗ gives 〈(λ∗, 0), (u, v)〉 = 〈λ∗, u〉 ≤
0, ∀(u, v) ∈ Kȳ, which shows thatKȳ andH admit a regular linear separation and so
are properly linearly separable.

We have the following necessary condition for the impossibility of system (2).

Theorem 4.4 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that 0 ∈ Eȳ and (G(·; ȳ), H) is −(clC × D)-convexlike
on K . Assume that cone+ C = C, C + clC\C ⊆ C, qiC �= ∅, qi D �= ∅ and
qi (cone conv Eȳ) − (clC\C × D) ⊆ cone conv Eȳ − (C × D). Then, the following
statements are true:

(i) If system (2) is impossible with ȳ, thenKȳ andH are properly linearly separable;
(ii) If system (2) is impossible with ȳ and moreover, the generalized Slater condition

(13) holds, then Kȳ and H admit a regular linear separation.

Proof From the assumptions that cone+ C = C ,C+clC\C ⊆ C and D is a closed and
convex cone, we have cone+ H = cone+ (C × D) = H and hence H + clH\H ⊆
H (by Proposition 2.3). Since (G(·; ȳ), H) is −(clC × D)-convexlike on K and
clH = cl (C × D) = (clC) × D, we have clH\H = (clC\C) × D and F(·; ȳ)
is −clH-convexlike on K and consequently, Eȳ is convex, i.e., conv Eȳ = Eȳ . From
[16,19,21,22], we obtain qiH = qriH = qriC × qri D = qiC × qi D �= ∅, since
qiC �= ∅ and qi D �= ∅. Now from Remark 4.1 (b), statements (i) and (ii) follow
immediately from Theorem 4.3 and Proposition 3.5. ��
Remark 4.2 If 0 ∈ conv Eȳ , then we can replace cone conv Eȳ by conv Eȳ in Theo-
rems 4.3 and 4.4.

We also give the following sufficient condition for the impossibility of system (2)
by using the regular linear separation of Kȳ and H.

Theorem 4.5 Let V := U × Z,H := C × D, R := K, F(x; ȳ) := (G(x; ȳ), H(x)),
and let B ⊆ U be a closed, convex and proper cone. Then, the following statements
are true:

(i) If C := qi B �= ∅ and Kȳ and H admit a regular linear separation, then system
(2) is impossible with ȳ;

(ii) If C := B\{0} and there is (λ∗, θ∗) ∈ qi (C∗)× D∗ such that (14) holds, i.e.,Kȳ

and H admit a regular linear separation, then system (2) is impossible with ȳ.

Proof (i) Since C = qi B �= ∅, from [3,6,16,19,21,22] one has C is convex and
the equalities hold: C∗ = (qi B)∗ = B∗. We also have cl cone (B − 0) = B �= U ,
i.e., 0 /∈ C = qi B, since B is a closed, convex, and proper cone. Moreover, from
Proposition 2.3 we know assumption (4) holds. Suppose to the contrary that system
(2) is possible with ȳ. Then, from Proposition 2.1 (ii), we haveKȳ ∩ (qi B × D) �= ∅,
i.e., there are x ∈ K , u0 ∈ qi B ∩ G(x; ȳ) and v0 ∈ D ∩ H(x). If Kȳ and H admit
a regular linear separation, then there exists (λ∗, θ∗) ∈ B∗ × D∗ with λ∗ �= 0 such
that 〈λ∗, u0〉 + 〈θ∗, v0〉 ≤ 0. Since (λ∗, θ∗) ∈ B∗ × D∗ with λ∗ �= 0, it follows from
[3,16,19,23] that 〈λ∗, u0〉 + 〈θ∗, v0〉 > 0, a contradiction.
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(ii) Since C = B\{0}, C∗ = B∗. Suppose to the contrary that system (2) is possible
with ȳ. Then, fromProposition 2.1 (ii), we haveKȳ∩((B\{0})×D) �= ∅, i.e., there are
x ∈ K , u0 ∈ B\{0}∩G(x; ȳ) and v0 ∈ D∩ H(x). If there is (λ∗, θ∗) ∈ qi(C∗)× D∗
such that Kȳ and H admit a regular linear separation, then 〈λ∗, u0〉 + 〈θ∗, v0〉 ≤ 0.
Since B is a closed and convex cone in Hausdorff locally convex topological vector
space U , from [41], one has B = B∗∗ and it also follows from [3,16,19,23] that
〈λ∗, u0〉 + 〈θ∗, v0〉 > 0, a contradiction. ��

5 Saddle Points of Lagrangian Functions for System (2)

In this section, we shall prove the equivalence between (proper, regular) linear sepa-
ration and saddle points of Lagrangian functions for system (2) under some convexity
and compactness assumptions. Without other specifications, we always suppose that
for ȳ ∈ Y , G(·; ȳ) and H are compact-valued on K , i.e., G(x; ȳ) and H(x) are
compact for each x ∈ K .

Let ȳ ∈ Y . Consider the generalized Lagrangian function associated with system
(2), defined by Lȳ : K × C∗ × D∗ → R,

Lȳ(x, λ, θ) := −σG(x;ȳ)(λ) − σH(x)(θ), ∀(x, λ, θ) ∈ K × C∗ × D∗.

If X := Y := R
n, Z := R

m,U := R,C := R++ andG(x; y) := f (y)− f (x), where
f : X → R, then the generalized Lagrangian function Lȳ defined above reduces to
the following:

Lȳ(x, λ, θ) := λ( f (x) − f (ȳ)) − σH(x)(θ), ∀(x, λ, θ) ∈ K × R+ × D∗,

which has been considered in [7].

Definition 5.1 We say that the point (x̄, λ∗, θ∗) ∈ K ×C∗ × D∗ is a saddle point for
Lȳ on K × C∗ × D∗, if

Lȳ(x̄, λ, θ) ≤ Lȳ(x̄, λ
∗, θ∗) ≤ Lȳ(x, λ

∗, θ∗), ∀(x, λ, θ) ∈ K × C∗ × D∗.

We have the following proposition:

Proposition 5.1 The function (λ, θ) �→ Lȳ(x, λ, θ) is concave onC∗×D∗. If G(·; ȳ)
and H are −(clC)-map and −D-map on K , respectively, then the function x �→
Lȳ(x, λ, θ) is convex on K .

Proof Clearly, the function (λ, θ) �→ Lȳ(x, λ, θ) is concave on C∗ × D∗. Suppose
that G(·; ȳ) and H are −(clC)-map and −D-map on K , respectively. It suffices to
prove that x �→ σG(x;ȳ)(λ) and x �→ σH(x)(θ) are concave on K . Let λ ∈ C∗, x, y ∈
K , t ∈]0, 1[ and set z := tx + (1 − t)y. Then, z ∈ K , since K is convex. Since
G(·; ȳ) is −(clC)-map on K , tG(x; ȳ) + (1− t)G(y; ȳ) ⊆ G(z; ȳ) − clC . From the
compactness of G(x; ȳ) and G(y; ȳ), there are gx ∈ G(x; ȳ) and gy ∈ G(y; ȳ) such
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that σG(x;ȳ)(λ) = 〈λ, gx〉 and σG(y;ȳ)(λ) = 〈λ, gy〉. It follows from tG(x; ȳ) + (1 −
t)G(y; ȳ) ⊆ G(z; ȳ) − clC that tgx + (1− t)gy ∈ G(z; ȳ) − clC and consequently,

tσG(x;ȳ)(λ) + (1 − t)σG(y;ȳ)(λ) = 〈λ, tgx + (1 − t)gy〉
≤ max

g∈G(z;ȳ)〈λ, g〉 + max
c∈−clC

〈λ, c〉 = σG(z;y)(λ),

since clC is a cone and λ ∈ C∗. This proves that x �→ σG(x;ȳ)(λ) is concave on K .
Similarly, we can prove that x �→ σH(x)(θ) is concave on K . ��

We next show that the linear separation ofKȳ andH for system (2) is equivalent to
the existence of saddle points of the generalized Lagrangian function Lȳ defined on
K × C∗ × D∗ under suitable assumptions.

Theorem 5.1 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that H is −D-map on K and G(x̄; ȳ) = {0} for x̄ ∈ K.
Then, Kȳ and H are linearly separable and x̄ ∈ R0, if and only if there exists
(λ∗, θ∗) ∈ C∗ × D∗\{(0, 0)} such that (x̄, λ∗, θ∗) is a saddle point for Lȳ defined on
K × C∗ × D∗.

Proof Necessity. Suppose that Kȳ and H are linearly separable and x̄ ∈ R0. Then,
setting H := C × D and F(x; ȳ) := (G(x; ȳ), H(x)) in Proposition 3.1 (i) yields
that there is (λ∗, θ∗) ∈ C∗ × D∗\{(0, 0)} such that

σG(x;ȳ)(λ∗) + σH(x)(θ
∗) ≤ 0, ∀x ∈ K . (17)

Set x := x̄ in (17). SinceG(x̄; ȳ) = {0}, we have σG(x̄;ȳ)(λ) = 0 for each λ ∈ C∗, and
so σH(x̄)(θ

∗) ≤ 0. Since x̄ ∈ R0, i.e., x̄ ∈ K and H(x̄)∩D �= ∅, one has σH(x̄)(θ) ≥ 0
for each θ ∈ D∗. Thus, it follows that σH(x̄)(θ

∗) = 0. Again from (17), we obtain

Lȳ(x̄, λ
∗, θ∗) = −σG(x̄;ȳ)(λ∗) − σH(x̄)(θ

∗) = 0 ≤ −σG(x;ȳ)(λ∗) − σH(x)(θ
∗)

= Lȳ(x, λ
∗, θ∗), ∀x ∈ K .

On the other hand, since σH(x̄)(θ) ≥ 0 for each θ ∈ D∗, we have

Lȳ(x̄, λ, θ) = −σG(x̄;ȳ)(λ) − σH(x̄)(θ) ≤ 0 = Lȳ(x̄, λ
∗, θ∗), ∀(λ, θ) ∈ C∗ × D∗.

This proves (x̄, λ∗, θ∗) is a saddle point for Lȳ defined on K × C∗ × D∗.
Sufficiency. Suppose that there is (λ∗, θ∗) ∈ C∗ ×D∗\{(0, 0)} such that (x̄, λ∗, θ∗)

is a saddle point for Lȳ defined on K × C∗ × D∗. Since G(x̄; ȳ) = {0}, we have
σG(x̄;ȳ)(λ) = 0 for each λ ∈ C∗, and hence

− σH(x̄)(θ) ≤ −σH(x̄)(θ
∗) ≤ −σG(x;ȳ)(λ∗)

−σH(x)(θ
∗), ∀(x, λ, θ) ∈ K × C∗ × D∗. (18)

Setting θ := 0 ∈ D∗ in the first inequality in (18) yields σH(x̄)(θ
∗) ≤ 0.
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We next prove that x̄ ∈ R0, i.e., H(x̄) ∩ D �= ∅. The proof is similar to that in [7].
For completeness, we include it here. Suppose to the contrary that H(x̄)∩ D = ∅. We
first show (H(x̄) − D) ∩ D = ∅. In fact, if not, i.e., (H(x̄) − D) ∩ D �= ∅, then there
exist h̄ ∈ H(x̄) and d̄ ∈ D such that h̄ − d̄ ∈ D and so h̄ ∈ D + d̄ ⊆ D, since D is a
convex cone. Thus it follows that h̄ ∈ H(x̄) ∩ D, a contradiction with the assumption
H(x̄) ∩ D = ∅. Since H is −D-map on K , from Remark 2.1, one has H(x̄) − D
is convex. Since H(x̄) is compact and D is a closed and convex cone, H(x̄) − D is
closed and as a consequence,

(H(x̄) − D) − D = H(x̄) − D = cl (H(x̄) − D) = cl [(H(x̄) − D) − D]. (19)

Since (H(x̄) − D) ∩ D = ∅, from (19) we have 0 /∈ (H(x̄) − D) − D = cl [(H(x̄) −
D) − D]. By the standard separation theorem [27,29], there exists z∗ ∈ Z∗\{0} such
that

sup
e∈H(x̄)−D

〈z∗, e〉 < inf
d∈D〈z∗, d〉. (20)

We declare that z∗ ∈ D∗. If not, i.e., z∗ /∈ D∗, then there is d0 ∈ D such that
〈z∗, d0〉 < 0. Since D is a cone, td0 ∈ D for each t > 0. Consequently, as t → +∞,
〈z∗, td0〉 = t〈z∗, d0〉 → −∞, a contradiction with (20). Since z∗ ∈ D∗ and D is a
cone, infd∈D〈z∗, d〉 = mind∈D〈z∗, d〉 = 0 and therefore it follows from (20) that

sup
e∈H(x̄)−D

〈z∗, e〉 < 0. (21)

Since

sup
e∈H(x̄)−D

〈z∗, e〉 = sup
h∈H(x̄)

〈z∗, h〉 + sup
d∈−D

〈z∗, d〉

= sup
h∈H(x̄)

〈z∗, h〉 − inf
d∈D〈z∗, d〉 = sup

h∈H(x̄)
〈z∗, h〉,

from (21), one has σH(x̄)(z∗) = suph∈H(x̄)〈z∗, h〉 < 0. Since D∗ is a cone, t z∗ ∈ D∗
for each t > 0. SinceσH(x̄)(·) is positively homogeneous, as t → +∞,−σH(x̄)(t z∗) =
−tσH(x̄)(z∗) → +∞, a contradiction with the first inequality in (18). This shows
x̄ ∈ R0, i.e., H(x̄) ∩ D �= ∅.

Since x̄ ∈ R0, i.e., x̄ ∈ K and H(x̄)∩D �= ∅, σH(x̄)(θ
∗) ≥ 0 and so σH(x̄)(θ

∗) = 0,
since σH(x̄)(θ

∗) ≤ 0. Thus, from the second inequality in (18), we have σG(x;ȳ)(λ∗)+
σH(x)(θ

∗) ≤ 0, ∀x ∈ K , which implies that the setsKȳ andH are linearly separable.
��

Remark 5.1 In Theorem 5.1, we do not assume that G(·; ȳ) is −(clC)-map on K and
moreover the assumption G(x̄; ȳ) = {0} for x̄ ∈ K plays a crucial role in proving the
equivalence between the linear separation of Kȳ and H and the existence of saddle
points forL defined on K×C∗×D∗. If X := Y := R

n, Z := R
m,U := R,C := R++

and G(x; y) := f (y) − f (x), where f : X → R, then Theorem 5.1 collapses to
Theorem 5.1 in [7].
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Similarly, we have the following:

Theorem 5.2 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that H is −D-map on K and G(x̄; ȳ) = {0} for x̄ ∈ K.
Then, the following statements are true:

(i) The sets Kȳ and H are properly linearly separable and x̄ ∈ R0, if and only if
there exists a point (λ∗, θ∗) ∈ C∗ × D∗\{(0, 0)} such that (x̄, λ∗, θ∗) is a saddle
point for Lȳ defined on K ×C∗ × D∗ with 0 < Lȳ(x0, λ∗, θ∗) for some x0 ∈ K;

(ii) The sets Kȳ and H admit a regular linear separation and x̄ ∈ R0, if and only if
there exists a point (λ∗, θ∗) ∈ C∗ × D∗ with λ∗ �= 0 such that (x̄, λ∗, θ∗) is a
saddle point for Lȳ defined on K × C∗ × D∗.

Theorem 5.3 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)). Assume that G(x̄; ȳ) = {0} for x̄ ∈ R0 and assume that G(·; ȳ)
and H are −(clC)-map and −D-map on K , respectively. Assume that cone+ C = C,
C +clC\C ⊆ C, qiC �= ∅, qi D �= ∅ and assume that qi (cone conv Eȳ)− (clC\C ×
D) ⊆ cone conv Eȳ − (C × D). Then, the following statements are true:

(i) If system (2) is impossible with ȳ, then there is (λ∗, θ∗) ∈ C∗ × D∗\{(0, 0)}
such that (x̄, λ∗, θ∗) is a saddle point for Lȳ defined on K × C∗ × D∗ with
0 < Lȳ(x0, λ∗, θ∗) for some x0 ∈ K;

(ii) If system (2) is impossible with ȳ and moreover, the generalized Slater condition
(13) holds, then there is (λ∗, θ∗) ∈ C∗ × D∗ with λ∗ �= 0 such that (x̄, λ∗, θ∗) is
a saddle point for Lȳ defined on K × C∗ × D∗.

Proof The conclusion follows immediately from Theorems 4.4 and 5.2. ��
Similarly, from Theorems 4.5 and 5.2, we have the following:

Theorem 5.4 Let V := U × Z, H := C × D, R := K and F(x; ȳ) :=
(G(x; ȳ), H(x)), and let B ⊆ U be a closed, convex and proper cone. Assume that
H is −D-map on K and G(x̄; ȳ) = {0} for x̄ ∈ R0. Then, the following statements
are true:

(i) If C := qi B �= ∅ and there exists (λ∗, θ∗) ∈ C∗ × D∗ with λ∗ �= 0 such that the
point (x̄, λ∗, θ∗) is a saddle point for Lȳ defined on K × C∗ × D∗, then system
(2) is impossible with ȳ;

(ii) If C := B\{0} and there exists (λ∗, θ∗) ∈ qi (C∗) × D∗ such that the point
(x̄, λ∗, θ∗) is a saddle point for Lȳ defined on K × C∗ × D∗, then system (2) is
impossible with ȳ.

An anonymous referee asked an interesting and deep question: Is there any con-
nection between the results of this section and the Mountain Pass Theorem (for short,
MPT)? As is well known, the MPT plays an extremely important role in investigating
a very large number of problems in many areas of nonlinear analysis, which is a very
useful argument for finding critical points of an objective function. The Palais–Smale
(for short, PS) condition is crucial for the MPT, which in general requires the objec-
tive function to be continuously differentiable or locally Lipschitz (see, e.g., [42]).
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By comparison, both the MPT and Lagrangian functions can be used to characterize
the stationary point of a optimization problem, although the former works with the
minmax form under the smoothness of the objective function and the continuity of
another function passing through two given points and the latter does with the minmax
or maxmin form under convexity (see, e.g., [43]). Specifically, consider the following
constrained extremum problem (for short, P):

min f (x), s.t. x ∈ X := {x ∈ R
m : g(x) ≥ 0},

where f, g : Rm → R. Then, P can be associated with the image space, where we
have an image problem (for short, IP),

max u, s.t. (u, v) ∈ Kx̄ , v ≥ 0,

where Kx̄ := {(u, v) ∈ R
2 : u = f (x̄) − f (x), v = g(x), x ∈ R

m} and x̄ ∈ X .
It is easy to prove the following Proposition (see, e.g., [1,44]).

Proposition 5.2 P is equivalent to IP, that is to say, (ū, v̄) solves IP, if and only if x ′
solves P, where (ū, v̄) = ( f (x̄) − f (x ′), g(x ′)).

Set Σ0 := {(u, v) ∈ Kx̄ : v ≥ 0}. Suppose that Σ0 is connected (this is true
if f and g are continuous and the level set lev≥0 g := {x ∈ R

m : g(x) ≥ 0}
of g is bounded) and intΣ0 �= ∅. Let � := {Φ : Σ0 → R ∪ {+∞} :
the values of Φ become infinite on bdΣ0}. Let Φ ∈ � and set φ(x) := Φ( f (x̄) −
f (x), g(x)).
The following shows that the MPT can be applied to IP and guarantees precisely

the same thing (critical point) as the saddle point (of von Neumann memory).

Proposition 5.3 Suppose Φ ∈ � is continuously differentiable in intΣ0 and
possesses two distinct strict relative minima (u1, v1), (u2, v2) ∈ Σ0. Then, Φ pos-
sesses a critical point (ū, v̄) ∈ Σ0 (i.e., ∇Φ(ū, v̄) = 0) such that Φ(ū, v̄) >

max{Φ(u1, v1),Φ(u2, v2)}, characterized by

Φ(ū, v̄) = inf
Σ∈Γ

sup
(u,v)∈Σ

Φ(u, v),

where Γ := {Σ ⊆ Σ0 : Σ is compact and connected and (u1, v1), (u2, v2) ∈ Σ}
and ∇ denotes the gradient. Moreover, if both f and g are differentiable, then there
is x ′ ∈ R

m such that ∇φ(x ′) = 0, where (ū, v̄) = ( f (x̄) − f (x ′), g(x ′)).

Proof The first assertion follows immediately from a finite-dimensional version of
the MPT by Courant [45] (see also, [42, Theorem 5.2]). Suppose that f and g
are differentiable. Since (ū, v̄) is a critical point of Φ, we have 0 = ∇Φ(ū, v̄) =
(
∂Φ(u,v)

∂u |(ū,v̄),
∂Φ(u,v)

∂v
|(ū,v̄)), where

∂Φ(u,v)
∂u |(ū,v̄) and

∂Φ(u,v)
∂v

|(ū,v̄) are the partial deriv-
atives of Φ with respect to u and v at (ū, v̄), respectively. Then, there exists x ′ ∈ R

m

such that (ū, v̄) = ( f (x̄) − f (x ′), g(x ′)) and it follows that
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∇φ(x ′) =
(

∂φ(x)

∂x1
|x ′ , . . . ,

∂φ(x)

∂xm
|x ′

)

=
(

∂Φ(u, v)

∂u
|(ū,v̄)

∂u

∂x1
|x ′ + ∂Φ(u, v)

∂v
|(ū,v̄)

∂v

∂x1
|x ′, . . . ,

∂Φ(u, v)

∂u
|(ū,v̄)

∂u

∂xm
|x ′ + ∂Φ(u, v)

∂v
|(ū,v̄)

∂v

∂xm
|x ′

)

=
(

∂Φ(u, v)

∂u
|(ū,v̄)

∂( f (x̄) − f (x))

∂x1
|x ′ + ∂Φ(u, v)

∂v
|(ū,v̄)

∂g(x)

∂x1
|x ′, . . . ,

∂Φ(u, v)

∂u
|(ū,v̄)

∂( f (x̄) − f (x))

∂xm
|x ′ + ∂Φ(u, v)

∂v
|(ū,v̄)

∂g(x)

∂xm
|x ′

)

= 0.

This completes the proof. ��
Proposition 5.3 also shows that IP can be used to verify the assumptions of the

MPT, while P does not. As to the duality in Lagrangian sense, the dual space {(λ, θ) ∈
R
2 : λ ≥ 0, θ ≥ 0} is that of the linear functional, whose zero levels {(u, v) ∈ R

2 :
λu + θv = 0} are the manifolds used to separate Kx̄ and H := R++ × R+ in the
image space, while the critical point (ū, v̄) of such manifolds characterizes the slope
of the separating line.

6 Some Applications

In this section, we shall apply the obtained results to investigate the weak minimizer
of SVOP and the efficient and weakly efficient solution of VOP.

6.1 Applications to SVOP

For SVOP, set

Y := S(R0), C := qri P, H := C × D,

G(x; y) := y − S(x), F(x; y) := (G(x; y), H(x)),

where x ∈ X and y ∈ Y . In Theorems 6.1 (iii), 6.3 and 6.4, we always suppose that S
and H are compact-valued on K . Let y∗ ∈ U and define L◦

y∗ : K × P∗ × D∗ → R

by

L◦
y∗(x, λ, θ) := −〈λ, y∗〉 − σ−S(x)(λ) − σH(x)(θ), ∀(x, λ, θ) ∈ K × P∗ × D∗.

Theorem 6.1 Let qi P �= ∅, qi D �= ∅, x∗ ∈ R0 and y∗ ∈ S(x∗). Then, the following
statements are true:

(i) (x∗, y∗) is a weak minimizer of SVOP, if and only if (y∗, 0) /∈ qi P × D −
(−S, H)(K );
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(ii) The sets Ky∗ and qi P × D are (properly) linearly separable, if and only if the
relation holds (y∗, 0) /∈ qi (P × D − conv (−S, H)(K ));

(iii) If H is −D-map on K and S(x∗) = {y∗}, thenKy∗ and qi P × D are (properly)
linearly separable, if and only if there exists (λ∗, θ∗) ∈ P∗ × D∗\{(0, 0)} such
that (x∗, λ∗, θ∗) is a saddle point for L◦

y∗ defined on K × P∗ × D∗ with 0 <

L◦
y∗(x0, λ∗, θ∗) for some x0 ∈ K;

(iv) If the generalized Slater condition (13) holds, thenKy∗ andqi P×D admit a regu-
lar linear separation, if and only if (0, 0) /∈ cl cone [(y∗, 0)+conv (−S, H)(K )−
P × D] − qi P × {0}.

Proof (i) Clearly, Ky∗ = (y∗ − S, H)(K ) = (y∗, 0) + (−S, H)(K ) and so the
conclusion follows immediately from Proposition 2.1.
(ii) From [16,19,21,22], one hasEy∗ = Ky∗−clH = (y∗, 0)+(−S, H)(K )−(P×D)

and as a consequence, conv Ey∗ = (y∗, 0) + conv (−S, H)(K ) − (P × D) follows
immediately from [29]. From [3,6,16,19,21,22] we obtain

qi (conv Ey∗) = (y∗, 0) + qi (conv (−S, H)(K ) − (P × D)) ⊇ (y∗, 0)
+ conv (−S, H)(K ) − qi (P × D)

= (y∗, 0) + conv (−S, H)(K ) − (qi P × qi D) �= ∅.

Therefore, qri (conv Ey∗) = qi (conv Ey∗) �= ∅. Since x∗ ∈ R0 and y∗ ∈ S(x∗), we
have 0 ∈ Ey∗ . Now, the fact that cl cone (cone conv Ey∗ − 0) = cl cone (conv Ey∗ − 0)
yields 0 /∈ qi (cone conv Ey∗) if and only if 0 /∈ qi (conv Ey∗). Then, from [16,19,21,
22], the conclusion follows immediately from Propositions 3.2 and 3.3.
(iii) It follows from Theorem 5.1.
(iv) From(ii),wehave conv Ey∗ = (y∗, 0)+conv (−S, H)(K )−(P×D) and therefore,
the equality holds: cl cone conv Ey∗ = cl cone [(y∗, 0)+conv (−S, H)(K )−(P×D)].
Thus, the conclusion follows immediately from Proposition 3.6. ��
Theorem 6.2 Let (x∗, y∗) with x∗ ∈ R0 and y∗ ∈ S(x∗). Assume that qi P �= ∅ and
qi D �= ∅. Then, the following statements are true:

(i) Assume that qi (cone conv Ey∗) − (P\qiP × D) ⊆ cone conv Ey∗ − (qi P × D)

and (−S, H) is −(P × D)-convexlike on K . If (x∗, y∗) is a weak minimizer of
SVOP, then Ky∗ and qi P × D are properly linearly separable;

(ii) If Ky∗ and qi P × D are linearly separable and the generalized Slater condition
(13) holds, orKy∗ and qi P × D admit a regular linear separation, then (x∗, y∗)
is a weak minimizer of SVOP.

Proof Since P is a closed, convex, and pointed cone with qri P �= ∅, from [3,6,16,
19,21,22] we have clC = cl (qi P) = P , cone+ C = C , qriC = qri (qri P) = qri P
and C + clC\C ⊆ C . Clearly, 0 ∈ Ey∗ and since (−S, H) is −(P × D)-convexlike
on K , so is (G(·; y∗); H). Therefore, conclusions (i) and (ii) follow immediately from
Theorems 4.4 and 4.5 and Proposition 3.5. ��

We also have the following saddle point sufficient and necessary optimality condi-
tions for SVOP.
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Theorem 6.3 Assume that qiP �= ∅, qi D �= ∅, x∗ ∈ R0 and S(x∗) = {y∗} and
assume that the condition holds: qi (cone conv Ey∗)−(P\qiP×D) ⊆ cone conv Ey∗ −
(qi P × D). Assume that S and H are P-map and −D-map on K , respectively. If
(x∗, y∗) is a weak minimizer of SVOP, then Ky∗ and qi P × D are properly lin-
early separable, or equivalently, there exists (λ∗, θ∗) ∈ P∗ × D∗\{(0, 0)} such that
(x∗, λ∗, θ∗) is a saddle point forL◦

y∗ defined on K×P∗×D∗ with 0 < L◦
y∗(x0, λ∗, θ∗)

for some x0 ∈ K.

Proof Since P is a closed, convex, and pointed cone with qri P �= ∅, from [3,6,16,19,
21,22] we have clC = cl (qi P) = P , cone+ C = C , qriC = qri (qri P) = qri P and
C + clC\C ⊆ C . Since S is P-map on K , G(·; y∗) is −P-map on K . The conclusion
follows immediately from Theorem 5.3. ��

Similarly, from Theorem 5.4 we have:

Theorem 6.4 Assume that qi P �= ∅ and qi D �= ∅. Assume that H is −D-map on K ,
x∗ ∈ R0 and S(x∗) = {y∗}. If Ky∗ and qi P × D admit a regular linear separation,
or equivalently, there exists (λ∗, θ∗) ∈ P∗ × D∗ with λ∗ �= 0 such that the point
(x∗, λ∗, θ∗) is a saddle point for L◦

y∗ on K × P∗ × D∗, then (x∗, y∗) is a weak
minimizer of SVOP.

We give the following remark to compare our results with Proposition 23 of [25]
(see also, Theorem 3.3 of [24]).

Remark 6.1 It is easy to check the following statements for (a)-(f) and (b’) of Propo-
sition 23 in [25] hold:

(i) (a)⇔ x∗ ∈ R0 and y∗ ∈ S(x∗);
(ii) (b)⇔ Ky∗ and qi P × D are linearly separable. Since (−S, H) is −(P × D)-

convexlike on K , so is (G(·; y∗); H). Clearly, 0 ∈ Ey∗ . From Proposition 2.4 (i),
we have Ey∗ is convex and so cl cone [Ey∗ − 0] = cl cone [(cone conv Ey∗) − 0].
From [3,6], (b)⇔ 0 /∈ qi Ey∗ and it follows that (b)⇔ 0 /∈ qi (cone conv Ey∗).
Now Proposition 3.2 leads to the assertion.

(iii) (c)⇔ the generalized Slater condition (12);
(iv) (d)⇔ Ky∗ and qi P × D admit a regular linear separation;
(v) (e)⇐ σH(x∗)(θ∗) = 0 (see the proof of the necessity of Theorem 5.1);
(vi) (f)⇔ (x∗, y∗) is a weak minimizer of SVOP;
(vii) (b’)⇔ Ky∗ and qi P × D are properly linearly separable. The assertion follows

from similar arguments in (ii) and Proposition 3.3.

In Theorem 3.3 of [24] and Proposition 23 of [25], the first conclusion is: (a)–
(c) imply (d). This follows immediately from Proposition 3.5, where the generalized
Slater condition (13) is weaker than (c) (i.e., the generalized Slater condition (12)).
The second conclusion in Proposition 23 of [25] is: both (a) and (d) imply (b), (e), (f)
and (b’). From Proposition 3.5, it is obvious that both (a) and (d) imply (b) and (b’),
which yields σH(x∗)(θ∗) = 0 from the proof of the necessity of Theorem 5.1 and as a
consequence, (e) holds. Moreover, it follows from Theorem 6.2 (ii) that (f) is true.

Theorem 3.3 of [24] and Proposition 23 of [25] gave no necessary optimality con-
ditions for SVOP, while Theorem 6.2 (i) does under a new assumption which do not
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require the setH to have nonempty interior. Moreover, Theorems 6.3 and 6.4 provide
saddle point sufficient and necessary optimality conditions for SVOP under certain
assumptions.

6.2 Applications to VOP

For VOP, K f (x∗) := ( f (x∗) − f (·), g(·))(K ), E f (x∗) := K f (x∗) − (P × D) and the
generalized Lagrangian function L◦ : K × P∗ × D∗ → R is defined by:

L◦(x, λ, θ) := 〈λ, f (x) − f (x∗)〉 − 〈θ, g(x)〉, ∀(x, λ, θ) ∈ K × P∗ × D∗,

where x∗ ∈ R0. From Theorems 4.4, 4.5, 5.1-5.4, we have the following:

Theorem 6.5 Let qi P �= ∅, qi D �= ∅ and x∗ ∈ R0. Then, the following statements
are true:

(i) Assume that g is −D-map on K . Then, K f (x∗) and qi P × D are (properly)
linearly separable, if and only if there exists (λ∗, θ∗) ∈ P∗ × D∗\{(0, 0)} such
that (x∗, λ∗, θ∗) is a saddle point for L◦ defined on K × P∗ × D∗ with 0 <

L◦(x0, λ∗, θ∗) for some x0 ∈ K;
(ii) Assume that g is −D-map on K . Then, K f (x∗) and qi P × D admit a regular

linear separation, if and only if there exists (λ∗, θ∗) ∈ P∗ × D∗ with λ∗ �= 0
such that (x∗, λ∗, θ∗) is a saddle point for L◦ defined on K × P∗ × D∗;

(iii) Assume that qi (cone conv E f (x∗))−(P\qi P×D) ⊆ cone conv E f (x∗) −(qi P×
D) and (− f, g) is−(P×D)-convexlike on K . If x∗ is a weakly efficient solution
of VOP, then K f (x∗) and qi P × D are properly linearly separable;

(iv) IfK f (x∗) and qi P×D are linearly separable and the generalized Slater condition
(13)with H := g holds, orK f (x∗) andqi P×D admit a regular linear separation,
then x∗ is a weakly efficient solution of VOP.

(v) Assume that qi (cone conv E f (x∗))−({0}×D) ⊆ cone conv E f (x∗)−(P\{0}×D)

and (− f, g) is −(P × D)-convexlike on K . If x∗ is an efficient solution of VOP,
then K f (x∗) and P\{0} × D are properly linearly separable;

(vi) If there is (λ∗, θ∗) ∈ qi (P∗) × D∗ such that (14) withKȳ := K f (x∗) holds, then
x∗ is an efficient solution of VOP.

Theorem 6.6 Assume that riK �= ∅, f and g are P-map and −D-map on K , respec-
tively. Then, there exists (λ∗, θ∗) ∈ P∗×D∗\{(0, 0)} such that (x∗, λ∗, θ∗) is a saddle
point for L◦ defined on K × P∗ × D∗, if and only if it is a solution of the following
system,

0 ∈ ∂(λ ◦ f )(x) + ∂(−θ ◦ g)(x) + NK (x),
0 = 〈θ, g(x)〉,
x ∈ R0, (λ, θ) ∈ P∗ × D∗, with (λ, θ) �= (0, 0),

where (λ ◦ f )(x) := 〈λ, f (x)〉, (θ ◦ g)(x) := 〈θ, g(x)〉 and ∂ denotes the subdiffer-
ential.
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Proof Similar to Theorem 5.3 in [7], the conclusion can be proved by using the well-
known Moreau–Rockafellar theorem (see, e.g, Theorem 4.2.3 in [46]). ��

The following conclusion follows from Theorem 6.6.

Corollary 6.1 Assume that K is open, that is, K = intK, f and g are P-map and
−D-map on K , respectively. Assume that for any λ ∈ P∗ and θ ∈ D∗, λ ◦ f and
−θ ◦ g are Gâteaux derivable and locally bounded at some point of X. Then, there
exists (λ∗, θ∗) ∈ P∗ × D∗\{(0, 0)} such that (x∗, λ∗, θ∗) is a saddle point for L◦
defined on K × P∗ × D∗, if and only if it is a solution of the following system,

0 = ∇(λ ◦ f )(x) + ∇(−θ ◦ g)(x),
0 = 〈θ, g(x)〉,
x ∈ R0, (λ, θ) ∈ P∗ × D∗, with (λ, θ) �= (0, 0),

where ∇ denotes the Gâteaux derivative.

Proof Since f and g are P-map and −D-map on K , respectively, we have for any
λ ∈ P∗ and θ ∈ D∗, λ ◦ f : X → R and −θ ◦ g : X → R are convex. Note
that ∅ �= K = intK ⊆ intX . Since for any λ ∈ P∗ and θ ∈ D∗, λ ◦ f and
−θ ◦ g are locally bounded at some point of X , from Theorem 4.1 in [47], we have
λ ◦ f and θ ◦ g are continuous on intX . Now, from Corollary 4.1.1 in [46], we have
∂(λ ◦ f )(x) = {∇(λ ◦ f )(x)} and ∂(−θ ◦ g)(x) = {∇(−θ ◦ g)(x)}, where x ∈ K .
Therefore, the conclusion follows immediately from Theorem 6.6. ��

7 Conclusions

We have investigated a set-valued system with infinite-dimensional image by exploit-
ing the quasi-relative interior and the quasi-interior, and we have obtained some new
necessary and/or sufficient conditions for the impossibility of this set-valued system.
Furthermore, these new results have been applied to the investigation of vector opti-
mization problems.

As pointed by an anonymous referee, the main statements in this paper assumed
the nonemptiness of the quasi-interior of the involved sets, which is definitively very
strong. Essentially speaking, these results are based on Proposition 3.4 (i) or Lemma
3.1 or an important feature of the quasi-interior (see, e.g., Theorem 2.2 of [19], Theo-
rem 3.10 of [16] and Proposition 2.6 of [23]), however, which does not hold when the
quasi-relative interior ofH is nonempty. In Theorem4.3, technical assumptions related
to the quasi-interior and the quasi-relative interior were given to obtain the necessary
conditions for the impossibility of systems (1) and (2). Of course, it is not easy to check
these assumptions because of the computational complexity of the quasi-interior and
the quasi-relative interior (compared with that of the interior). As a consequence, it
is interesting to obtain similar results under the nonemptiness of the quasi-relative
interior of the involved sets and give the necessary conditions (i.e., linear separation)
for impossibility of systems (1) and (2) under other suitable assumptions.

We investigated the impossibility of system (2) with C := B\{0}, where B ⊆ U
is a closed, convex, and proper cone (see, Theorem 4.5 (ii) and Theorem 5.4 (ii)),
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and proved existence of efficient solutions of VOP (see, Theorem 6.5 (v)) under the
assumption of strongly regular linear separation (see, Remark 3.3). It is also interesting
to obtain these results under other assumptions such as strict convexity. We leave these
questions for future research.
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29. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)
30. Giannessi, F.: Theorems of the alternative for multifunctions with applications to optimization: general

results. J. Optim. Theory Appl. 55, 233–256 (1987)
31. Borwein, J.M.: A multivalued approach to the Farkas lemma. Point-to-set maps and mathematical

programming. Math. Programm. Stud. 10, 42–47 (1979)
32. Borwein, J.M.: Multivalued convexity and optimization: a unified approach to inequality and equality

constraints. Math. Programm. 13, 183–199 (1977)
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