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Abstract In this paper, we describe a two-stage method for solving optimization
problems with bound constraints. It combines the active-set estimate described in
Facchinei and Lucidi (J Optim Theory Appl 85(2):265–289, 1995) with amodification
of the non-monotone line search framework recently proposed in De Santis et al.
(Comput Optim Appl 53(2):395–423, 2012). In the first stage, the algorithm exploits a
property of the active-set estimate that ensures a significant reduction in the objective
function when setting to the bounds all those variables estimated active. In the second
stage, a truncated-Newton strategy is used in the subspace of the variables estimated
non-active. In order to properly combine the two phases, a proximity check is included
in the scheme. This new tool, together with the other theoretical features of the two
stages, enables us to prove global convergence. Furthermore, under additional standard
assumptions, we can show that the algorithm converges at a superlinear rate. Promising
experimental results demonstrate the effectiveness of the proposed method.
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1 Introduction

In this paper, we deal with nonlinear optimization problems with bound constraints.
In the literature, different approaches have been proposed for solving such problems.
Among them, we recall trust-region methods (see, e.g., [1,2]), interior-point methods
(see, e.g., [3–5]), active-set methods (see, e.g., [6–11]) and second-order methods (see,
e.g., [12,13]).

Even though a large number of different methods is available, there is still a strong
interest in developing efficient methods to solve box-constrained problems. This is
mainly due to the fact that many real-world applications can be modeled as large-scale
problems with bound constraints. Furthermore, those methods are used as building
blocks in many algorithmic frameworks for nonlinearly constrained problems (e.g.,
in penalty-based approaches).

Recently, an active-set method, namely the NMBC algorithm, was proposed in [14].
NMBC algorithm has three main features: It makes use of the technique described
in [15] to identify active constraints; it builds up search directions by combining a
truncated-Newton strategy (used in the subspace of the non-active constraints) with a
Barzilai–Borwein strategy [16] (used in the subspace of the active constraints); and
it generates a new iterate by means of a non-monotone line search procedure with
backtracking.

Even though numerical results reported in [14] were promising, the method has a
drawback that might affect its performance in some cases. Indeed, due to the fact that
the search direction is given by two different subvectors (the one generated bymeans of
the truncated-Newton strategy and the one obtained bymeans of the Barzilai–Borwein
strategy), we might end up with a badly scaled direction. When dealing with such a
direction, finding a good starting stepsize can become pretty hard.

In this paper, we give a twofold contribution. On the one hand, we describe and ana-
lyze an important theoretical feature of the active-set estimate proposed by Facchinei
and Lucidi in [15]. In particular, we prove that under suitable assumptions, a signif-
icant reduction in the objective function can be obtained when setting to the bounds
all those variables estimated active. In this way, we extend to box-constrained nonlin-
ear problems a similar result already proved in [17] for �1-regularized least squares
problems and in [18] for quadratic problems with non-negativity constraints.

On the other hand, thanks to the descent property of the active-set estimate, we are
able to define a new algorithmic scheme that overcomes the issues described above for
the NMBC algorithm. More specifically, we define a two-stage algorithmic framework
that suitably combines the active-set estimate proposed in [15] with the non-monotone
line search procedure described in [14]. In the first stage of our framework, we set the
estimated active variables to the corresponding bounds. Then, in the second stage, we
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generate a search direction in the subspace of the non-active variables (employing a
suitably modified truncated-Newton step) to get a new iterate.

There are three main differences between the method we propose here and the one
in [14]:

1. thanks to the two stages, we can get rid of the Barzilai–Borwein step for the active
variables, thus avoiding the generation of badly scaled search directions;

2. the search direction is computed only in the subspace of the non-active variables,
allowing savings in terms of CPU time, especially when dealing with large-scale
problems;

3. a specific proximity check is included in order to guarantee global convergence of
the method. This is crucial, from a theoretical point of view, since we embed the
two stages described above within a non-monotone stabilization framework.

Regarding the theoretical properties of the algorithm,we prove that a non-monotone
strategy is able to guarantee global convergence to stationary points even if at each
iteration a gradient-related direction is generated only in the subspace of the non-
active variables. Furthermore, we prove that under standard additional assumptions,
the algorithm converges at a superlinear rate.

Thepaper is organized as follows. InSect. 2,we formalize the problemand introduce
the notation that will be used throughout the paper. In Sect. 3, we present our active-
set estimate, stating some theoretical results, proved in “Appendix A.” In Sect. 4, we
describe our two-stage active-set algorithm (a formal description of the algorithm can
be found in “Appendix B”) and report the theorems related to the convergence. The
detailed convergence analysis of the algorithm is reported in “Appendix C.” Finally,
our numerical experience is presented in Sect. 5, and some conclusions are drawn in
Sect. 6.

2 Problem Definition and Notations

We address the solution of bound-constrained problems of the form:

min { f (x) : l ≤ x ≤ u}, (1)

where f ∈ C2(Rn); x, l, u ∈ R
n , and l < u.

In the following, we denote by g(x) and H(x) the n gradient vector and the n × n
Hessian matrix of f (x), respectively. We also indicate with ‖ · ‖ the Euclidean norm.
Given a vector v ∈ R

n and an index set I ⊆ {1, . . . , n}, we denote by vI the subvector
with components vi , i ∈ I . Given amatrix H ∈ R

n×n , we denote by HI I the submatrix
with components hi j with i, j ∈ I and by λmax its largest eigenvalue. The open ball
with center x and radius ρ > 0 is denoted by B(x, ρ). Finally, given x ∈ R

n , we
indicate with [x]� the projection of x onto [l, u], where l, u ∈ R

n define the feasible
region of problem (1).

Now, we give the formal definition of stationary points for problem (1).
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Definition 2.1 A point x∗ ∈ [l, u] is called stationary point of problem (1) iff it
satisfies the following first-order necessary optimality conditions:

gi (x
∗) ≥ 0, if x∗

i = li , (2)

gi (x
∗) ≤ 0, if x∗

i = ui , (3)

gi (x
∗) = 0, if li < x∗

i < ui . (4)

These conditions can be equivalently written as:

g(x∗) − λ∗ + μ∗ = 0, (5)

(li − x∗
i ) λ∗

i = 0, i = 1, . . . , n, (6)

(x∗
i − ui ) μ∗

i = 0, i = 1, . . . , n, (7)

λ∗
i ≥ 0, μ∗

i ≥ 0, i = 1, . . . , n, (8)

where λ∗, μ∗ ∈ R
n are the KKT multipliers.

3 Active-Set Estimate: Preliminary Results and Properties

As we will see later on, the use of a technique to estimate the active constraints plays a
crucial role in the development of a theoretically sound and computationally efficient
algorithmic framework. The active-set estimation we consider for box-constrained
nonlinear problems takes inspiration from the approach first proposed in [19], and
further studied in [15], based on the use of some approximations of KKT multipliers.

Let x be any feasible point, and λ(x), μ(x) be some appropriate approximations of
the KKT multipliers λ∗ and μ∗. We define the following index subsets:

Al(x) : = {i ∈ {1, . . . , n} : li ≤ xi ≤ li + ελi (x), gi (x) > 0} , (9)

Au(x) : = {i ∈ {1, . . . , n} : ui − εμi (x) ≤ xi ≤ ui , gi (x) < 0} , (10)

N (x) : = {i ∈ {1, . . . , n} : i /∈ Al(x) ∪ Au(x)} , (11)

where ε > 0.
In particular, Al(x) and Au(x) contain the indices of the variables estimated active

at the lower bound and the upper bound, respectively. The set N (x) includes the indices
of the variables estimated non-active.

In this paper, λ(x) and μ(x) are defined as the multiplier functions introduced
in [20]: starting from the solution of (5) at x , and then minimizing the error over (6)–
(8), it is possible to compute the functions λ : Rn → R

n and μ : Rn → R
n as:

λi (x) := (ui − xi )2

(li − xi )2 + (ui − xi )2
gi (x), i = 1, . . . , n, (12)

μi (x) := − (li − xi )2

(li − xi )2 + (ui − xi )2
gi (x), i = 1, . . . , n. (13)
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By adapting the results shown in [15], we can state the following proposition.

Proposition 3.1 If (x∗, λ∗, μ∗) satisfies KKT conditions for problem (1), then there
exists a neighborhood B(x∗, ρ) such that

{i : x∗
i = li , λ∗

i > 0} ⊆ Al(x) ⊆ {i : x∗
i = li },

{i : x∗
i = ui , μ∗

i > 0} ⊆ Au(x) ⊆ {i : x∗
i = ui },

for each x ∈ B(x∗, ρ).
Furthermore, if strict complementarity holds, then

{i : x∗
i = li , λ∗

i > 0} = Al(x) = {i : x∗
i = li },

{i : x∗
i = ui , μ∗

i > 0} = Au(x) = {i : x∗
i = ui },

for each x ∈ B(x∗, ρ).

We notice that stationary points can be characterized by using the active-set esti-
mate, as shown in the next propositions.

Proposition 3.2 A point x̄ ∈ [l, u] is a stationary point of problem (1) iff the following
conditions hold:

max {li − x̄i ,−gi (x̄)} = 0, i ∈ Al(x̄), (14)

max {x̄i − ui , gi (x̄)} = 0, i ∈ Au(x̄), (15)

gi (x̄) = 0, i ∈ N (x̄). (16)

Proof See “Appendix A.” 
�
Proposition 3.3 Given x̄ ∈ [l, u], assume that

{i ∈ Al(x̄) : x̄i > li } ∪ {i ∈ Au(x̄) : x̄i < ui } = ∅. (17)

Then, x̄ is a stationary point of problem (1) iff

gi (x̄) = 0 for all i ∈ N (x̄).

Proof See “Appendix A.” 
�
Proposition 3.4 Given x̄ ∈ [l, u], assume that

gi (x̄) = 0 for all i ∈ N (x̄). (18)

Then, x̄ is a stationary point of problem (1) iff

{i ∈ Al(x̄) : x̄i > li } ∪ {i ∈ Au(x̄) : x̄i < ui } = ∅.

Proof See “Appendix A.” 
�
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3.1 Descent Property of the Active-Set

In this subsection, we show that the active-set estimate can be used for computing a
point that ensures a sufficient decrease in the objective function simply by fixing the
estimated active variables at the bounds.

First, we give an assumption on the parameter ε appearing in the definition of the
active-set estimates Al(x) and Au(x) that will be used to prove the main result in this
subsection.

Assumption 3.1 Assume that the parameter ε appearing in (9) and (10) satisfies the
following conditions: ⎧

⎨

⎩

0 < ε ≤ 1

λ̄
, if λ̄ > 0,

ε > 0, otherwise,
(19)

where

λ̄ := max
x∈[l,u] λmax(H(x)).

Now, we state the main result of the subsection.

Proposition 3.5 Let Assumption 3.1 hold. Let x ∈ [l, u] be such that

Al(x) ∪ Au(x) = ∅,

and let x̃ be the point defined as

x̃i := li , i ∈ Al(x),

x̃i := ui , i ∈ Au(x),

x̃i := xi , i ∈ N (x),

where Al(x), Au(x) and N (x) are the index subsets defined as in (9), (10) and (11),
respectively.

Then,

f (x̃) − f (x) ≤ − 1

2ε
‖x − x̃‖2.

Proof See “Appendix A.” 
�

Aswe already highlighted in Introduction, Proposition 3.5 is a non-trivial extension
of similar results already proved in the literature.

In particular, here we deal with problems having a general non-convex objective
function, while in [17,18], where a similar analysis was carried out, the authors only
considered convex quadratic optimization problems.
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3.2 Descent Property of the Non-active Set

In this subsection, we show that, thanks to the theoretical properties of the active-set
estimate, a sufficient decrease in the objective function can also be obtained by suitably
choosing a direction in the subspace of the non-active variables only. Let us consider
a search direction satisfying the following conditions:

di = 0, ∀i ∈ Al(x) ∪ Au(x), (20)

dTN (x)gN (x)(x) ≤ −σ1‖gN (x)(x)‖2, (21)

‖dN (x)‖ ≤ σ2‖gN (x)(x)‖, (22)

where σ1, σ2 > 0. Condition (20) ensures that the estimated active variables are not
updated when moving along such a direction, while (21) and (22) imply that d is
gradient-related with respect to only the estimated non-active variables.

Given a direction d satisfying (20)–(22), the following proposition shows that a
sufficient decrease in the objective function can be guaranteed by projecting suitable
points obtained along d.

Proposition 3.6 Given x̄ ∈ [l, u], let us assume that N (x̄) = ∅and that gN (x̄)(x̄) = 0.
Let γ ∈]0, 1[. Then, there exists ᾱ > 0 such that

f (x̄(α)) − f (x̄) ≤ γαg(x̄)T d, ∀α ∈]0, ᾱ], (23)

where x̄(α) := [x̄ + αd]�, and d satisfies (20)–(22) in x̄ .

Proof See “Appendix A.” 
�

4 A New Active-Set Algorithm for Box-Constrained Problems

In this section, we describe a new algorithmic framework for box-constrained prob-
lems. Its distinguishing feature is the presence of two different stages that enable us
to separately handle active and non-active variables.

In “Appendix B,” we report the formal scheme of our Active-Set Algorithm for
Box-Constrained Problems (ASA-BCP). In the following, we only give a sketch of it,
indicating with fR a reference value of the objective function that is updated through-
out the procedure. Different criteria were proposed in the literature to choose this
value (see, e.g., [21]). Here, we take fR as the maximum among the last M function
evaluations, where M is a nonnegative parameter.

– At every iteration k, starting from the non-stationary point xk , the algorithm fixes
the estimated active variables at the corresponding bounds, thus producing the new
point x̃ k . In particular, the sets

Ak
l := Al(x

k), Ak
u := Au(x

k) and Nk := N (xk) (24)
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are computed and the point x̃ k is produced by setting

x̃ k
Ak
l

:= lAk
l
, x̃ kAk

u
:= uAk

u
and x̃ kNk := xkNk .

– Afterward, a check is executed to verify if the new point x̃ k is sufficiently close to
xk . If this is the case, the point x̃ k is accepted. Otherwise, an objective function
check is executed and two further cases are possible: if the objective function is
lower than the reference value fR , then we accept the point x̃ k ; otherwise the
algorithm sets x̃ k by backtracking to the last good point (i.e., the point x̃ that
produced the last fR).

– At this point, the active and non-active sets are updated considering the information
related to x̃ k , i.e., we build

Ãk
l := Al(x̃

k), Ãk
u := Au(x̃

k) and Ñ k := N (x̃ k). (25)

A search direction dk is then computed: we set dk
Ãk := 0, with Ãk := Ãk

l ∪ Ãk
u ,

and calculate dk
Ñk by means of a modified truncated-Newton step (see, e.g., [22]

for further details on truncated-Newton approaches).
– Once dk is computed, a non-monotone stabilization strategy, inspired by the one
proposed in [23], is used to generate the new iterate. In particular, the algorithm
first checks if ‖dk‖ is sufficiently small. If this is the case, the unitary stepsize is
accepted, and we set

xk+1 := [x̃ k + dk]�

without computing the related objective function value and start a new iteration.
Otherwise, an objective function check is executed and two further cases are pos-
sible: if the objective function is greater than or equal to the reference value fR ,
then we backtrack to the last good point and take the related search direction;
otherwise we continue with the current point. Finally, a non-monotone line search
is performed in order to get a stepsize αk and generate

xk+1 := [x̃ k + αkdk]�.

– After a prefixed number of iterations without calculating the objective function,
a check is executed to verify if the objective function is lower than the reference
value fR . If this is not the case, a backtracking and a non-monotone line search
are executed.

The non-monotone line search used in the algorithm is the same as the one described
in, e.g., [14]. It sets αk := δν , where ν is the smallest nonnegative integer for which

f ([x̃ k + δνdk]�) ≤ fR + γ δνg(x̃ k)T dk, (26)

with δ ∈]0, 1[ and γ ∈]0, 1
2 [.
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Remark 4.1 From Propositions 3.3 and 3.4, it follows that ASA-BCP is well defined,
in the sense that at the kth iteration it produces a new point xk+1 = xk iif xk is
non-stationary.

Hereinafter, we indicate the active-set estimates in xk and x̃ k with the notation used
in (24) and in (25), respectively.

Now, we state the main theoretical result ensuring the global convergence of
ASA-BCP.

Theorem 4.1 Let Assumption 3.1 hold. Then, ASA-BCP either produces a stationary
point for problem (1) in a finite number of iterations, or produces an infinite sequence
{xk} and every limit point x∗ of the sequence is a stationary point for problem (1).

Proof See “Appendix C.” 
�

Finally, under standard additional assumptions, superlinear convergence of the
method can be proved.

Theorem 4.2 Assume that {xk} is a sequence generated by ASA-BCP converging to a
point x∗ satisfying the strict complementarity condition and such that HN∗N∗(x∗) � 0,
where N∗ := {i : li < x∗

i < ui }. Assume that the sequence {dk} of directions satisfies
the following condition:

lim
k→∞

‖HÑk Ñ k (x̃ k)dkÑk + gÑk (x̃ k)‖
‖gÑk (x̃ k)‖ = 0. (27)

Then, the sequence {xk} converges to x∗ superlinearly.

Proof See “Appendix C.” 
�

5 Numerical Experience

In this section, we describe the details of our computational experience.
In Sect. 5.1, we compare ASA-BCP with the following codes:

– NMBC [14] (in particular, we considered the version named NMBC2 in [14]);
– ALGENCAN [13]: an active-set method using spectral projected gradient steps for
leaving faces, downloaded from the TANGO web page (http://www.ime.usp.br/
~egbirgin/tango);

– LANCELOT B [24]: a Newton method based on a trust-region strategy, down-
loaded from the GALAHAD web page (http://www.galahad.rl.ac.uk).

All computations have been run on an Intel Xeon(R), CPU E5-1650 v2 3.50 GHz.
The test set consisted of 140 bound-constrained problems from the CUTEst collec-
tion [25], with dimension up to 105. The stopping condition for all codes was
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‖x − [x − g(x)]�‖∞ < 10−5,

where ‖ · ‖∞ denotes the sup-norm of a vector.
In order to compare the performances of the algorithms, we make use of the per-

formance profiles proposed in [26].
Following the analysis suggested in [27], we preliminarily checked whether the

codes find different stationary points: The comparison is thus restricted to problems
for which all codes find the same stationary point (with a tolerance of 10−3). Further-
more, we do not consider in the analysis those problems for which all methods find a
stationary point in less than 1 second.

In ASA-BCP, we set the algorithm parameters to the following values: Z := 20 and
M := 99 (so that the last 100 objective function values are included in the computation
of the reference value).

In running the other methods considered in the comparisons, default values were
used for all parameters (but those related to the stopping condition).

C++ and Fortran 90 implementations (with CUTEst interface) of ASA-BCP,
together with details related to the experiments and the implementation, can be found
at the following web page: https://sites.google.com/a/dis.uniroma1.it/asa-bcp.

5.1 Comparison on CUTEst Problems

In this subsection, we first compare ASA-BCP with the NMBC algorithm presented
in [14]. Then, we report the comparison of ASA-BCP with other two solvers for
bound-constrained problems, namely ALGENCAN [13] and LANCELOT B [24]. All
the codes are implemented in Fortran 90.

Recalling how we selected the relevant test problems, the analysis was restricted
to 43 problems for the comparison between ASA-BCP and NMBCand to 62 problems
for the comparison between ASA-BCP, ALGENCAN and LANCELOT B.

In particular, in the comparison between ASA-BCP and NMBC, 96 problems were
discarded because they were solved in less than 1 second by both algorithms. A further
problem (namely SCOND1LS with 5002 variables) was removed because ASA-BCP
and NMBC found two different stationary points (NMBC found the worst one).

In the comparison between ASA-BCP, ALGENCAN and LANCELOT B, 75 prob-
lems were discarded because they were solved in less than 1 second by all the
considered algorithms. Other 3 problems were removed as the methods stopped at dif-
ferent stationary points. Namely, NCVXBQP3 with 105 variables, POWELLBC with
103 variables and SCOND1LS with 5002 variables were discarded in our comparison.
The worst stationary points were found by ASA-BCP, LANCELOT B and ASA-BCP,
respectively.

In Fig. 1, we report the performance profiles of ASA-BCP and NMBC. These profiles
show that ASA-BCP outperforms NMBC in terms of CPU time, number of objective
function evaluations and number of conjugate gradient iterations. This confirms the
effectiveness of our two-stage approach when compared to the NMBC algorithm.

These results seem to confirm that on the one hand, computing the search direction
only in the subspace of the non-active variables guarantees some savings in terms of
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Fig. 1 Comparison between ASA-BCP and NMBC: performance profiles on CPU time, number of objective
function evaluations and number of conjugate gradient iterations. The x axis is in linear scale in the left
panel and in logarithmic scale in the right panel
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CPU time, and on the other hand, getting rid of the Barzilai–Borwein step (used in
NMBC) avoids the generation of badly scaled search directions.

In Fig. 2, we show the performance profiles of ASA-BCP, ALGENCAN and
LANCELOT B. By taking a look at the performance profiles related to CPU time,
we can easily see that ASA-BCP and ALGENCAN are comparable in terms of effi-
ciency and are both better than LANCELOT B. As regards robustness, we can see that
ASA-BCP outperforms both ALGENCAN and LANCELOT B. More specifically, when
τ is equal to 2, ASA-BCP solves about 95% of the problems, while ALGENCAN and
LANCELOT B respectively, solve about 90 and 30% of the problems. Furthermore,
ASA-BCP is able to solve all the problems when τ is about 70, while ALGENCAN and
LANCELOT B get to solve all the problems for significantly larger values of τ .

For what concerns the number of objective function evaluations, ASA-BCP is the
best in terms of efficiency and is competitive with LANCELOT B in terms of robust-
ness. In particular, when τ is equal to 2, ASA-BCP solves about 85% of the problems,
while ALGENCAN and LANCELOT B respectively, solve about 15 and 30% of the
problems. Moreover, ASA-BCP and LANCELOT B solve all the problem when τ is
about 60 and 50, respectively, while ALGENCAN gets to solve all the problems when
τ is about 600.

Finally, as regards the number of conjugate gradient iterations, ASA-BCP outper-
forms the other two codes in terms of efficiency, while LANCELOT B is the best in
terms of robustness. More in detail, when τ is equal to 2, ASA-BCP solves about 85%
of the problems, while ALGENCAN and LANCELOT B respectively, solve about 20
and 35% of the problems. LANCELOT B is able to solve all the problems when τ is
about 200, while ASA-BCP and ALGENCAN need larger values of τ .

6 Conclusions

In this paper, a two-stage active-set algorithm for box-constrained nonlinear program-
ming problems is devised. In the first stage, we get a significant reduction in the
objective function simply by setting to the bounds the estimated active variables. In
the second stage, we employ a truncated-Newton direction computed in the subspace
of the estimated non-active variables. These two stages are inserted in a non-monotone
framework, and the convergenceof the resulting algorithm ASA-BCP is proved.Exper-
imental results show that our implementation of ASA-BCP is competitive with other
widely used codes for bound-constrained minimization problems.

Appendices

Appendix A

Proof (Proposition 3.2) Assume that x̄ satisfies (14)–(16). First, we show that

x̄i = li , if i ∈ Al(x̄), (28)

x̄i = ui , if i ∈ Au(x̄). (29)
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In order to prove (28), assume by contradiction that there exists an index i ∈ Al(x̄)
such that li < x̄ ≤ li+ελi (x̄). It follows thatλi (x̄) > 0, and, from (12), that gi (x̄) > 0,
contradicting (14). Then, (28) holds. The same reasoning applies to prove (29).
Recalling (9), we have that gi (x̄) > 0 for all i ∈ Al(x̄). Combined with (28), it means
that x̄i satisfies (2) for all i ∈ Al(x̄). Similarly, since gi (x̄) < 0 for all i ∈ Au(x̄)
and (29) holds, then x̄i satisfies (3) for all i ∈ Au(x̄).
From (16), we also have that x̄i satisfies optimality conditions for all i ∈ N (x̄). Then,
x̄ is a stationary point.
Now, assume that x̄ is a stationary point. First, we consider a generic index i such that
x̄i = li . For such an index, from (2) we get gi (x̄) ≥ 0. If gi (x̄) > 0, then, from (9), it
follows that i ∈ Al(x̄) and (14) is satisfied. Vice versa, if gi (x̄) = 0, then we have that
i belongs to N (x̄), satisfying (16). The same reasoning applies for a generic index i
such that x̄i = ui .
Finally, for every index i such that li < x̄i < ui , from (4) we have that gi (x̄) = 0.
Then, x̄ satisfies (14)–(16). 
�
Proof (Proposition 3.3) Assume that (17) is verified. Namely,

x̄i = li , if i ∈ Al(x̄),

x̄i = ui , if i ∈ Au(x̄).

Recalling the definition of Al(x̄) and Au(x̄), the previous relations imply that (14)
and (15) are verified. Then, from Proposition 3.2, x̄ is a stationary point if and only if
gi (x̄) = 0 for all i ∈ N (x̄). 
�
Proof (Proposition 3.4) Assume that condition (18) is verified. If we have

{i ∈ Al(x̄) : x̄i > li } ∪ {i ∈ Au(x̄) : x̄i < ui } = ∅,

from the definition of Al(x̄) and Au(x̄) it follows that

x̄i = li and gi (x̄) > 0, i ∈ Al(x̄),

x̄i = ui and gi (x̄) < 0, i ∈ Au(x̄).

Then, conditions (2)–(4) are verified, and x̄ is a stationary point.
Conversely, if x̄ is a stationary point, we proceed by contradiction and assume that
there exists x̄i ∈ (li , ui ) such that i ∈ Al(x̄) ∪ Au(x̄). From the definition of Al(x̄)
and Au(x̄), it follows that gi (x̄) = 0, violating (4) and thus contradicting the fact that
x̄ is a stationary point. 
�
Proof (Proposition 3.5) By the second-order mean value theorem, we have

f (x̃) = f (x) + g(x)T (x̃ − x) + 1

2
(x̃ − x)T H(z)(x̃ − x),

where z = x + ξ(x̃ − x) for a ξ ∈]0, 1[. Therefore,

f (x̃) − f (x) ≤ g(x)T (x̃ − x) + 1

2
λ̄‖x − x̃‖2. (30)
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Recalling the definition of x̃ , we can also write

g(x)T (x̃ − x) =
∑

i∈Al (x)

gi (x)(li − xi ) +
∑

i∈Au(x)

gi (x)(ui − xi ). (31)

From the definitions of Al(x) and Au(x), and recalling (12) and (13), we have

gi (x) ≥ (xi − li )

ε

[
(li − xi )2 + (ui − xi )2

(ui − xi )2

]

, i ∈ Al(x),

gi (x) ≤ (xi − ui )

ε

[
(li − xi )2 + (ui − xi )2

(li − xi )2

]

, i ∈ Au(x),

and we can write

gi (x)(li − xi ) ≤ −1

ε
(xi − li )

2
[
(li − xi )2 + (ui − xi )2

(ui − xi )2

]

≤ −1

ε
(li − xi )

2, i ∈ Al(x),

gi (x)(ui − xi ) ≤ −1

ε
(ui − xi )

2
[
(li − xi )2 + (ui − xi )2

(ui − xi )2

]

≤ −1

ε
(ui − xi )

2, i ∈ Au(x).

Hence, from (31), it follows that

g(x)T (x̃ − x) ≤ −1

ε

⎡

⎣
∑

i∈Al (x)

(li − xi )
2 +

∑

i∈Au(x)

(ui − xi )
2

⎤

⎦ = −1

ε
‖x − x̃‖2. (32)

Finally, from (30) and (32), we have

f (x̃) − f (x) ≤ 1

2

(

λ̄ − 1

ε

)

‖x − x̃‖2 − 1

2ε
‖x − x̃‖2 ≤ − 1

2ε
‖x − x̃‖2,

where the last inequality follows from equation (19) in Assumption 3.1. 
�

Proof (Proposition 3.6) Since the gradient is Lipschitz continuous over [l, u], there
exists L < ∞ such that for all s ∈ [0, 1] and for all α ≥ 0:

‖g(x̄) − g(x̄ − s[x̄ − x̄(α)])‖ ≤ sL‖x̄ − x̄(α)‖, ∀x̄ ∈ [l, u].

123



384 J Optim Theory Appl (2017) 172:369–401

By the mean value theorem, we have:

f (x̄(α))− f (x̄)=g(x̄)T(x̄(α) − x)+
∫ 1

0

(
g(x̄−s[x̄− x̄(α)])−g(x̄)

)T(
x̄(α)− x̄

)
ds

≤ g(x̄)T(x̄(α)− x̄)+‖x̄(α)− x̄‖
∫ 1

0
sL‖x̄(α) − x̄‖ ds

= g(x̄)T(x̄(α) − x̄) + L

2
‖x̄(α) − x̄‖2, ∀α ≥ 0. (33)

Moreover, as the gradient is continuous and the feasible set is compact, there exists
M > 0 such that

‖g(x̄)‖ ≤ M, ∀x̄ ∈ [l, u]. (34)

From (20), (22) and (34), we can write

di ≤ ‖d‖ ≤ σ2‖g(x̄)‖ ≤ σ2M, ∀x̄ ∈ [l, u], ∀i = 1, . . . , n.

Now, let us define θ1, . . . , θn as:

θi :=
{
min {x̄i − li , ui − x̄i } if li < x̄i < ui ,
ui − li otherwise,

i = 1, . . . , n.

We set

θ̃ := min
i=1,...,n

θi

2
,

and define α̂ as follows:

α̂ := θ̃

σ2M
.

In the following, we want to majorize the right-hand-side term of (33). First, we
consider the term g(x̄)T(x̄(α) − x). We distinguish three cases:

(i) i ∈ N (x̄) such that li < x̄i < ui . We distinguish two subcases:
– if di ≥ 0:

li < x̄i + αdi ≤ x̄i + θ̃

σ2M
di ≤ xi + θ̃ < ui , ∀α ∈]0, α̂],

– else, if di < 0:

ui > x̄i + αdi ≥ x̄i + θ̃

σ2M
di ≥ x̄i − θ̃ > li , ∀α ∈]0, α̂].
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So, we have

x̄i (α) = x̄i + αdi , ∀α ∈]0, α̂],

which implies

gi (x̄)(x̄i (α) − x̄i ) = αgi (x̄)di , ∀α ∈]0, α̂]. (35)

(ii) i ∈ N (x̄) such that x̄i = li . Recalling the definition of N (x), it follows that
gi (x̄) ≤ 0. We distinguish two subcases:
– if di ≥ 0:

li ≤ x̄i + αdi ≤ x̄i + θ̃

σ2M
di ≤ x̄i + θ̃ < ui , ∀α ∈]0, α̂],

and then

x̄i (α) = x̄i + αdi , ∀α ∈]0, α̂],

which implies

gi (x̄)(x̄i (α) − x̄i ) = αgi (x̄)di , ∀α ∈]0, α̂]. (36)

– else, if di < 0, we have

x̄i (α) = x̄i , ∀α > 0,

and then
0 = gi (x̄)(x̄i (α) − x̄i ) ≤ αgi (x̄)di , ∀α > 0. (37)

(iii) i ∈ N (x̄) such that x̄i = ui . Following the same reasonings done in the previous
step, we have that
– if di ≤ 0:

gi (x̄)(x̄i (α) − x̄i ) = αgi (x̄)di , ∀α ∈]0, α̂]; (38)

– else, if di > 0, we have

0 = gi (x̄)(x̄i (α) − x̄i ) ≤ αgi (x̄)di , ∀α > 0. (39)

From (20), (35), (36), (37), (38) and (39), we obtain

g(x̄)T(x̄(α) − x̄) =
∑

i∈N (x̄)

gi (x̄)(x̄i (α) − x̄)

≤ α
∑

i∈N (x̄)

gi (x̄)di = αgN (x̄)(x̄)
TdN (x̄), ∀α ∈]0, α̂]. (40)
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Now, we consider the term
L

2
‖x̄(α) − x̄‖2. For every i ∈ N (x̄) such that di ≤ 0, we

have that 0 ≤ x̄i − x̄i (α) ≤ −αdi holds for all α > 0. Therefore,

(x̄i − x̄i (α))2 ≤ α2d2i , ∀α > 0. (41)

Else, for every i ∈ N (x̄) such that di > 0, we have that 0 ≤ x̄i (α) − x̄i ≤ αdi holds
for all α > 0. Therefore,

0 ≤ (x̄i (α) − x̄i )
2 ≤ α2d2i , ∀α > 0. (42)

Recalling (20), from (41) and (42) we obtain

‖x̄(α) − x̄‖2 ≤ α2‖dN (x̄)‖2, ∀α > 0.

Using (21) and (22), we get

‖x̄(α) − x̄‖2 ≤ α2‖dN (x̄)‖2 ≤ α2σ 2
2 ‖gN (x̄)(x̄)‖2

≤ −α2 σ 2
2

σ1
gN (x̄)(x̄)

TdN (x̄), ∀α > 0. (43)

From (20), (33), (40) and (43), we can write

f (x̄(α)) − f (x̄) ≤ α

(

1 − α
Lσ 2

2

2σ1

)

gN (x̄)(x̄)
TdN (x̄)

= α

(

1 − α
Lσ 2

2

2σ1

)

g(x̄)Td, ∀α ∈]0, α̂].

It follows that (23) is satisfied by choosing ᾱ such that

1 − ᾱ
Lσ 2

2

2σ1
≥ γ,

ᾱ ∈]0, α̂].

Thus, the proof is completed defining

ᾱ := min

{

α̂,
2σ1(1 − γ )

Lσ 2
2

}

.


�
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Appendix B

The scheme of the algorithm is reported in Algorithm 1. At Step 10, 17 and 25 there is
the update of the reference value of the non-monotone line search f j

R : we set j := j+1,
l j := k and the reference value is updated according to the formula

f j
R := max

0≤i≤min{ j,M}
{
f j−i}.

Algorithm 1 ASA-BCP

0 Choose x0 ∈ [l, u], fix Z ≥ 1, M ≥ 0,Δ0 ≥ 0, β ∈]0, 1[, δ ∈]0, 1[, γ ∈]0, 1
2 [,

k := 0, j := −1, l−1 := −1, f −1
R := f (x0), f −1 := f (x0), Δ = Δ̃ := Δ0,

checkpoint := true
1 While xk is a non-stationary point for problem (1)
2 Compute Ak

l := Al(xk), Ak
u := Au(xk) and Nk := N (xk)

3 Set x̃ k
Ak
l

:= lAk
l
, x̃ k

Ak
u

:= uAk
u
and x̃ k

Nk := xk
Nk

4 If ‖x̃ k − xk‖ ≤ Δ̃, then set Δ̃ = βΔ̃

5 Else compute f (xk)
6 If f (xk) ≥ f j

R , then backtrack to x̃ l
j
, set k := l j and go to Step 28

7 End if
8 Compute Ãk

l := Al(x̃ k), Ãk
u := Au(x̃ k) and Ñ k := N (x̃ k)

9 If Ñ k = ∅ and gÑk (x̃ k) = 0

10 If checkpoint = true, then compute f (x̃ k) and update f j
R

11 Set checkpoint := f alse
12 End if
13 Set dk

Ãk
l

:= 0, dk
Ãk
u

:= 0 and compute a gradient-related direction dk
Ñk in x̃ k

14 If k ≥ l j + Z , then compute f (x̃ k)
15 If f (x̃ k) ≥ f j

R

16 Backtrack to x̃ l
j
, set dk := dl

j
, k := l j and go to Step 28

17 Else update f j
R

18 End if
19 End if
20 If ‖dk

Ñk‖ ≤ Δ

21 Set αk := 1, xk+1 := [x̃ k + αkdk]�, Δ := βΔ, k := k + 1
22 Else if k = l j , then compute f (x̃ k)
23 If f (x̃ k) ≥ f j

R

24 Backtrack to x̃ l
j
, set dk := dl

j
, k := l j and go to Step 28

25 Else update f j
R

26 End if
27 End if
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28 Set αk := δν , where ν is the smallest nonnegative integer for which

f ([x̃ k + δνdk]�) ≤ f j
R + γ δνg(x̃ k)Tdk

29 Set xk+1 := [x̃ k + αkdk]�, k := k + 1, checkpoint := true
30 Else
31 Set αk := 0, dk := 0, xk+1 := [x̃ k + αkdk]�, k := k + 1
32 End if
33 End while

Appendix C

In this section, we prove Theorem 4.1. Preliminarily, we need to state some results.

Lemma C.1 Let Assumption 3.1 hold. Suppose that ASA-BCP produces an infinite
sequence {xk}, then
(i) { f j

R} is non-increasing and converges to a value f̄R;
(ii) for any fixed j ≥ 0 we have:

f hR < f j
R , ∀h > j + M.

Proof The proof follows from Lemma 1 in [23]. 
�
Lemma C.2 Let Assumption 3.1 hold. Suppose that ASA-BCP produces an infinite
sequence {xk} and an infinite sequence {x̃ k}. For any given value of k, let q(k) be the
index such that

q(k) := max{ j : l j ≤ k}.

Then, there exists a sequence {x̃ s( j)} and an integer L satisfying the following condi-
tions:

(i) f j
R = f (x̃ s( j))

(ii) for any integer k, there exist an index hk and an index jk such that:

0 < hk − k ≤ L , hk = s( j k),

f jk

R = f (x̃ h
k
) < f q(k)

R .

Proof The proof follows from Lemma 2 in [23] taking into account that for any
iteration index k, there exists an integer L̃ such that the condition of Step 9 is satisfied
within the (k + L̃)th iteration. In fact, assume by contradiction that it is not true. If
Step 9 is not satisfied at a generic iteration k, then xk+1 = x̃ k . Since the sequences
{xk} and {x̃ k} are infinite, Proposition 3.4 implies that x̃ k+1 = xk+1 and that the
objective function strictly decreases. Repeating this procedure for an infinite number
of steps, an infinite sequence of distinct points {xk+1, xk+2, . . . } is produced, where
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these points differ from each other only for the values of the variables at the bounds.
Since the number of variables is finite, this produces a contradiction. 
�
Lemma C.3 Let Assumption 3.1 hold. Suppose that ASA-BCP produces an infinite
sequence {xk} and an infinite sequence {x̃ k}. Then,

lim
k→∞ f (xk) = lim

k→∞ f (x̃ k) = lim
j→∞ f j

R = f̄ R, (44)

lim
k→∞ ‖xk+1 − x̃ k‖ = lim

k→∞ αk‖dk‖ = 0, (45)

lim
k→∞ ‖x̃ k − xk‖ = 0. (46)

Proof We build two different partitions of the iterations indices to analyze the com-
putation of xk+1 from x̃ k and that of x̃ k from xk , respectively. From the instructions
of the algorithm, it follows that xk+1 can be computed at Step 21, Step 29 or Step 31.
Let us consider the following subset of iteration indices:

K1 : = {k : xk+1 is computed at Step 21},
K2 : = {k : xk+1 is computed at Step 29},
K3 : = {k : xk+1 is computed at Step 31}.

Then, we have

K1 ∪ K2 ∪ K3 = {0, 1, . . . }.

As regards the computation of x̃ k , we distinguish two further subsets of iterations
indices:

K4 := {k : x̃ k satisfies the test at Step 4},
K5 := {k : x̃ k does not satisfy the test at Step 4}.

Then, we have

K4 ∪ K5 = {0, 1, . . . }.

Preliminarily, we point out some properties of the above subsequences. The subse-
quence {x̃ k}K1 satisfies

‖xk+1 − x̃ k‖ = αk‖dk‖ = ‖dk‖ ≤ β tΔ0, k ∈ K1,

where the integer t increases with k ∈ K1. Since β ∈]0, 1), if K1 is infinite, we have

lim
k→∞, k∈K1

‖xk+1 − x̃ k‖ = lim
k→∞, k∈K1

αk‖dk‖ = 0. (47)
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Moreover, since αk = 0 and dk = 0 for all k ∈ K3, if K3 is infinite, we have

lim
k→∞, k∈K3

‖xk+1 − x̃ k‖ = lim
k→∞, k∈K3

αk‖dk‖ = 0. (48)

The subsequence {x̃ k}K4 satisfies

‖x̃ k − xk‖ ≤ β t Δ̃0, k ∈ K4,

where the integer t increases with k ∈ K4. Since β ∈]0, 1[, if K4 is infinite, we have

lim
k→∞, k∈K4

‖x̃ k − xk‖ = 0. (49)

Now we prove (44). Let s( j), hk and q(k) be the indices defined in Lemma C.2. We
show that for any fixed integer i ≥ 1, the following relations hold:

lim
j→∞ ‖x̃ s( j)−i+1 − xs( j)−i+1‖ = 0, (50)

lim
j→∞ ‖xs( j)−i+1 − x̃ s( j)−i‖ = lim

j→∞ αs( j)−i‖ds( j)−i‖ = 0, (51)

lim
j→∞ f (xs( j)−i+1) = f̄ R, (52)

lim
j→∞ f (x̃ s( j)−i ) = f̄ R . (53)

Without loss of generality, we assume that j is large enough to avoid the occurrence
of negative apices. We proceed by induction and first show that (50)–(53) hold for
i = 1. If s( j) ∈ K4, relations (50) and (52) follow from (49) and the continuity of
the objective function. If s( j) ∈ K5, from the instructions of the algorithm and taking
into account Proposition 3.5, we get

f j
R = f (x̃ s( j)) ≤ f (xs( j)) − 1

2ε
‖xs( j) − x̃ s( j)‖2 < f j−1

R ,

from which we get

f j
R = f (x̃ s( j)) ≤ f (xs( j)) < f j−1

R ,

and then, from point (i) of Lemma C.1, it follows that

lim
j→∞ f (x̃ s( j)) = lim

j→∞ f (xs( j)) = f̄ R, (54)

which proves (52) for i = 1. From the above relation, and by exploiting Proposition 3.5
again, we have that
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lim
j→∞

(
f (x̃ s( j)) − f (xs( j))

) ≤ lim
j→∞ − 1

2ε
‖xs( j) − x̃ s( j)‖2.

and then (50) holds for i = 1.
If s( j) − 1 ∈ K1 ∪ K3, from (47) and (48) it is straightforward to verify that (51)
holds for i = 1. By exploiting the continuity of the objective function, since (51)
and (52) hold for i = 1, then also (53) is verified for i = 1. If s( j) − 1 ∈ K2, from
the instruction of the algorithm, we obtain

f (xs( j)) = f (x̃ s( j)−1 + αs( j)−1ds( j)−1) ≤ f q(s( j)−1)
R + γαs( j)−1g(x̃ s( j)−1)Tds( j)−1,

and then

f (xs( j)) − f q(s( j)−1)
R ≤ γαs( j)−1g(x̃ s( j)−1)Tds( j)−1.

From (54), point (i) of Lemma C.1, and recalling (20)–(22), we have that

lim
j→∞ αs( j)−1‖ds( j)−1‖ = lim

j→∞ ‖xs( j) − x̃ s( j)−1‖ = 0

for every subsequence such that s( j) − 1 ∈ K2. Therefore, (51) holds for i = 1.
Recalling that f (xs( j)) = f (x̃ s( j)−1 + αs( j)−1ds( j)−1), and since (50) and (51) hold
for i = 1, from the continuity of the objective function it follows that also (53) holds
for i = 1.
Nowweassume that (50)–(53) hold for a givenfixed i ≥ 1 and show that these relations
must hold for i + 1 as well. If s( j) − i ∈ K4, by using (49), it is straightforward to
verify that (50) is verified replacing i with i +1. Taking into account (53), this implies
that

lim
j→∞ f (xs( j)−(i+1)+1) = lim

j→∞ f (xs( j)−i ) = lim
j→∞ f (x̃ s( j)−i ) = f̄ R,

and then (52) holds for i + 1. If s( j) − i ∈ K5, from the instructions of the algorithm,
and taking into account Proposition 3.5, we get

f (x̃ s( j)−i ) ≤ f (xs( j)−i ) − 1

2ε
‖xs( j)−i − x̃ s( j)−i‖2 < f q(s( j)−i)−1

R .

Exploiting (53) and point (i) of Lemma C.1, we have that

lim
j→∞ f (x̃ s( j)−i ) = lim

j→∞ f (xs( j)−i ) = f̄ R, (55)

which proves (52) for i+1. From the above relation, and by exploiting Proposition 3.5
again, we can also write
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lim
j→∞

(
f (x̃ s( j)−i ) − f (xs( j) − i)

) ≤ lim
j→∞ − 1

2ε
‖xs( j)−i − x̃ s( j)−i‖2.

and then (50) holds for i + 1.
If s( j)− i −1 ∈ K1 ∪K3, from (47) and (48), we obtain that (51) holds for i = i +1.
Since xs( j)−i = x̃ s( j)−i−1 + αs( j)−i−1ds( j)−i−1, exploiting (47), (48), (55) and the
continuity of the objective function, we obtain that (53) holds replacing i with i + 1.
If s( j) − i − 1 ∈ K2, from the instruction of the algorithm, we obtain

f (xs( j)−i ) = f (x̃ s( j)−i−1 + αs( j)−i−1ds( j)−i−1)

≤ f q(s( j)−i−1)
R + γαs( j)−i−1g(x̃ s( j)−i−1)Tds( j)−i−1,

and then

f (xs( j)−i ) − f q(s( j)−i−1)
R ≤ γαs( j)−i−1g(x̃ s( j)−i−1)Tds( j)−i−1.

From (55), point (i) of Lemma C.1, and recalling (20)–(22), we have that

lim
j→∞ αs( j)−i−1‖ds( j)−i−1‖ = lim

j→∞ ‖xs( j)−i − x̃ s( j)−i−1‖ = 0

for every subsequence such that s( j) − 1 ∈ K2. Therefore, (51) holds for i + 1.
Recalling that f (xs( j)−i ) = f (x̃ s( j)−i−1 + αs( j)−i−1ds( j)−i−1), and since (50)
and (51) hold replacing i with i+1, exploiting the continuity of the objective function,
we have

lim
j→∞ f (x̃ s( j)−i−1 + αs( j)−i−1ds( j)−i−1) = lim

j→∞ f (xs( j)−i ) = lim
j→∞ f (x̃ s( j)−i ).

Therefore, if (53) holds at a generic i ≥ 1, it must hold for i+1 aswell. This completes
the induction.
Now, for any iteration index k > 0, we can write

x̃ h
k = xk +

hk−k∑

i=0

(
x̃ h

k−i − xh
k−i ) +

hk−k∑

i=1

αhk−i dh
k−i ,

x̃ h
k = x̃ k +

hk−k−1∑

i=0

(
x̃ h

k−i − xh
k−i ) +

hk−k∑

i=1

αhk−i dh
k−i .

From (50) and (51), we obtain

lim
k→∞ ‖xk − x̃ h

k‖ = lim
k→∞ ‖x̃ k − x̃ h

k‖ = 0.
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By exploiting the continuity of the objective function, and taking into account point (i)
of Lemma C.1, the above relation implies that

lim
k→∞ f (xk) = lim

k→∞ f (x̃ k) = lim
k→∞ f (x̃ h

k
) = lim

k→∞ f j
R = f̄ R,

which proves (44).
To prove (45), if k ∈ K1 ∪ K3, then from (47) and (48) we obtain

lim
k→∞, k∈K1∪K3

‖xk+1 − x̃ k‖ = lim
k→∞, k∈K1∪K3

αk‖dk‖ = 0. (56)

If k ∈ K2, from the instruction of the algorithm, we get

f (xk+1) ≤ f (x̃q(k)) + γαkg(x̃ k)Tdk,

and then, recalling conditions (20)–(22) and (44), we can write

lim
k→∞, k∈K2

‖xk+1 − x̃ k‖ = lim
k→∞, k∈K2

αk‖dk‖ = 0. (57)

From (56) and (57), it follows that (45) holds.
To prove (46), if k ∈ K4, then from (49) we obtain

lim
k→∞, k∈K4

‖x̃ k − xk‖ = 0. (58)

If k ∈ K5, from the instruction of the algorithm and recalling Proposition 3.5, we get

f (x̃ k) ≤ f (xk) − 1

2ε
‖xk − x̃ k‖2 < f q(k)−1

R .

From (44) and point (i) of Lemma C.1, we have that

lim
k→∞, k∈K5

f (x̃ k) = lim
k→∞, k∈K5

f (xk) = f̄ R .

By exploiting Proposition 3.5 again, we can write

lim
k→∞, k∈K5

(
f (x̃ k) − f (xk)

) ≤ lim
k→∞, k∈K5

− 1

2ε
‖xk − x̃ k‖2 = 0,

and then
lim

k→∞, k∈K5

‖x̃ k − xk‖ = 0. (59)

From (58) and (59), it follows that (46) holds. 
�
The following theorem extends a known result from unconstrained optimization,

guaranteeing that the sequence of the directional derivatives along the search direction
converges to zero.
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Theorem C.1 Let Assumption 3.1 hold. Assume that ASA-BCP does not terminate
in a finite number of iterations, and let {xk}, {x̃ k} and {dk} be the sequences produced
by the algorithm. Then,

lim
k→∞ g(x̃ k)Tdk = 0. (60)

Proof We can identify two iteration index subsets H, K ⊆ {1, 2, . . . }, such that:

– N (x̃ k) = ∅ and gN (x̃ k) = 0, for all k ∈ K ,
– H := {1, 2, . . . } \ K .

By assumption, the algorithm does not terminate in a finite number of iterations, and
then, at least one of the above sets is infinite. Since we are interested in the asymptotic
behavior of the sequence produced byASA-BCP, we assumewithout loss of generality
that both H and K are infinite sets.
Taking into account Step 31 in Algorithm 1, it is straightforward to verify that

lim
k→∞, k∈H g(x̃ k)Tdk = 0.

Therefore, we limit our analysis to consider the subsequence {xk}K . Let x̄ be any limit
point of {xk}K . By contradiction, we assume that (60) does not hold. Using (46) of
Lemma C.3, since {xk}, {x̃ k} and {dk} are limited, and taking into account that Al(xk),
Au(xk) and N (xk) are subsets of a finite set of indices, without loss of generality we
redefine {xk}K the subsequence such that

lim
k→∞, k∈K xk = lim

k→∞, k∈K x̃k = x̄,

and

Nk := N̂ , Ak
l := Âl , Ak

u := Âu, ∀k ∈ K ,

lim
k→∞, k∈K dk = d̂.

Sincewe have assumed that (60) does not hold, the above relations, combinedwith (21)
and the continuity of the gradient, imply that

lim
k→∞, k∈K g(x̃ k)Tdk = g(x̄)Td̂ = −η < 0. (61)

It follows that

lim
k→∞, k∈K d̂ = 0,

and then, recalling (45) of Lemma C.3, we get

lim
k→∞, k∈K αk = 0. (62)
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Consequently, from the instructions of the algorithm, there must exist a subsequence
(renamed K again) such that the line search procedure at Step 28 is performed and
αk < 1 for sufficiently large k. Namely,

f
([
x̃ k + αk

δ
dk

]�)
> f q(k)

R + γ
αk

δ
g(x̃ k)Tdk

≥ f (x̃ k) + γ
αk

δ
g(x̃ k)Tdk, ∀k ≥ k̄, k ∈ K , (63)

where q(k) := max{ j : l j ≤ k}. We can write the point [x̃ k + αk

δ
dk]� as follows:

[
x̃ k + αk

δ
dk

]�= x̃ k + αk

δ
dk − yk, (64)

where

yki := max
{
0,

(
x̃ k + αk

δ
dk

)

i − ui
} − max

{
0, li − (

x̃ k + αk

δ
dk

)

i

}
, i = 1, . . . , n.

As {x̃ k} is a sequence of feasible points, {αk} converges to zero and {dk} is limited,
we get

lim
k→∞, k∈K yk = 0. (65)

From (63) and (64), we can write

f
(
x̃ k + αk

δ
dk − yk

) − f (x̃ k) > γ
αk

δ
g(x̃ k)Tdk, ∀k ≥ k̄, k ∈ K . (66)

By the mean value theorem, we have

f
(
x̃ k + αk

δ
dk − yk

) = f (x̃ k) + αk

δ
g(zk)Tdk − g(zk)Tyk, (67)

where

zk = x̃ k + θk
(αk

δ
dk − yk

)
, θk ∈]0, 1[. (68)

From (62) and (65), and since {dk} is limited, we obtain

lim
k→∞, k∈K zk = x̄ . (69)

Substituting (67) into (66), and multiplying each term by
δ

αk
, we get

g(zk)Tdk − δ

αk
g(zk)Tyk > γ g(x̃ k)Tdk, ∀k ≥ k̄, k ∈ K . (70)
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From the definition of yk , it follows that

yki =

⎧
⎪⎨

⎪⎩

0, if li ≤ x̃ ki + αk

δ
dki ≤ ui ,

x̃ ki + αk

δ
dki − ui > 0, if x̃ ki + αk

δ
dki > ui ,

x̃ ki + αk

δ
dki − li < 0, if li > x̃ ki + αk

δ
dki .

(71)

In particular, we have

yki

⎧
⎪⎨

⎪⎩

= 0, if dki = 0,

∈ [0, αk

δ
dki ], if dki > 0,

∈ [−αk

δ
dki , 0], if dki < 0.

(72)

From the above relation, it is straightforward to verify that

|yki | ≤ αk

δ
|dki |, i = 1, . . . , n. (73)

In the following, we want to majorize the left-hand side of (70) by showing that

{αk

δ
g(zk)Tyk} converges to a nonnegative value. To this aim, we analyze three different

cases, depending on whether x̄i is at the bounds or is strictly feasible:

(i) i ∈ N̂ such that li < x̄i < ui . As {x̃ k} converges to x̄ , there exists τ > 0 such
that

li + τ ≤ x̃ k ≤ ui − τ, k ∈ K , k sufficiently large.

Since {αk} converges to zero and {dk} is limited, it follows that αk

δ
|dki | < τ , for

k ∈ K , k sufficiently large. Then,

li < x̃ ki + αk

δ
dki < ui , k ∈ K , k sufficiently large,

which implies, from (71), that

yki = 0, k ∈ K , k sufficiently large. (74)

(ii) i ∈ N̂ such that x̄i = li . First, we show that

gi (x̄) ≤ 0, (75)

yki ≤ 0, k ∈ K , k sufficiently large. (76)

To show (75),we assume by contradiction that gi (x̄) > 0. From (12) and recalling
that ‖x̃ k − xk‖ converges to zero from (46) of Lemma C.3, it follows that

lim
k→∞, k∈K λi (x̃

k) = lim
k→∞, k∈K gi (x̃

k) = gi (x̄) > 0.
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Then, there exist an iteration index k̂ and a scalar ξ > 0 such that λi (x̃ k) ≥ ξ > 0,
for all k ≥ k̂, k ∈ K . As {x̃ ki } converges to li , there also exists k̃ ≥ k̂ such that

li ≤ x̃ ki ≤ li + εξ ≤ li + ελi (x̃
k), k ∈ K , k ≥ k̃,

gi (x̃
k) > 0, k ∈ K , k ≥ k̃,

which contradicts the fact that i ∈ N (x̃ k) for k sufficiently large. To show (76),
we observe that since {x̃ ki } converges to li , there exists τ ∈]0, ui − li ] such that

li ≤ x̃ ki ≤ ui − τ, k ∈ K , k sufficiently large.

Moreover, since {αk} converges to zero and {dk} is limited, it follows that αk

δ
dki ≤

τ , for k ∈ K , k sufficiently large. Then,

x̃ k + αk

δ
dki ≤ ui , k ∈ K , k sufficiently large.

The above relation, combined with (71), proves (76). Now, we distinguish two
subcases, depending on the sign of dki :
– for every subsequence K̄ ⊆ K such that dki ≥ 0, from (72) it follows that

yki ≥ 0. Consequently, from (76) we can write

yki = 0, k ∈ K̄ , k sufficiently large. (77)

– for every subsequence K̄ ⊆ K such that dki < 0, we have two further possible
situations, according to (75):
(a) gi (x̄) < 0. As {zk} converges to x̄ , then gi (zk) ≤ 0 for k ∈ K̄ , k suffi-

ciently large. From (76), we obtain

δ

αk
gi (z

k)yki ≥ 0, k ∈ K̄ , k sufficiently large. (78)

(b) gi (x̄) = 0. From (73), we get

δ

αk
|gi (zk)yki | ≤ δ

αk
|gi (zk)||yki | ≤ |gi (zk)||dki |.

Since {dk} is limited, {zk} converges to x̄ , and gi (x̄) = 0, from the conti-
nuity of the gradient we get

lim
k→∞, k∈K̄

δ

αk
gi (z

k)dki = 0. (79)
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(iii) i ∈ N̂ such that x̄i = ui . Reasoning as in the previous case, we obtain

lim
k→∞, k∈K

δ

αk
gi (z

k)yki ≥ 0. (80)

Finally, from (74), (77), (78), (79) and (80), we have

lim
k→∞, k∈K

δ

αk
g(zk)Tyk ≥ 0, (81)

and, from (61), (69), (70), (80) and (81), we obtain

−η = lim
k→∞
k∈K

g(x̃ k)Tdk = lim
k→∞
k∈K

g(zk)Tdk ≥ lim
k→∞
k∈K

g(zk)Tdk − lim
k→∞
k∈K

δ

αk
g(zk)Tyk

≥ lim
k→∞
k∈K

γ g(x̃ k)Tdk = −γ η.

This contradicts the fact that we set γ < 1 in ASA-BCP. 
�
Now, we can prove Theorem 4.1.

Proof (Theorem 4.1) Let x∗ be any limit point of the sequence {xk}, and let {xk}K be
the subsequence converging to x∗. From (46) of Lemma C.3 we can write

lim
k→∞, k∈K x̃k = x∗, (82)

and, thanks to the fact that Al(xk), Au(xk) and N (xk) are subsets of a finite set of
indices, we can define a further subsequence K̂ ⊆ K such that

Nk := N̂ , Ak
l := Âl , Ak

u := Âu,

for all k ∈ K̂ . RecallingProposition3.2,wedefine the following function thatmeasures
the violation of the optimality conditions for feasible points:

φ(xi ) = min
{
max{li − xi ,−gi (x)}2,max{xi − ui , gi (x)}2

}
.

By contradiction, we assume that x∗ is a non-stationary point for problem (1). Then,
there exists an index i such that φ(x∗

i ) > 0. From (82) and the continuity of φ, there
exists an index k̃ such that

φ(x̃ ki ) ≥ Δ > 0, ∀k ≥ k̃. (83)

Now, we consider three cases:
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(i) i ∈ Âl . Then, x̃ ki = li . From (12) and (9), we get gi (xk) > 0, ∀k ∈ K̂ . By
continuity of the gradient, and since both {x̃ k}K̂ and {xk}K̂ converge to x∗, we
obtain

gi (x̃
k) ≥ −Δ

2
,

for k ∈ K̂ , k sufficiently large. Then, we have φ(x̃ ki ) ≤ Δ2

4 < Δ for k ∈ K̂ , k
sufficiently large. This contradicts (83).

(ii) i ∈ Âu . Then, x̃ ki = ui . The proof of this case is a verbatim repetition of the
previous case.

(iii) i ∈ N̂ . As φ(x∗
i ) > 0, then gi (x∗) = 0. From Theorem C.1, we have

lim
k→∞, k∈K̂

g(x̃ k)Tdk = 0.

From (21), it follows that

lim
k→∞, k∈K̂

‖gN̂ (x̃ k)‖ = ‖gN̂ (x∗)‖ = 0,

leading to a contradiction. 
�

In order to prove Theorem 4.2, we need a further lemma.

Lemma C.4 Let Assumption 3.1 hold and assume that {xk} is an infinite sequence
generated by ASA-BCP. Then, there exists an iteration index k̄ such that N (xk) = ∅
for all k ≥ k̄.

Proof By contradiction, we assume that there exists an infinite index subset K̄ ⊆
{1, 2, . . . } such that N (xk) = ∅ for all k ∈ K̄ . Let x∗ be a limit point of {x}K̄ , that is,

lim
k→∞, k∈K xk = x∗,

where K ⊆ K̄ . Theorem 4.1 ensures that x∗ is a stationary point. From (46) of
Lemma C.3, we can write

lim
k→∞, k∈K xk = lim

k→∞, k∈K x̃k = x∗.

Moreover, from Proposition 3.1, there exists an index k̂ such that

{i : x∗
i = li , λ

∗
i > 0} ⊆ Al(x

k) ⊆ {i : x∗
i = li }, ∀ k ≥ k̂, k ∈ K , (84)

{i : x∗
i = ui , μ

∗
i > 0} ⊆ Au(x

k) ⊆ {i : x∗
i = ui }, ∀ k ≥ k̂, k ∈ K . (85)
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Let k̃ be the smallest integer such that k̃ ≥ k̂ and k̃ ∈ K . From (84) and (85), we can
write

x̃ k̃i = li = x∗
i , if i ∈ Al(x

k̃),

x̃ k̃i = ui = x∗
i , if i ∈ Au(x

k̃).

Since N (xk) is empty for all k ∈ K , we also have

Al(x
k) ∪ Au(x

k) = {1, . . . , n}, ∀ k ∈ K .

Consequently, x̃ k̃ = x∗, contradicting the hypothesis that the sequence {xk} is
infinite. 
�

Now, we can finally prove Theorem 4.2.

Proof (Theorem 4.2) From Proposition 3.1, exploiting the fact the sequence {xk}
converges to x∗ and that strict complementarity holds, we have that for sufficiently
large k,

N (xk) = N (x̃ k) = N∗,
Al(x

k) = Al(x̃
k) = {i : x∗

i = li },
Au(x

k) = Au(x̃
k) = {i : x∗

i = ui }.

From the instructions of the algorithm, it follows that x̃ k = xk for sufficiently large
k, and then, the minimization is restricted on N (x̃ k). From Lemma C.4, we have that
N (x̃ k) = N (xk) = N∗ = ∅ for sufficiently large k. Furthermore, from (27), we
have that dk

N (x̃ k )
is a Newton-truncated direction, and then, the assertion follows from

standard results on unconstrained minimization. 
�
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