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Abstract In this paper, under a suitable regularity condition,we establish a broad class
of conic convex polynomial optimization problems, called conic sum-of-squares con-
vex polynomial programs, exhibiting exact conic programming relaxation, which can
be solved by various numerical methods such as interior point methods. By consider-
ing a general convex cone program, we give unified results that apply to many classes
of important cone programs, such as the second-order cone programs, semidefinite
programs, and polyhedral cone programs. When the cones involved in the programs
are polyhedral cones, we present a regularity-free exact semidefinite programming
relaxation. We do this by establishing a sum-of-squares polynomial representation of
positivity of a real sum-of-squares convex polynomial over a conic sum-of-squares
convex system. In many cases, the sum-of-squares representation can be numerically
checked via solving a conic programming problem. Consequently, we also show that
a convex set, described by a conic sum-of-squares convex polynomial, is (lifted) conic
linear representable in the sense that it can be expressed as (a projection of) the set of
solutions to some conic linear systems.
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1 Introduction

The class of conic convex polynomial optimization problems is an important subclass
of conic convex programming problems. It covers broad classes of convex programs
such as inequality constrained convex polynomial programs [1], the SOS-convex
polynomial programs [1–3], convex semidefinite programs [4,5], second-order cone
programs as well as p-order cone programs [6,7]. It frequently appears in robust
optimization [8]. For instance, a robust counterpart of a convex quadratic program-
ming problemwith a second-order cone constraint under (unstructured) norm-bounded
uncertainty can equivalently be written as a conic convex quadratic optimization prob-
lem with the positive semidefinite cone (see Theorem 6.3.2 [8]).

Moreover, many basic control problems are modeled as conic polynomial opti-
mization problems. In particular, static output feedback design problems [9] are
formulated as polynomial matrix inequality optimization problems. These conic poly-
nomial problems are solved by approximating them with the Lasserre hierarchy of
conic programming relaxation problems such as semidefinite linear programming
(SDP) relaxation problems [2,9], which can efficiently be solved by interior point
methods.

In particular, for an inequality constrained convex polynomial programs, the
Lasserre hierarchy of SDP relaxations is known to converge finitely [10–12] under
suitable assumptions. An exact SDP relaxation has been shown to hold for the special
class of SOS-convex programs [2,3] and for some other classes of robust SOS-convex
programs [1]. Due to the importance of exact SDP relaxations to conic convex pro-
grams, it has recently been shown that SOS-convex programs with semidefinite linear
constraints [4] exhibit exact SDP relaxations under appropriate regularity conditions.

The purpose of this piece of work is to show that a broad class of conic convex poly-
nomial programming problems exhibits exact conic programming relaxations under
suitable conditions. As an outcome, we give the following key unified results that
apply to many classes of important convex cone programs, such as the second-order
cone programs, p-order cone programs, semidefinite programs, and polyhedral cone
programs.

(i) By generalizing the notion of sum-of-squares convexity (SOS-convexity) of real
polynomials [4,13–20] to conic SOS-convexity of vector-valued polynomial
mappings, we show that the class of conic SOS-convex polynomials includes
various classes of conic convex polynomials such as the matrix SOS-convex
polynomials [21] and conic convex quadratic maps. We establish that the pos-
itivity of an SOS-convex polynomial over a conic SOS-convex system can be
characterized in terms of a sum-of-squares polynomial representation under a
regularity condition. Related recent results for SOS-convex inequality systems
with applications to robust optimization can be found in [1,16]. Inmany cases, the
sum-of-squares representation can be numerically checked via solving a conic,
such as semidefinite linear program. This representation also paves the way for
deriving exact conic programming relaxation results.

(ii) We prove that the class of SOS-convex cone programs enjoys exact conic pro-
gramming relaxations under suitable regularity conditions. In the case, where
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the cone involved in the program is a convex polyhedral cone, we show that
our exact relaxation result collapses to an exact semidefinite linear programming
relaxation without any regularity condition. We further show that the relaxation
problem attains its maximum under a generalized Slater condition.

(iii) Consequently, we also show that a convex set, described by a conic SOS-convex
polynomial, is (lifted) conic linear representable in the sense that it can be
expressed as (a projection of) the set of solutions to some conic linear systems.

The outline of the paper is as follows. Section 2 introduces the notion of conic
SOS-convexity and provides various dual characterizations of solvability of conic
SOS-convex systems, including a sum-of-squares representation result on positivity
of polynomials. Section 3 presents exact conic programming relaxation results. Sec-
tion 4 present results on conic linear representability of some convex sets.

2 Conic SOS-Convexity and Positivstellensatz

In this section we introduce the notion of conic SOS-convexity for polynomial
mappings and present various first- and second-order characterizations of conic SOS-
convexity.Consequently,we establish characterizations of positivity and nonnegativity
of SOS-convex polynomials over conic SOS-convex polynomial systems.

We begin with some preliminaries on polynomials. We say that a real polynomial
f is sum-of-squares [11,22] if there exist real polynomials f j , j = 1, . . . , r , such that
f = ∑r

j=1 f 2j . The set consisting of all sum-of-squares real polynomials is denoted

by Σ2[x]. Moreover, the set consisting of all sum-of-squares real polynomials with
degree at most d is denoted by Σ2

d [x]. If each Gi , i = 1, 2, . . . ,m, is a polynomial on
R
n , then the degree of the polynomial map G, defined by G(x) = (G1(x), . . . ,Gm),

is denoted by degG. It is defined as the maximum degree of each Gi , i = 1, . . . ,m.
In this paper,Rm denotes theEuclidean spacewith dimensionm. For any x, y ∈ R

m ,
the inner product between x, y is denoted by 〈x, y〉 and the norm induced by the
inner product is defined by ‖x‖ = √〈x, x〉. We also use B (resp. B) to denote the
closed (resp. open) unit ball of Rm . Throughout the paper, we assume that K is a
closed and convex cone in R

m . Its dual cone of K , denoted by K⊕, is given by
K⊕ = {y ∈ R

m : 〈y, k〉 ≥ 0 for all k ∈ K }.
The set Sn denotes the space of symmetric (n × n) matrices with the trace inner

product and	 denotes the Löwner partial order of Sn , that is, for M, N ∈ Sn, M 	 N
if and only if (M − N ) is positive semidefinite. Let Sn+ := {M ∈ Sn : M 	 0} be
the closed and convex cone of positive semidefinite (n × n) matrices. Note that for
M, N ∈ Sn+, the inner product, (M, N ) := Tr[MN ], where Tr [.] refers to the trace
operation. Note also that M 
 0 means that M is positive definite.

Positive semidefinite cones, second-order cones, and polyhedral cones are some
important closed and convex cones K that arise in numerous applications of optimiza-
tion.

Recall that a real polynomial f on R
n is called SOS-convex [13] if for any α ∈

[0, 1], h(x, y) := α f (x) + (1 − α) f (y) − f (αx + (1 − α)y) is a sum-of-squares
polynomial on Rn ×R

n . An equivalent notion of SOS-convexity was first introduced
in [15]. Clearly, a SOS-convex polynomial is convex. However, the converse is not

123



J Optim Theory Appl (2017) 172:156–178 159

true, that is, there exists a convex polynomial which is not SOS-convex [13]. It is
known that any convex quadratic function and any convex separable polynomial is
a SOS-convex polynomial. Moreover, the class of SOS-convex polynomials is much
larger than the convex quadratic functions and convex separable polynomials. For
instance, f (x) = x81 + x21 + x1x2 + x22 is a SOS-convex polynomial (see [15]) which
is nonquadratic and nonseparable.

We now introduce the new notion of conic SOS-convexity of a polynomial map,
extending the notion of the scalar SOS-convex polynomial.

Definition 2.1 (Conic SOS-convexity) Let K be a closed and convex cone in R
m .

Let G : R
n → R

m be a polynomial vector-valued mapping, that is, G(x) =
(G1(x), . . . ,Gm(x)) where each Gi is a polynomial on Rn . We say G : Rn → R

m is
a K -SOS-convex polynomial if and only if, for any α ∈ [0, 1] and for any λ ∈ K⊕

h(x, y) = 〈λ, αG(x) + (1 − α)G(y) − G(αx + (1 − α)y)〉

is a sum-of-squares polynomial on Rn × R
n .

The following equivalent characterization for scalar SOS-convex polynomial from
[13] will be useful for us.

Lemma 2.1 [13] Let f be a real polynomial on R
n. Then, the following statements

are equivalent:

(a) f is a SOS-convex polynomial on R
n;

(b) (x, y) �→ 1
2 f (x)+ 1

2 f (y)− f ( x+y
2 ) is a sum-of-squares polynomial onRn ×R

n;
(c) (x, y) �→ f (x)− f (y)−∇ f (y)(x−y) is a sum-of-squares polynomial onRn×R

n;
(d) (x, y) �→ yT∇2

xx f (x)y is a sum-of-squares polynomial on R
n × R

n;

It is easy to see that, if K = R
m+, thenG isRm+-SOS-convex if and only ifGi is SOS-

convex for each i = 1, 2, . . . ,m. In particular, ifm = 1 and K = R+, then our notion
of conic SOS-convexity collapses to the definition of an SOS-convex polynomial [13].

We now present simple first- and second-order characterizations of conic SOS-
convexity.

Lemma 2.2 (First- & second-order characterizations of conic SOS-convexity) Let K
be a closed and convex cone in Rm; let Gi : Rn → R, i = 1, . . . ,m, be polynomials.
Let G : Rn → R

m be a polynomial mapping, given by G(x) = (G1(x), . . . ,Gm(x)).
Then, the following statements are equivalent:

(i) G is a K -SOS-convex polynomial;
(ii) for any λ ∈ K⊕,

h(x, y) =
〈

λ,
1

2
(G(x) + G(y)) − G

(
x + y

2

)〉

is a sum-of-squares polynomial on R
n × R

n.
(iii) for any λ ∈ K⊕, (x, y) �→ 〈λ,G(x)−G(y)−∇G(y)(x− y)〉 is a sum-of-squares

polynomial on R
n × R

n;
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(iv) for any λ ∈ K⊕, (x, y) �→ yT∇2
xx (〈λ,G(x)〉)y is a sum-of-squares polynomial

on R
n × R

n;
(v) for any λ ∈ K⊕, (x, y) �→ 〈λ, (∇G(x) − ∇G(y))(x − y)〉 is a sum-of-squares

polynomial on R
n × R

n.

Proof From the definition, we see that G is a K -SOS-convex polynomial if and only
if for any α ∈ [0, 1] and for any λ ∈ K⊕,

h(x, y) = 〈λ, αG(x) + (1 − α)G(y) − G(αx + (1 − α)y)〉

is a sum-of-squares polynomial on R
n × R

n , which is further equivalent to x �→
〈λ,G(x)〉 is a scalar SOS-convex polynomial for any λ ∈ K⊕. Thus, the equivalences
between (i), (ii) (iii) and (iv) follow immediately from Lemma 2.1.

[(iii) ⇒ (v)] Assume that (iii) holds. Fix an arbitrary λ ∈ K⊕. Then, h1(x, y) =
〈λ,G(x)−G(y)−∇G(y)(x− y)〉 is a sum-of-squares polynomial onRn×R

n . Then,

〈λ, (∇G(x) − ∇G(y))(x − y)〉
= 〈λ,G(x) − G(y) − ∇G(y)(x − y)〉 + 〈λ,G(y) − G(x) − ∇G(x)(y − x)〉
= h1(x, y) + h1(y, x),

is a sum-of-squares polynomial. Thus, (v) follows.
[(v) ⇒ (iv)]Assume that (v) holds. Fix an arbitrary λ ∈ K⊕. Let d be the degree of

G. Then, h2(x, y) := 〈λ, (∇G(x)−∇G(y))(x − y)〉 is a sum-of-squares polynomial
on Rn × R

n with degree at most d. It follows that, for any ε > 0

〈λ, (∇G(x + εy) − ∇G(x))(εy)〉 = h2(x + εy, x)

is also a sum-of-squares polynomial with degree at most d on R
n × R

n . Since

yT∇2
xx

(〈λ,G(x)〉)y = lim
ε→0

〈λ, (∇G(x + εy) − ∇G(x))(εy)〉
ε2

is a polynomial with degree at most d, it follows from the closedness of the cone
consisting of all sum-of-squares polynomials with degree at most d (see [10]) that
the function (x, y) �→ yT∇2

xx (〈λ,G(x)〉)y is also a sum-of-squares polynomial with
degree at most d. ��

In the special casewhere K is the positive semidefinite cone in the space of symmet-
ric matrices, by exploiting the structure of the positive semidefinite cone, we obtain a
simplified characterizations in terms of vectors (instead of semidefinite matrices). This
also allows us to compare the known notion of matrix SOS-convexity introduced in
[15] with our notions in the following corollary. We note that the equivalence between
(ii) and (iii) of the following corollary has been established in [23]. For the sake of
convenience of a reader and for completeness, we provide a simple proof here.

Corollary 2.1 (Conic SOS-convexity and matrix SOS-convexity) Let G : Rn → Sq

be a matrix polynomial, and let Sq+ be the positive semidefinite matrix cone. Then, the
following statements are equivalent
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(i) G is a Sq+-SOS-convex polynomial;
(ii) for any z ∈ R

q , (x, y) �→ yT∇2
xx (z

T G(x)z)y is a sum-of-squares polynomial
on R

n × R
n;

(iii) G is matrix SOS-convex in the sense that, for any z ∈ R
m, there exist l ∈ N and a

matrix polynomial Fz : Rn → R
l×n such that, for all x ∈ R

n, ∇2
xx (z

T G(x)z) =
Fz(x)T Fz(x).

Proof As Sq andRq(q+1)/2 have the same dimensions, there exists an invertible linear
map L : Sq → R

q(q+1)/2 such that

L(M1)
T L(M2) = Tr(M1M2) for all M1, M2 ∈ Sq .

We now identify Sq , that is equipped with the trace inner product, as Rq(q+1)/2 with
the usual Euclidean inner product by associating each symmetric matrix M to L(M).
Let K = Sq+. Note that any positive semidefinite matrix can be written as sum of rank-
one matrices and Tr((zzT )G(x)) = zT (G(x))z for any x ∈ R

n and z ∈ R
q . Then,

for any � ∈ Sq+, (x, y) �→ yT∇2
xx (Tr(�G(x))y is a sum-of-squares polynomial is

equivalent to the condition that, for any z ∈ R
q , (x, y) �→ yT∇2

xx (z
T G(x)z)y is

a sum-of-squares polynomial. Then, the equivalence of (i) and (ii) follows from the
preceding lemma with K = Sq+.

To finish the proof, we only need to show the equivalence of (ii) and (iii). Suppose
that (iii) holds. Then, for any y ∈ R

n ,

yT∇2
xx (z

T G(x)z)y = yT (Fz(x)
T Fz(x))y = ‖Fz(x)y‖2 =

l∑

j=1

(Fz(x)y)
2
j ,

which is a sum-of-squares polynomial. So, (ii) holds. Conversely, if (ii) holds, then
for any z ∈ R

m , there exist l ∈ N and polynomials f j
z : Rn ×R

n → R, j = 1, . . . , l,
such that

yT∇2
xx (z

T G(x)z)y =
l∑

j=1

f j
z (x, y)2.

As, for each fixed z ∈ R
m and x ∈ R

n , yT∇2
xx (z

T G(x)z)y is a homogeneous quadratic

function with respect to the variable y, we can assume that f j
z (x, y) is linear with

respect to y for each j = 1, . . . , l. Let

( f 1z (x, y), . . . , f lz (x, y)) = Fz(x)y,

where Fz : Rn → R
l×n is a matrix polynomial. It follows that

yT∇2
xx (z

T G(x)z)y = yT (Fz(x)
T Fz(x))y for all y ∈ R

n .

This shows that (iii) holds. ��
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Example 2.1 (Classes of conic SOS-convex polynomials) We now provide some sim-
ple examples of conic SOS-convex polynomials.

(a) Let K = R
m+. Then, K⊕ = K , and so a polynomial vector-valued mapping

G = (G1, . . . ,Gm) is a K -SOS-convex polynomial if and only if each Gi is a
scalar SOS-convex polynomial.

(b) Let K = {x ∈ R
m : aTj x ≥ 0, j = 1, . . . , s} be a convex polyhedral

cone where a j = (a j1, . . . , a jm) ∈ R
m , j = 1, . . . , s. Then, we see that

K⊕ := {∑s
j=1 μ j a j : μ j ≥ 0} and a polynomial vector-valued mapping

G = (G1, . . . ,Gm) is K -SOS-convex if and only if h j (x) := ∑m
i=1 a jiGi (x) is

a scalar SOS-convex polynomial for all j = 1, . . . , s.

In particular, if each Gi is a quadratic function of the form

Gi (x) = αi + vTi x + xT Ai x,

where αi ∈ R, vi ∈ R
n and Ai ∈ Sn , then G = (G1, . . . ,Gm) is K -SOS-convex

if and only if
∑m

i=1 a ji Ai 	 0 for all j = 1, . . . , s.
(c) Let K = Sq+ be the cone consisting of all the (q ×q) positive semidefinite matri-

ces. Then, by corollary 2.1, G : Rn → Sq is a matrix SOS-convex polynomial
[21] if and only if G is K -SOS-convex polynomial.

(d) Let K = SOCm := {x ∈ R
m : x1 ≥

√∑m
i=2 |xi |2} be the second-order cone in

R
m . Then, the dual cone K⊕ = K . Let Gi (x), for i = 1, 2, . . . ,m, be defined

by

Gi (x) =
{

α1 + ∑n
j=1 a1 j x j + ∑n

j=1 β j xdj , if i = 1,
αi + ∑n

j=1 ai j x j , if i ≥ 2,

where αi , ai j ∈ R, β j ≥ 0 and d is an even number. Then it can easily be checked
that the map G, defined by G(x) = (G1(x), . . . ,Gm(x)), is a K -SOS-convex
polynomial because for any λ = (λ1, . . . , λm) ∈ K⊕ = K , λ1 ≥ 0 and

yT∇2
xx

(〈λ,G(x)〉)y = λ1d(d − 1)

⎛

⎝
n∑

j=1

β j x
d−2
j y2j

⎞

⎠ ,

which is a sum-of-squares polynomial.

For instance, the map G, defined by

G(x) = (1 + 2x1 − x2 + x81 + 3x82 , x1 + x2),

satisfies the condition above and so is an SOC2-SOS-convex polynomial.

Remark 2.1 (Conic SOS-convexity vs conic convexity) Let Gi be real polynomials
with degree d on R

n and let G = (G1, . . . ,Gm).
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– In the case where K = R
m+,G = (G1, . . . ,Gm) is a K -SOS-convex polynomial if

and only if each Gi is a scalar SOS-convex polynomial. So, the recent characteri-
zation of scalar SOS-convexity [13] implies that Rm+-SOS-convexity is equivalent
to R

m+-convexity if and only if either one of the following holds (1) n = 1; (2)
d = 2; (3) (n, d) = (2, 4).

– Let m = q(q + 1)/2 and identify Sq with R
q(q+1)/2. We now consider the case

where K = Sq+. Note that any bivariate quartic nonnegative polynomial is sum-
of-squares, and G is a Sq+-SOS-convex polynomial if and only if for any z ∈ R

q ,
(x, y) �→ yT∇2

xx (z
T G(x)z)y is a sum-of-squares polynomial on R

n × R
n . This

shows that, if (n, d) = (1, 2), G is Sq+-SOS-convex if and only if G is Sq+-convex.

In the case where the cone K has specific structure, we obtain new tractable class
for conic SOS-convexity. To do this, let ◦ be a bilinear operation fromR

m×R
m → R

m

satisfying a ◦ b = b ◦a for all a, b ∈ R
q . Let K be a closed and convex cone which is

self-dual in the sense that K⊕ = K . We say K is generated by the bilinear operation
◦ if and only if

K = {a ◦ a : a ∈ R
m}.

We note that many important and widely used closed and convex cones can be gener-
ated in this way. For example,

– The nonnegative orthant K = R
m+ = {a◦a : a ∈ R

m},where the bilinear operation
is defined by a ◦ b = (a1b1, . . . , ambm)T for all a, b ∈ R

m .
– In the case where K is the second-order cone, that is,

K = {(r, z) ∈ R × R
m−1 : r ≥ ‖(z1, . . . , zm−1)‖2},

we see that K = {a ◦ a : a ∈ R
m} where bilinear operation is defined by (α, u) ◦

(β, v) = (αβ +uT v, αv+βu) ∈ R×R
m−1 for all (α, u) and (β, v) ∈ R×R

m−1.
– As Sq and R

q(q+1)/2 have the same dimensions, there exists an invertible linear
map L : Sq → R

q(q+1)/2 such that

L(M1)
T L(M2) = Tr(M1M2) for all M1, M2 ∈ Sq .

We now identify Sq , that is equipped with the trace inner product, as Rq(q+1)/2

with the usual Euclidean inner product by associating each symmetric matrix M
to L(M). Then, the cone of positive semidefinite matrix satisfies Sq+ = {a ◦ a :
a ∈ R

q(q+1)/2}where bilinear operation is defined by a ◦b = 1
2 (L

−1(a)L−1(b)+
L−1(b)L−1(a)) for all a, b ∈ R

q(q+1)/2.

Definition 2.2 (SDP tractable class of conic SOS-convex mappings: uniformly K -
SOS-convex) Let K be a closed and convex self-dual cone which is generated by
the bilinear operation ◦, that is, K = {a ◦ a : a ∈ R

m}. We say G is uniformly
K -SOS-convex whenever

(x, y, a) �→ yT∇2
xx

(〈a ◦ a,G(x)〉)y
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is a sum-of-squares polynomial on Rn × R
n × R

m .

Now, it follows from the definition that, uniformly K -SOS-convex mappings must
be K -SOS-convex for any closed and convex self-dual cone K generated by a bilinear
operation ◦. Moreover, an important feature of the uniformly K -SOS-convexity is that
checking whether a mapping G is uniformly K -SOS-convex or not is equivalent to
solving a semidefinite programming problem.

Example 2.2 (Classes of uniform conic SOS-convex polynomials)

– Let K = R
m+. Then, any K -SOS-convex polynomial is uniformly K -SOS-convex.

To see this, note that K = R
m+ = {a ◦ a : a ∈ R

m} where bilinear operation is
defined by a ◦ b = (a1b1, . . . , ambm)T for all a, b ∈ R

m , and any polynomial
mapping G = (G1, . . . ,Gm) is R

m+-SOS-convex if and only if each Gi , i =
1, . . . ,m, is a scalar SOS-convex polynomial. Then,

yT∇2
xx

(〈a ◦ a,G(x)〉)y =
m∑

i=1

a2i
(
yT∇2Gi (x)y

)

is a sum-of-squares polynomial.
– Let K = Sq+ be the cone consisting of all the (q×q) positive semidefinitematrices.
By identifying Sq as Rq(q+1)/2, we define G : Rn → Sq as

G(x) = A0 +
n∑

i=1

xi Ai +
p∑

l=1

fl(x)Bl ,

where for each l = 1, . . . , p, fl(x) is an SOS-convex scalar polynomial,
A0, A1, . . . , An ∈ Sq and Bl 	 0. Recall that the positive semidefinite cone
can be written as Sq+ = {a ◦ a : a ∈ R

q(q+1)/2} where bilinear operation is
defined by a ◦ b = 1

2 (L
−1(a)L−1(b) + L−1(b)L−1(a)) for all a, b ∈ R

q(q+1)/2.
Then, G is a uniform K -SOS-convex polynomial. To see this, we note that, for
any a ∈ R

q(q+1)/2,

yT∇2
xx

(〈a ◦ a,G(x)〉)y =
p∑

l=1

Tr([L−1(a)]2Bl)yT∇2
xx fl(x)y.

As each fl is an SOS-convex scalar polynomial, (x, y) �→ yT∇2
xx fl(x)y is a

sum-of-squares polynomial. Moreover, note that Bl 	 0 and [L−1(a)]2 	 0.
So, a �→ Tr([L−1(a)]2Bl) is a nonnegative quadratic function and so is also a
sum-of-squares polynomial. This implies that

(x, y, a) �→ yT∇2
xx

(〈a ◦ a,G(x)〉)y

is also a sum-of-squares polynomial. Thus, G is a uniform K -SOS-convex poly-
nomial.
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As a simple example, consider the map G, defined by

G(x) =
(
1 + x2 + x81 + (x1 + x2)

4 −1 + x1 + x2
−1 + x1 + x2 x2 + x81 + (x1 + x2)

4

)

=
(

1 −1
−1 0

)

+ x1

(
0 1
1 0

)

+ x2

(
1 1
1 1

)

+ (x81 + (x1 + x2)
4)

(
1 0
0 1

)

.

Then, G satisfies the condition above and so is a uniform S2+-SOS-convex poly-
nomial. ��

2.1 Solvability of Conic SOS-Convex Systems

Wenow establish characterizations of positivity or nonnegativity of SOS-convex poly-
nomials over sets described by conic SOS-convex polynomial systems. To do this,
for λ ∈ R

m and G : Rn → R
m , we define the function 〈λ,G〉 by

〈λ,G〉(x) := 〈λ,G(x)〉 for all x ∈ R
n .

Moreover, the following existence result for solutions of a convex polynomial opti-
mization problem will also be useful for our later analysis.

Lemma 2.3 [24, Theorem 3] Let f0, f1, . . . , fm be convex polynomials on R
n. Sup-

pose that inf
x∈C f0(x) > −∞ where C = {x ∈ R

n : fi (x) ≤ 0, i = 1, . . . ,m}. Then,
argminx∈C f0(x) �= ∅.

Proposition 2.1 (Strict solvability) Let K be a closed and convex cone in R
m with

nonempty interior. Let G : Rn → R
m be a K -SOS-convex polynomial. Then, exactly

one of the following statements holds:

(i) there exists x0 ∈ R
n such that G(x0) ∈ −intK;

(ii) there exists λ ∈ K⊕\{0} such that 〈λ,G〉 ∈ Σ2[x].
Proof [(ii) ⇒ Not (i)] Suppose (ii) holds. Then,

〈λ,G〉 ≥ 0. (1)

By construction and by the definition of K⊕, both systems (i) and (1) cannot have
solutions simultaneously.

[Not(i) ⇒ (ii)] Suppose that (i) fails. Then, 0 /∈ int
({G(x) : x ∈ R

n} + K
)
,

where {G(x) : x ∈ R
n} + K is a convex set. Now, it follows by a convex separation

theorem that λ ∈ K⊕\{0} and 〈λ,G(x)〉 ≥ 0 for all x ∈ R
n .AsG is a K -SOS-convex

polynomial, we see that H(x) := 〈λ,G(x)〉 is a convex polynomial. FromLemma 2.3,
we obtain that argminx∈Rn {H(x)} �= ∅. Now, let x∗ ∈ argminx∈Rn {H(x)}. Then,
H(x∗) ≥ 0 and ∇H(x∗) = 0. This implies that for any h ∈ R

n , 〈λ,∇G(x∗)h〉 = 0.
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Moreover, fromLemma 2.2, we see that h(x, y) := 〈λ,G(x)−G(y)−∇G(y)(x− y)〉
is a sum-of-squares polynomial on Rn × R

n . It follows that

h(x, x∗) = 〈λ,G(x) − G(x∗) − ∇G(x∗)(x − x∗)〉 = 〈λ,G(x)〉 − H(x∗)

is an SOS-convex polynomial. It follows that 〈λ,G(x)〉 = h(x, x∗) + H(x∗) is also
a sum-of-squares polynomial. ��

We now provide a characterization of positivity of an SOS-convex polynomial over
a set described by conic SOS-convex systems, under the condition that the set

Ω := ( f,G)(Rn) + (R+ × K )

= {(s, y) ∈ R × R
m : ∃x ∈ R

n, s ≥ f (x), y ∈ G(x) + K },

is closed. It is easy to check that Ω is a closed set if; for instance, f is coercive in the
sense that lim‖x‖→∞ f (x) = +∞. The set of the form Ω has played an important
role in the study of duality in convex optimization [25].

Theorem 2.1 (Positivstellensatz for conic SOS-convex systems) Let K be a closed
and convex cone inRm. Let f be an SOS-convex real polynomial and let G be a K -SOS-
convexpolynomial. Let {x : G(x) ∈ −K } �= ∅. If the convex set ( f,G)(Rn)+(R+×K )

is closed, then the following statements are equivalent

(i) G(x) ∈ −K ⇒ f (x) > 0;
(ii) (∃ λ ∈ K⊕, δ0 > 0) (∃σ0 ∈ Σ2[x]) (∀x ∈ R

n) f (x) + 〈λ,G(x)〉 = δ0 + σ0(x).

Proof [(ii) ⇒ (i)] Suppose that there exist a sum-of-squares polynomial σ0, λ ∈ K⊕
and δ0 > 0 such that f = δ0 + σ0 − 〈λ,G〉. Then, for each x with G(x) ∈ −K ,
f (x) = δ0 + σ0(x) − 〈λ,G(x)〉 ≥ δ0 > 0.

[(i) ⇒ (ii)] Suppose that f is positive on F := {x : G(x) ∈ −K }. Then, we see
that

0m+1 /∈ Ω := ( f,G)(Rn) + (R+ × K ).

Thus, strict separation theorem (cf. [26]) shows that there exist α ∈ R, ε > 0 and
(μ0, μ1, . . . , μm) �= (0, 0, . . . , 0) such that, for all y = (y0, y1, . . . , ym) ∈ Ω ,

0 ≤ α < α + ε ≤ 〈(y0, y1, . . . , ym), (μ0, μ1, . . . , μm)〉 .

AsΩ +(
R+×K

) ⊆ Ω , we see that (r, μ) ∈ (
R+×K⊕)\{0}. Since, for each x ∈ R

n ,
( f (x),G(x)) ∈ Ω , it follows that

r f (x) + 〈μ,G(x)〉 ≥ α + ε ≥ ε, for all x ∈ R
n .

As F �= ∅, we see that r �= 0, and so r > 0. So, we obtain that

f (x) + 〈λ,G(x)〉 ≥ δ0, for all x ∈ R
n,
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where λ = μ
r ∈ K⊕ and δ0 = ε

r > 0. This implies that

r := inf
x∈Rn

{ f (x) + 〈λ,G(x)〉} ≥ δ0.

Now, by Lemma 2.3, we can find x∗ such that f (x∗) + 〈λ,G(x∗)〉 = r . Let

h(x) := f (x) + 〈λ,G(x)〉 − r, for each x ∈ R
n .

Then h is a SOS-convex polynomial with h(x∗) = 0 and ∇h(x∗) = 0. The SOS-
convexity of f and K -SOS-convexity of G together with Lemma 2.2 give us that
f (x) − f (x∗) − ∇ f (x∗)(x − x∗) = θ0(x) for some sum-of-squares polynomial
θ0 and 〈λ,G(x) − G(x∗) − ∇G(x∗)(x − x∗)〉 = θi (x) for some sum-of-squares
polynomial θi . So, we see that, for all x ∈ R

n

f (x) + 〈λ,G(x)〉 − ( f (x∗) + 〈λ,G(x∗)〉) = θ0(x) +
m∑

i=1

λiθi (x).

As f (x∗) + 〈λ,G(x∗)〉 = h(x∗) + r = r , we see that

h(x) = f (x) + 〈λ,G(x)〉 − r = θ0(x) +
m∑

i=1

λiθi (x)

which is a sum-of-squares polynomial. Hence,

f (x) + 〈λ,G(x)〉 = h(x) + r = (h(x) + r − δ0) + δ0 = σ0(x) + δ0,

where r −δ0 > 0 and σ0(x) := h(x)+ (r −δ0) is a sum-of-squares polynomial. Thus,
the conclusion follows. ��

In passing, we note that the sum-of-squares representation (i i) of Theorem 2.1 can,
inmanycases, be numerically checkedby solving a related conic, such as a semidefinite
linear program. Now, as a consequence, we obtain a characterization for nonnegativity
of an SOS-convex polynomial over a set described by a conic SOS-convex system.

Corollary 2.2 (Nonnegativity characterization) Let f be an SOS-convex scalar poly-
nomial. Let K be a closed and convex cone, and let G : Rn → R

m be a K -SOS-convex
polynomial with {x : G(x) ∈ −K } �= ∅. If the convex set ( f,G)(Rn) + (R+ × K ) is
closed, then the following statements are equivalent:

(i) G(x) ∈ −K ⇒ f (x) ≥ 0;
(ii) (∀ε > 0) (∃ λ ∈ K⊕) (∃σ0 ∈ Σ2[x]) (∀x ∈ R

n) f (x) + 〈λ,G(x)〉 + ε = σ0(x).

Proof [(ii) ⇒ (i)]. Suppose that for each ε > 0 there exist a sum-of-squares polyno-
mial σ0, λ ∈ K⊕ such that f + ε = σ0 − 〈λ,G〉. Let x be such that G(x) ∈ −K .
Then, f (x) + ε = σ0(x) − 〈λ,G(x)〉 ≥ 0. Letting ε → 0, we see that f (x) ≥ 0 for
all x with G(x) ∈ −K .

123



168 J Optim Theory Appl (2017) 172:156–178

[(i) ⇒ (ii)] Assume that (i) holds. Then, for any ε > 0, f + ε is positive on F .
So, Theorem 2.1 implies that there exist a sum-of-square polynomial σ0, λ ∈ K⊕
and δ0 > 0 such that, for all x ∈ R

n , f (x) + 〈λ,G(x)〉 + ε = δ0 + σ0. Hence, the
conclusion follows. ��

3 Exact Conic Programming Relaxations

In this section, we present exact conic relaxations for a class of conic convex nonlinear
programming problems. We consider the problem

inf
x∈Rn

{ f (x) : G(x) ∈ −K }, (P)

where f is a SOS-convex polynomial with degree d0 on R
n and G : Rn → R

m is a
K -SOS-convex polynomial with degree d1. Let d be the smallest even number such
that d ≥ max{d0, d1}. We assume throughout that the feasible set F := {x : G(x) ∈
−K } �= ∅.

It is easy to see that the program (P) is equivalent to the program

sup
μ∈R

{μ : f (x) − μ ≥ 0, ∀x ∈ F}.

The conic programming relaxation of (P) based on certificate of nonnegativity on F
(see Corollary 2.2) is given by

sup
μ∈R,λ∈Rm

{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x], λ ∈ K⊕}, (RP)

where Σ2
d [x] denotes the sum-of-squares polynomial with degree no larger than d.

Note that the sum-of-squares condition, f + 〈λ,G〉 − μ ∈ Σ2
d [x], can equivalently

be reformulated as a linear matrix inequality [10]. In particular, if K = Sm+ is the
positive semidefinite matrix cone (or more generally, if K is a linear matrix inequality
representable closed and convex cone), then (RP) can equivalently be written as a
semidefinite linear programming problem. Moreover, if K is the p-order cone, then
(RP) can also be equivalently reformulated as a tractable conic involving semidefinite
constraints and norm constraints.

Theorem 3.1 (Exact conic programming relaxation) For problem (P), let f be a SOS-
convex polynomial with degree d0 and let G be a K -SOS-convex polynomial with
degree d1. Let F := {x : G(x) ∈ −K } �= ∅. If the set ( f,G)(Rn) + (R+ × K ) is
closed, then

inf(P) = sup
μ∈R,λ∈Rm

{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x], λ ∈ K⊕},

where d is the smallest even number such that d ≥ max{d0, d1}.
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Proof Clearly, for any x ∈ F , μ ∈ R and λ ∈ K⊕, with f + 〈λ,G〉 − μ ∈ Σ2
d [x],

f (x) − μ ≥ f (x) + 〈λ,G(x)〉 − μ ≥ 0.

So, inf x∈F f (x) ≥ supμ∈R,λ∈K⊕{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x]}.

Tosee the reverse inequality,we assumewithout loss of generality that inf x∈F f (x) >

−∞; otherwise, the conclusion trivially holds.As F �= ∅, we have r := infx∈F f (x) ∈
R. Then, for any ε > 0, f − r + ε is positive on F . So, our Theorem 3.1 implies that
there exists a sum-of-squares polynomial σ0, λ ∈ K⊕ and δ0 > 0 such that

f + 〈λ,G〉 − (r − ε) = δ0 + σ0

is a sum-of-squares polynomial. Note that any sum-of-squares polynomial must have
even degree, f is of degree d0 andG is of degree d1. It follows that f +〈λ,G〉−(r−ε)

is of degree at most d. This shows that, for any ε > 0,

sup
μ∈R,λ∈K⊕

{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x]} ≥ r − ε.

Letting ε → 0, we see that supμ∈R,λ∈K⊕{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x]} ≥ r and so

the conclusion follows. ��
As an easy consequence, we obtain the following exact SDP relaxation for SOS-

convex polynomial optimization problem over a SOS-convex polynomial matrix
inequality problem under the closedness condition.

Corollary 3.1 For problem (P), let f be a SOS-convex polynomial with degree d0 and
let G : Rn → Sq be a matrix SOS-convex polynomial with degree d1. Let F := {x :
G(x) ∈ −Sq+} �= ∅. If ( f,G)(Rn) + (R+ × Sq+) is closed, then

inf(P) = sup
μ∈R,λ∈Sq

{μ : f + Tr(λG) − μ ∈ Σ2
d [x], λ ∈ Sq+},

where, for λ ∈ Sq , Tr(λG)(x) := Tr(λG(x)) for all x ∈ R
n and d is the smallest even

number such that d ≥ max{d0, d1}.
Proof By identifying Sq as R

q(q+1)/2, Corollary 2.1 implies that G is indeed an
Sq+-SOS-convex polynomial. Thus the conclusion follows from Theorem 3.1 with
K = Sq+. ��

Now, we consider a conic SOS-convex polynomial optimization with quadratic
constraints involving the p-order cone:

min
x∈Rn

{ f (x) : G(x) ∈ −POCm}, (PP)

where f is an SOS-convex polynomial and G = (G1, . . . ,Gm) where each Gi is a
quadratic function given by

Gi (x) = αi + aTi x + xT Ai x, (2)
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with αi ∈ R, ai ∈ R
n and Ai ∈ Sn , i = 1, . . . ,m and POCm is the p-order cone given

by POCm = {(x1, . . . , xm) ∈ R
m : x1 ≥ p

√∑m
i=2 |xi |p}. We now show that problem

(PP) admits an exact conic relaxation under easily verifiable conditions.
Recall that, for a symmetric matrix A, the minimum eigenvalue of A is denoted

by λmin(A) and ‖A‖2 = sup{‖Ay‖2 : ‖y‖2 = 1} = √
λmax(AT A) is known as the

matrix 2-norm of A.

Corollary 3.2 (Exact relaxation with quadratic constraints and p-order cone) For
problem (PP), let f be a SOS-convex polynomial with degree d0 and let G =
(G1, . . . ,Gm) be a quadratic vector-valued mapping where each Gi is given as in
(2). Let F := {x : G(x) ∈ −POCm} �= ∅. If ∇2

xx f (x0) 
 0 for some x0 ∈ R
n and

λmin(A1) ≥ p

√
√
√
√

m∑

i=2

‖Ai‖p
2 , (3)

then

inf(PP) = sup
μ∈R,(λ1,...,λm )∈Rm

⎧
⎨

⎩
μ : f + 〈λ,G〉 − μ ∈ Σ2

d [x], λ1 ≥ p∗

√
√
√
√

m∑

i=2

|λi |p∗

⎫
⎬

⎭
,

where p∗ is a real number satisfies 1
p + 1

p∗ = 1 and d is the smallest even number
such that d ≥ max{d0, 2}.

Proof Let K = POCm . Then, the dual cone K⊕ is the p∗-order conewhere p∗ satisfies
1
p + 1

p∗ = 1. Let G(x) = (G1(x), . . . ,Gm(x)) be a quadratic vector function where
each Gi is defined as in (2).

We first verify that G is a POCm-SOS-convex polynomial. To see this, fix any

λ = (λ1, . . . , λm) ∈ K⊕. Then, λ1 ≥ p∗
√∑m

i=2 |λi |p∗ and

yT∇2
xx

(〈λ,G(x)〉)y =
(

m∑

i=1

λi y
T Ai y

)

which is a quadratic function of y only. As any nonnegative quadratic function is
a sum-of-squares polynomial, to show (x, y) �→ yT∇2

xx

(〈λ,G(x)〉)y is a sum-of-
squares polynomial, we only need to prove that

∑m
i=1 λi yT Ai y ≥ 0 for all y ∈ R

n .
To verify this, note from (3) that, for all y ∈ R

n ,

yT A1y ≥ λmin(A1)‖y‖2 ≥ p

√
√
√
√

(
m∑

i=2

‖Ai‖2 ‖y‖22
)p

≥ p

√
√
√
√

m∑

i=2

|yT Ai y|p.
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It now follows that

m∑

i=1

λi y
T Ai y = λ1y

T A1y +
m∑

i=2

λi y
T Ai y

≥ λ1y
T A1y − p∗

√
√
√
√

m∑

i=2

|λi |p∗ p

√
√
√
√

m∑

i=2

|yT Ai y|p

≥
⎛

⎝λ1 − p∗

√
√
√
√

m∑

i=2

|λi |p∗

⎞

⎠ yT A1y ≥ 0,

where the first inequality follows by the Hölder inequality and the last inequality

follows from A1 	 0 [thanks to (3)] and λ1 ≥ p∗
√∑m

i=2 |λi |p∗ . Thus, G is a POCm-
SOS-convex polynomial.

Finally, as f is a convex polynomial with ∇2
xx f (x0) 
 0 for some x0 ∈ R

n , [12,
Lemma 3.1] implies that f is coercive. This shows that ( f,G)(Rn) + (R+ × K ) is
closed. Then, the conclusion follows from Theorem 3.1 with K = POCm . ��
Corollary 3.3 (Qualification-free exact SDP relaxation and polyhedral cones K ) For
the problem (P), let K = {x ∈ R

m : aTj x ≥ 0, j = 1, . . . , s} be the polyhedral
cone where a j ∈ R

m. Let f be a SOS-convex polynomial with degree d0 and let
G = (G1, . . . ,Gm) be a K -SOS-convex polynomials with degree d1. Let F = {x :
G(x) ∈ −K } �= ∅. Then,

inf
x∈F f (x) = sup

μ∈R,λ∈Rm ,μ j∈R

⎧
⎨

⎩
μ : f +

m∑

i=1

s∑

j=1

μ j a jiGi − μ ∈ Σ2
d [x], μ j ≥ 0

⎫
⎬

⎭
,

where a j = (a j1, . . . , a jm)T ∈ R
m and d is the smallest even number larger than

max{d0, d1}.
Proof Let G(x) = (G1(x), . . . ,Gm(x)) and denote a j = (

a j1, . . . , a jm
) ∈ R

m ,
j = 1, . . . , s. Then, the set Ω := ( f,G)(Rn) + (R+ × K ) becomes

Ω =
{

(y0, y1, . . . , ym) : ∃ x ∈ R
n s.t. f (x) ≤ y0,

m∑

i=1

a ji (Gi (x) − yi ) ≤ 0, j = 1, . . . , s

}

.

We now show that the set Ω is closed. To see this, take any (yk0 , y
k
1 , . . . , y

k
m) ∈ Ω

be such that (yk0 , y
k
1 , . . . , y

k
m) → (y0, y1, . . . , ym). By the definition of Ω , for each

k, there exists xk ∈ R
n such that f (xk) ≤ yk0 and

∑m
i=1 a ji (Gi (xk) − yi ) ≤ 0,

j = 1, . . . , s. Now, consider the optimization problem

123



172 J Optim Theory Appl (2017) 172:156–178

min
x,z1,...,zm

{
m∑

i=0

(zi − yi )
2 : f (x) ≤ z0,

m∑

i=1

a ji (Gi (x) − zi ) ≤ 0, j = 1, . . . , s

}

.

(P0)

For each j = 1, . . . , s, let h j (x, z) := ∑m
i=1 a ji (Gi (x) − zi ). Note that, for each

j = 1, . . . , s, a j ∈ K⊕. As G is a K -SOS-convex polynomial, it follows that∑m
i=1 a jiGi (x) = 〈a j ,G(x)〉 is an SOS-convex polynomial. This implies that each

h j is an SOS-convex polynomial, and so (P0) is a convex polynomial optimization
problem and

0 ≤ inf(P0) ≤
m∑

i=0

(yki − yi )
2 → 0.

So, inf(P0) = 0. Moreover, Lemma 2.3 implies that inf(P0) is attained, and so there
exists x∗ ∈ R

n such that and f0(x∗) ≤ y0 and
∑m

i=1 a ji (Gi (x∗) − yi ) ≤ 0, j =
1, . . . , s. So, (y0, y1, . . . , ym) ∈ Ω. Therefore, Ω is closed.

Then, Theorem 3.1 gives us that

inf(P) = sup
μ∈R,λ∈Rm

{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x], λ ∈ K⊕}.

As K is a polyhedral cone with the form {x : aTj x ≥ 0}, one has

K⊕ =
⎧
⎨

⎩

s∑

j=1

μ j a j : μ j ≥ 0

⎫
⎬

⎭
.

So, λ ∈ K⊕ if and only if λ = ∑s
j=1 μ j a j for some μ j ≥ 0, and for all x ∈ R

n ,

〈λ,G(x)〉 =
s∑

j=1

μ j

m∑

i=1

a jiGi (x) =
m∑

i=1

s∑

j=1

μ j a jiGi (x).

Therefore, the conclusion follows. ��
Corollary 3.4 Let f be a SOS-convex polynomial and let gi , i = 1, . . . ,m, be SOS-
convex polynomials with F = {x : gi (x) ≤ 0, i = 1, . . . ,m} �= ∅. Then,

inf
x∈F f (x) = sup

μ∈R,λi∈R

{

μ : f +
m∑

i=1

λi gi − μ ∈ Σ2
d [x], λi ≥ 0, i = 1, 2, . . . ,m

}

,

where d is the smallest even number larger than max{deg f,max1≤i≤m deg gi }.
Proof Let a j = e j , j = 1, . . . ,m, where e j is the vector whose j th coordinate is one,
and zero otherwise. Then, {x : aTj x ≥ 0, j = 1, . . . ,m} = R

m+ andG = (g1, . . . , gm)
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is R
m+-SOS-convex. Thus, the conclusion follows immediately from the preceding

corollary. ��
We finish this section by establishing an exact conic relaxation with the solution

attainment under a strict feasibility condition. In the special case when G is an affine
function and K = Sm+ , this exact conic relaxation result collapses to the exact SDP
relaxation result for nonlinear semidefinite programming problems with SOS-convex
polynomial objective functions, established in [4].

Theorem 3.2 (Relaxation with attainment) Let K be a closed and convex cone with
nonempty interior. For the problem (P), f be a SOS-convex polynomial with degree
d0 and G be a K-SOS-convex polynomial with degree d1. Suppose that there exists
x0 ∈ R

n such that G(x0) ∈ −intK. Then

inf(P) = max
μ∈R,λ∈Rm

{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x], λ ∈ K⊕},

where d is the smallest even number such that d ≥ max{d0, d1}.
Proof Without loss of generality, let r := infx∈F f (x) ∈ R be finite. Then, the system

x ∈ R
n,G(x) ∈ −K , f (x) − r < 0

has no solution. So the following system

x ∈ R
n,G(x) ∈ −intK , f (x) − r < 0

has no solution. Now, by Proposition 2.1, there exists 0m+1 �= (τ, λ) ∈ R+ × K⊕
such that

τ( f − r) + 〈λ,G〉 ∈ Σ2
d [x].

If τ = 0, then λ �= 0 and 〈λ,G〉 ∈ Σ2
d [x]. This gives us a contradiction, by

Proposition 2.1, to the hypothesis that G(x0) ∈ −intK for some x0 ∈ R
n . Hence,

τ > 0 and so we get that f + 〈λ̄,G〉 − r ∈ Σ2
d [x], where λ̄ = λ

τ
. Thus,

maxμ∈R,λ∈K⊕{μ : f + 〈λ,G〉 − μ ∈ Σ2
d [x]} ≥ r . The conclusion now holds as

the opposite inequality always holds by construction. ��

4 Conic Representations of Some Convex Sets

In this section, we show that the sets described by conic SOS-convex polynomials
admit lifted conic representations. LetG : Rn → R

m be a K -SOS-convex polynomial
with degree d. Its epigraph is given by

epiG = {(x, y) ∈ R
n × R

m : y ∈ G(x) + K }.

It is easy to verify that epiG is a convex set.
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Next, we show that the epigraph is lifted conic representable in the sense that it
can be rewritten as a projection of a convex set described by a conic linear system.
If the degree d = 1, then epiG can be trivially described by a conic linear system.
Thus, without loss of generality, we only consider the case where d ≥ 2. To do this,
let Rd [x1, . . . , xn] be the space consisting of all real polynomials on R

n with degree
d and let C(d, n) be the dimension of Rd [x1, . . . , xn]. Write the canonical basis of
Rd [x1, . . . , xn] by

x (d) :=
(
1, x1, x2, . . . , xn, x

2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n , . . . , x

d
1 , . . . , xdn

)T

and let x (d)
α be the α-th coordinate of x (d), 1 ≤ α ≤ C(d, n). Then, we can write

f (x) = ∑C(d,n)
α=1 fαx

(d)
α . Let G : Rn → R

m be a polynomial mapping with degree d.
Then G = (G1, . . . ,Gm) and

G(x) =
∑

1≤α≤C(n,d)

Gαx
(d)
α =

⎛

⎝
∑

1≤α≤C(n,d)

(G1)αx
(d)
α , . . . ,

∑

1≤α≤C(n,d)

(Gm)αx
(d)
α

⎞

⎠ ,

where
Gα = ((G1)α, . . . , (Gm)α) . (4)

It is easy to see that [x (d/2)][x (d/2)]T is a matrix whose entries are real polynomials on
R
n with degree d. We then define A(d)

α , 1 ≤ α ≤ C(n, d), to be symmetric matrices
such that

[x (d/2)][x (d/2)]T =
∑

1≤α≤C(n,d)

A(d)
α x (d)

α . (5)

Theorem 4.1 Let K be a closed and convex cone in R
m. Let G : Rn → R

m be a
K -SOS-convex polynomial with degree d ≥ 2. Suppose that either K is a polyhedral
cone or K has a nonempty interior and G(x0) ∈ intK for some x0 ∈ R

n. Then,

epiG =
⎧
⎨

⎩
(x, y) ∈ R

n × R
m : ∃z = (zα) ∈ R

C(d,n), y −
∑

1≤α≤C(d,n)

Gαzα ∈ K ,

∑

1≤α≤C(n,d)

A(d)
α zα 	 0, z1 = 1, z2 = x1, . . . , zn+1 = xn

⎫
⎬

⎭
.

In particular,

{x ∈ R
n : G(x) ∈ −K } =

⎧
⎨

⎩
x ∈ R

n : ∃z = (zα)1≤α≤C(d,n),
∑

1≤α≤C(d,n)

Gαzα ∈ −K ,

∑

1≤α≤C(n,d)

A(d)
α zα 	 0, z1 = 1, z2 = x1, . . . , zn+1 = xn

⎫
⎬

⎭
,

where Gα and Ad
α are defined as in (4) and (5) respectively.
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Proof Denote the degree of G be d ≥ 2. Clearly d must be an even number. It follows
that

epiG =
⎧
⎨

⎩
(x, y) : y −

∑

1≤α≤C(n,d)

Gαzα ∈ K , zα = x (d)
α

⎫
⎬

⎭

=
⎧
⎨

⎩
(x, y) : y −

∑

1≤α≤C(n,d)

Gαzα ∈ K , zα = x (d)
α , [x (d/2)][x (d/2)]T 	 0

⎫
⎬

⎭

=
⎧
⎨

⎩
(x, y) : y −

∑

1≤α≤C(n,d)

Gαzα ∈ K , zα = x (d)
α ,

∑

1≤α≤C(n,d)

A(d)
α zα 	 0

⎫
⎬

⎭
,

where the last equality follows from the definitions of A(d)
α . This shows that epiG ⊆ S

where

S =
⎧
⎨

⎩
(x, y) ∈ R

n × R
m : ∃zα such that y −

∑

1≤α≤C(n,d)

Gαzα ∈ K ,

∑

1≤α≤C(n,d)

A(d)
α zα 	 0, z1 = 1, z2 = x1, . . . , zn+1 = xn

⎫
⎬

⎭
.

To see the converse inclusion, we proceed by the method of contradiction and suppose
there exists (x, y) ∈ S but (x, y) /∈ epiG. Then, by the strict separation theorem,
there exist (a, b) ∈ (Rn × R

m)\{0n+m}, r ∈ R and δ > 0 such that

aT x + bT y ≤ r < r + 2δ ≤ aT x + bT y for all y ∈ G(x) + K .

Now, consider the following optimization problem

min
(x,y)∈Rn×Rm

{aT x + bT y − (r + δ) : G(x) − y ∈ −K }, (P̄)

where val(P̄) := inf(x,y)∈Rn×Rm {aT x + bT y − (r + δ) : G(x) − y ∈ −K }. Then,
we see that val(P̄) ≥ δ > 0. From our assumption, either K is a polyhedral or K
has a nonempty interior and G(x0) ∈ intK for some x0 ∈ R

n . We now claim that
under this assumption, one can find λ ∈ K⊕ and σ ∈ Σ2[x, y] such that, for all
(x, y) ∈ R

n × R
m ,

aT x + bT y + 〈λ,G(x) − y〉 − (r + δ) = σ(x, y). (6)

Granting this, note that aT x + bT y + 〈λ,G(x) − y〉 − (r + δ) + ε is affine and any
sum-of-squares polynomial must be of even order. This implies that b = λ ∈ K⊕, and
so
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aT x + 〈λ,G(x)〉 − (r + δ) = σ(x) and σ ∈ Σ2[x].

So, by the positive semidefinite representation of a sum-of-squares polynomial, there
exists W 	 0 such that for all x ∈ R

n

aT x + 〈λ,G(x)〉 − (r + δ) = (x (d/2))T Wx (d/2)

=
∑

1≤α≤C(n,d)

x (d)
α Tr

(
W A(d)

α

)
. (7)

Let a ∈ R
C(n,d). Define a linear map La : Rd [x] → R by

Lu( f ) =
∑

α

fαuα for all f (x) =
∑

α

fαx
(d)
α .

Note that (x, y) ∈ S. There exists z ∈ R
C(m+n,d) such that

y −
∑

1≤α≤C(n,d)

Gαzα ∈ K ,
∑

1≤α≤C(n,d)

A(d)
α zα 	 0

and z1 = 1, z2 = x1, . . . , zn+1 = xn .
Applying the linear map Lz to (7), we obtain that

aT x̄ +
〈

λ,
∑

1≤α≤C(n,d)

Gαzα

〉

− (r + δ) =
∑

1≤α≤C(n,d)

zαTr
(
W A(d)

α

)
≥ 0.

where the last inequality follows from the fact
∑

1≤α≤C(n,d) A
(d)
α zα 	 0 and W 	 0.

Recall that λ = b ∈ K⊕. It follows that

aT x̄ + bT ȳ +
〈

λ,
∑

1≤α≤C(n,d)

Gαzα − ȳ

〉

− (r + δ) ≥ 0.

This together with aT x̄ + bT ȳ ≤ r and y − ∑
1≤α≤C(n,d) Gαzα ∈ K gives us that

−δ = r − (r + δ) ≥ 0, which is impossible.
To see our claim (6), we first consider the case where K is polyhedral. Note that

val(P̄) ≥ δ > 0. Thus, Corollary 3.3 implies that

sup
μ∈R,λ∈K⊕

{μ : aT x + bT y + 〈λ,G(x) − y〉 − (r + δ) − μ ∈ Σ2
d } ≥ δ > 0.

Thus, there exist λ ∈ K⊕ and σ ∈ Σ2[x, y] such that, for all (x, y) ∈ R
n × R

m ,
aT x + bT y + 〈λ,G(x) − y〉 − (r + δ) = σ(x, y) + δ0, for some δ0 > 0. Thus, the
claim (6) holds.
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In the case where G(x0) ∈ intK for some x0 ∈ R
n , then strict feasibility condition

holds for problem (P̄) with (x0, 0). So, Theorem 3.2 implies that there exist λ ∈ K⊕
and σ ∈ Σ2[x, y] such that, for all (x, y) ∈ R

n × R
m ,

aT x + bT y + 〈λ,G(x) − y〉 − (r + δ) = σ(x, y) + val(P̄). (8)

Thus, claim (6) also holds.
The conic linear representation of the set S := {x ∈ R

n : G(x) ∈ −K } follows as
{x ∈ R

n : G(x) ∈ −K } = {x ∈ R
n : (x, 0) ∈ epiG}. ��

5 Conclusions

In this paper, we extended the notion of SOS-convexity of a real-valued polynomial
to a more general notion of conic SOS-convexity for polynomial mappings. We then
established that conic sum-of-squares convex (SOS-convex) polynomial programs
exhibit exact conic programming relaxations under suitable regularity assumptions,
and so they can be solved by various numericalmethods such as interior pointmethods.
As conic convexity and conic programming have found many applications in other
branches of mathematics, economics and engineering [7], our results point a way to
obtaining further computational tractable classes of conic convex programs and their
associated applications. This is a topic of further research and will be examined in a
forthcoming study.
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