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Abstract An optimal control problem for nonlinear integral equations of special kind
is analyzed. It considers a firm’s investment into age-dependent capital under improv-
ing technology and limited substitutability among capital of different ages. We prove
the existence of solutions and analyze their structure. It is shown that the initially
bang-bang optimal investment switches to an interior one and eventually converges
to a steady-state trajectory that represents balanced economic growth. The obtained
analytic outcomes contribute to better understanding of investment policies under
technological change.
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1 Introduction

The paper analyzes a novel optimal control problem with two-dimensional con-
trols, which arises at the intersection of economics and technological change theory
with potential applications to biological and environmental sciences. Economics of
investments into new technologies has been intensively studied usingmodels with het-
erogeneous capital or labor, known as the age-dependent (or vintage) capital models
[1,2]. Being a part of the abstract optimization theory [3], age-dependent optimization
models possess essential specifics and first appeared in population biology [4–10] and,
later, in economics [11–18] and environmental sciences [19–21]. Rational manage-
ment of age-dependent capital leads to nonlinear optimal control of integral equations
of special kind [21–25]. The existence and qualitative behavior of solutions to such
problems require a special analysis, because no general theory exists. The mathemat-
ical complexity comes from economic requirements to reveal and analyze explicit
structure of optimal trajectories.

In this paper, we address an important open issue of innovation economics: Why
firms invest into old less efficient technologies while newer and better ones are freely
available on market. Possible reasons include lower prices of old capital, learning-by-
doing and spillovers, prior technology-specific investments, and internal adjustment
costs. In the absence of the above factors, the optimal strategy is to invest only in the
latest vintage with the highest efficiency [12]. Several papers [16,18,26] study the
limited substitutability among vintages, which leads to delayed intra-firm adoption of
technology. Chari and Hopenhayn [26] analyze a vintage model with limited substi-
tutability among two (old and new) vintages and establish its bell-shaped investment
age profile. Jovanovic andYatsenko [16] extend this result to the infinite number of vin-
tages and show that their optimization model possesses a steady-state trajectory with
notable economic properties. However, neither they obtain a solution to their problem
nor prove its existence. The present paper generalizes [16] in several relevant aspects.
First, we describe a firm problem with given prices rather than a general equilibrium
model. It allows obtaining a richer dynamics of given functions. Most importantly,
we analyze the existence and structure of solutions to the optimization problem. We
first prove the existence of solutions applying the weak convergence technique and
Mazur’s theorem of functional analysis [27] in conjunction with a concave structure
of the problem. Next, using the Lagrange multipliers, we derive a maximum principle
and employ it to reveal how the initially bang-bang investment switches to an interior
one and later converges to a steady-state trajectory.

The paper is as follows. Section 2 formulates the nonlinear optimal control prob-
lem and provides its applied interpretation. The existence of solutions is proven in
Sect. 3. Section 4 studies the structure of solutions, establishes the bang-bang and
interior structure of optimal controls, and proves the convergence of solutions to a
steady-state trajectory with notable properties. Section 5 discusses new insights into
investment policies under technological change, which follow from the obtained ana-
lytic outcomes.
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2 Statement and Interpretation of the Optimal Control Problem

Let us consider a firm that produces the output y(t) using capital vintages (assets,
machines) installed at different times v, v ≤ t . An important issue is whether, when,
and how much the firm should invest into buying old vintages in the presence of
newer more efficient capital. To address technological change, we assume that newer
vintages have larger productivity g(v, t), i.e., g increases in v. Let U (t) and u(v, t)
be the firm’s investments into new and old vintages correspondingly, x(v, t) be the
capital amount of vintage v, and p(v, t) be its price at time t . The firm wishes to
find a rational blend of investments into old and new vintages, which maximizes its
infinite-horizon discounted profit. It leads to the following nonlinear optimal control
problem:

Find u∗(v, t),U∗(t), x∗(v, t), y∗(t), v ∈] − ∞, t], t ∈ [0,∞[, that maximize the
objective functional

max I
u,U

= max
u,U

∫ ∞

0
e−r t f

(
y(t) − p(t, t)U (t) −

∫ t

−∞
p(v, t)u(v, t)dv

)
dt, (1)

subject to constraints-inequalities:

0 ≤ U (t) ≤ Umax(t), 0 ≤ u(v, t) ≤ umax(v, t), (2)

and constraints-equalities:

y(t) =
(∫ t

−∞
g(v, t)xβ(v, t)dv

)α/β

, (3)

∂x(v, t)

∂t
= −μx(v, t) + u(v, t), ν ∈]0, t[, t ∈ [0,∞[, (4)

x(t, t) = U (t), t ∈ [0,∞[, (5)

x(v, 0) = x0(v), ν ∈] − ∞, 0], (6)

where r > 0, 0 < α < 1, 0 < β < 1, μ > 0 and the functions f, f ′ ≥ 0, f ′′ ≤
0, g ≥ 0, p ≥ 0, x0 ≥ 0 are given. The unknown U and u are independent controls,
while x and y are state variables. The presence of maximal possible investmentsUmax
and umax in the constraints (2) is caused by capital budgeting and similar economic
constraints.

Economic novelty of the optimizationmodel (1)–(6) is in the limited substitutability
of different capital vintages, determined by the parameter 0 < β < 1 [16]. The
elasticity 1/(1−β) of substitution among different vintages is higher when β is larger.
The parameter 0 < α < 1 describes decreasing returns to scale due to production
and market factors (such as downward sloping inverse demand curve or nonlinear
adjustment costs), and r > 0 is the industry-wide discount rate.

The dynamics of capital vintages is described by the linear age-dependent popu-
lation model (4)–(6), where the capital x depreciates at a constant rate μ > 0. The
analytic solution to (4)–(6) is
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x(v, t) = e−μ(t−v)U (v) +
∫ t

ν

e−μ(t−s)u(v, s)ds for 0 < v ≤ t, (7)

x(v, t) = e−μt x0(v) +
∫ t

0
e−μ(t−s)u(v, s)ds for − ∞ < v ≤ 0, (8)

for any given distribution x0(v) of capital over past vintages v ∈] − ∞, 0] at t = 0.

3 Existence of Solutions

Toprove the existence of optimal solution,wefirst show the directional differentiability
and some necessary estimates of the state equation. Next, we reduce the problem (1)–
(6) to a standard form by defining the control set in a proper functional space. Finally,
we construct a sequence of admissible controls that converges to an optimal solution.

Let û(a, t) := u(t − a, t) and x̂(a, t) := x(t − a, t) for a ≥ 0, t ≥ 0. Then the
state problem (4)–(6) with the initial history x0 is transformed to the following PDE:

∂ x̂(a,t)
∂t + ∂ x̂(a,t)

∂a = −μx̂(a, t) + û(a, t), a, t ∈ [0,∞[,
x̂(0, t) = U (t), t ∈ [0,∞[,
x̂(t, 0) = x0(−a), a ∈ [0,∞[.

⎫⎬
⎭

with the solution x̂(a, t) defined by

x̂(a, t) =
{
e−μaU (t − a) + ∫ tt−a e

−μ(t−s)û(s + a − t, s)ds, a < t,
e−μt x0(t − a) + ∫ t0 e−μ(t−s)û(s + a − t, s)ds, a ≥ t.

(9)

Let Q :=]0,∞[×]0,∞[. Let us define the derivative along the characteristic line (cf.
[8]) as

Dx̂(a, t) := lim
h→0

x̂(a + h, t + h) − x̂(a, t)

h
for (a, t) ∈ Q.

Following common approach of the optimization theory [3], we first prove
the existence of solutions in certain general functional space (in Chapter 3) and,
next, demonstrate that the obtained solutions belong to such spaces (in Chapter
4). Specifically, we assume that the endogenous controls û ∈ L1 ∩ L∞(Q) and
U ∈ L1 ∩ L∞]0,∞[.
Theorem 3.1 (differentiability and estimates of x̂ ) If û ∈ L1 ∩ L∞(Q) and U ∈
L1∩L∞]0,∞[, and x0 ∈ L1∩L∞]−∞, 0[, then x̂ ∈ L1∩L∞(Q), x̂ is differentiable
along the characteristic line through almost every point in {0}×]0,∞[∪]0,∞[×{0}
and satisfies

Dx̂(a, t) = −μx̂(a, t) + û(a, t), a.e. (a, t) ∈ Q,

x̂(0, t) := lim
h→0

x̂(h, t + h) = U (t), a.e. t ∈ [0,∞[,
x̂(a, 0) := lim

h→0
x̂(a + h, h) = x0(−a), a.e. a ∈ [0,∞[.

⎫⎪⎬
⎪⎭ (10)
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Furthermore, the following estimates hold:

∥∥x̂∥∥L∞(Q)
≤ max

{‖U‖L∞]0,∞[ , ‖x0‖L∞]−∞,0[
}+ 1

μ

∥∥û∥∥L∞(Q)
, (11)

∥∥x̂∥∥L1(Q)
≤ 1

μ

{
‖U‖+

L1]0,∞[
∥∥û∥∥+

L1(Q)
‖x0‖L1]−∞,0[

}
. (12)

In addition, if û(a, t) ≥ 0 a.e.(a, t) ∈ Q,U (t) ≥ 0 a.e. t ∈ [0,∞[, and x0(v) ≥ 0
a.e. v ∈] − ∞, 0[, then x̂(a, t) ≥ 0 a.e. (a, t) ∈ Q.

Proof It can be easily shown that (10) and (11) follow from (9). We shall justify the
estimate (12). Changing the variables of integration and using Fubini’s theorem, we
have

∥∥x̂(·, t)∥∥L1]0,∞[ =
∫ t

0

∣∣x̂(a, t)
∣∣ da +

∫ ∞

t

∣∣x̂(a, t)
∣∣ da

=
∫ t

0
e−μ(t−s) |U (s)| ds +

∫ t

0

∫ ∞

t−s
e−μ(t−s)

∣∣û(s + a − t, s)
∣∣ dads

+
∫ 0

−∞
e−μt |x0(v)| dv

=
∫ t

0
e−μ(t−s) |U (s)| ds +

∫ t

0

∫ ∞

0
e−μ(t−s)

∣∣û(b, s)
∣∣ dbds

+
∫ 0

−∞
e−μt |x0(v)| dv.

Integrating the above and using Fubini’s theorem again, we obtain

∫ ∞

0

∥∥x̂(·, t)∥∥L1]0,∞[ dt ≤
∫ ∞

0

(∫ ∞

s
e−μ(t−s)dt

)
|U (s)| ds

+
∫ ∞

0

(∫ ∞

s
e−μ(t−s)dt

)∥∥û(·, s)∥∥L1]0,∞[ ds

+
(∫ ∞

0
e−μtdt

)∫ 0

−∞
|x0(v)| dv.

Since
∫∞
s e−μ(t−s)dt = 1

μ
, the estimate (12) holds. �

Next, we reduce the problem (1) to a standard form. Let us assume that Umax ∈
L1 ∩ L∞]0,∞[, umax ∈ L1 ∩ L∞(�)� := {(ν, t) : −∞ < ν < t, t > 0}, and there
exists a constant C(umax) ≥ 0 such that

∫ t

−∞
umax(ν, t)dν ≤ C(umax) for a.e. t ∈]0,∞[. (13)
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Let ûmax(a, t) := umax(t − a, t). Then ûmax ∈ L1 ∩ L∞(Q) and we define the
control set as follows:

U :=
{
U = (û,U ) ∈ L1 ∩ L∞(Q) × L1 ∩ L∞]0,∞[: 0 ≤ û(a, t) ≤ ûmax(a, t)

0 ≤ U (t) ≤ Umax(t)

}
.

(14)
Since L1 ∩ L∞(Q) ⊂ L2(Q)and L1 ∩ L∞]0,∞[⊂ L2]0,∞[, the control set U
can be viewed as a subset of L2(Q) × L2]0,∞[. For a control U = (û,U ) ∈ U ,
denote x̂(a, t) by x̂U(a, t) to indicate the dependence on U and put ŷU(t) :=(∫∞

0 g(t, t − a)(x̂U)β(a, t)da
) α

β . To prove the meaningfulness of the integral (1),
we assume that g(t, ν) is measurable on �̄′ := {(t, ν) : −∞ < ν ≤ t, t ≥ 0} and
satisfies

∫ t

−∞
g(t, v)dv ≤ Meωt for a.e. t ∈]0,∞[ (15)

for some M ≥ 0 and ω ≥ 0. Then, we have

0 ≤ ŷU(t) ≤ M
α
β e

α
β
ωt
∥∥∥x̂U

∥∥∥α

L∞(Q)
for all t ∈]0,∞[ (16)

and ŷU(t) is well defined. Noting that

y(t) =
(∫ t

−∞
g(t, v)xβ(v, t)dv

) α
β =

(∫ ∞

0
g(t, t − a)(x̂U)β(a, t)da

) α
β = ŷU(t),

the optimal control problem (1) is reduced to

max
U∈U

J (U)=max
U∈U

∫ ∞

0
e−r t f

(
ŷU(t) − p(t, t)U (t)−

∫ ∞

0
p(t − a, t)û(a, t)da

)
dt .

(17)
Here, f : IR → IR is assumed to be a C2 function satisfying f ′ ≥ 0, f ′′ ≤
0; r > 0 is fixed, and p(v, t) is a nonnegative bounded measurable function on
�̄ := {(ν, t) : −∞ < ν ≤ t, t ≥ 0}. Then we have

∫ ∞

0
p(t − a, t)û(a, t)da ≤ p̄

∫ ∞

0
ûmax(a, t)da

= p̄
∫ t

−∞
umax(v, t)dv ≤ p̄C(umax), (18)
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where p̄ denotes the upper bound of p(v, t) and C(umax) appears in (13). Then, by
Maclaurin’s theorem, we have from (16) and (18) that

e−r t f
(− p̄ ‖Umax‖L∞(0,∞) − p̄C(umax)

)

≤ e−r t f

(
ŷU(t) − p(t, t)U (t) −

∫ ∞

0
p(t − a, t)û(a, t)da

)

≤ f (0)e−r t + f ′(0)e−r t ŷU(t) ≤ f (0)e−r t + f ′(0)M
α
β e

−
(
r− α

β
ω
)
t
∥∥∥x̂U

∥∥∥α

L∞(Q)

(19)

By (19), the integral with respect to t in (17) is meaningful if the parameter ω in
assumption (15) satisfies

0 ≤ ω <
β

α
r. (20)

Remark 3.1 In Sect. 4, we take g(t, ν) = eγ νG(t − ν) in (32) with γ > 0 and
e−γ aG(a) being integrable over ]0,∞[,G ≥ 0 and assume γα

β(1−α)
< r in (33). This

implies that

∫ t

−∞
g(t, ν)dν =

∫ t

−∞
eγ νG(t − ν)dν = eγ t

∫ ∞

0
e−γ aG(a)da

and, hence, the above assumptions (15) and (20) hold with M = ∫∞
0 e−γ aG(a)da and

ω = γ . Therefore, solutions constructed later in Sect. 4, satisfy (15) and (20).
Now, let d = sup

U∈U
J (U). For each n, take Un = (ûn,Un) in U such that d − 1

n2
<

J (Un) ≤ d. Since {Un} ⊂ U is bounded in L2(Q) × L2]0,∞[, we can extract a
subsequence denoted again by {Un} such that Un converges weakly to some U∗ =
(û∗,U∗) in L2(Q) × L2]0,∞[. By Mazur’s theorem ([27, Cor.3.8]), there exists a
subsequence {Un} such that

Ūn :=
kn∑

i=n+1

λni Ui (kn ≥ n + 1), λni ≥ 0,
kn∑

i=n+1

λni = 1

and Ūn = (ūn, Ūn) converges strongly toU∗ = (û∗,U∗) in L2(Q)×L2]0,∞[, where
ūn(a, t) =∑kn

i=n+1 λni ûi (a, t) and Ūn(t) =∑kn
i=n+1 λni Ui (t). Then it follows that

lim
n→∞ ūn(a, t) = û∗(a, t) a.e. (a, t) ∈ Q, (21)

lim
n→∞ Ūn(t) = U∗(t) a.e. t ∈]0,∞[, (22)
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by taking a subsequence if necessary. Also, we have Ūn = (ūn, Ūn) ∈ U because

0 ≤ ūn(a, t) =
kn∑

i=n+1

λni ûi (a, t) ≤
kn∑

i=n+1

λni ûmax(a, t) = ûmax(a, t),

0 ≤ Ūn(t) =
kn∑

i=n+1

λni Ui (t) ≤
kn∑

i=n+1

λni Umax(t) = Umax(t). (23)

From (21)–(23), we find thatU∗ = (û∗,U∗) ∈ U . Since the state problem is linear, we

find that x̂ Ūn =
kn∑

i=n+1
λni x̂

Ui and x̂ Ūn − x̂U∗ = x̂ Ūn−U∗ with the initial value x0 ≡ 0.

Hence, it follows from (12) that

∥∥∥x̂ Ūn − x̂U∗
∥∥∥
L1(Q)

=
∥∥∥x̂ Ūn−U∗

∥∥∥
L1(Q)

≤ 1

μ

{∥∥Ūn −U∗
∥∥
L1(0,∞)

+ ‖ūn − u∗‖L1(Q)

}
→ 0 as n → ∞.

Therefore, by taking a subsequence if necessary, we obtain

lim
n→∞ x̂ Ūn (a, t) = x̂U∗(a, t), a.e. (a, t) ∈ Q. (24)

Lemma 3.1 Let (13), (15), and (20) hold. Then, we have

lim
n→∞ J (Ūn) = J (U∗), (25)

where J (U) = ∫∞
0 e−r t f

(
ŷU(t) − p(t, t)U (t) − ∫∞

0 p(t − a, t)û(a, t)da
)
dt,

ŷU(t) =
(∫ ∞

0
g(t, t − a)(x̂ Ū)β(a, t)da

) α
β

for U = (û,U ) ∈ U .

Proof By (11), x̂ Ūn is bounded by some constant depending on ‖Umax‖L∞(0,∞) ,∥∥ûmax
∥∥
L∞(Q)

, ‖x0‖L∞(−∞,0), and, by (15), the function a �→ g(t, t −a) ∈ L1]0,∞[
for each t ∈]0,∞[. Then (24) implies

lim
n→∞ ŷŪn (t) = ŷU∗(t) a.e. t ∈]0,∞[ (26)

by Lebesgue’s dominated convergence theorem. Also, since ûmax ∈ L1(Q) and p is
bounded, it follows from (21) and (23) that

lim
n→∞

∫ ∞

0
p(t − a, t)ūn(a, t)da

=
∫ ∞

0
p(t − a, t)û∗(a, t)da, a.e. t ∈]0,∞[. (27)
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Then from (26), (21) and (27) combined with the estimate (19), we conclude that (25)
holds by Lebesgue’s dominated convergence theorem. �
Theorem 3.2 (the existence of the optimal control) Let (13), (15), (20) hold and

0 < α ≤ β ≤ 1. (28)

Then, there exists at least one optimal control.

Proof Since both functions x �→ xβ , x �→ xα/β are concave by (28) and x̂ Ūn =
kn∑

i=n+1
λni x̂

Ui , we have the following estimate:

ŷŪn (t) =
(∫ ∞

0
g(t, t − a)

(
x̂ Ūn
)β

(a, t)da

) α
β

=
⎛
⎝
∫ ∞

0
g(t, t − a)

( kn∑
i=n+1

λni x̂
Ui

)β

(a, t)da

⎞
⎠

α
β

≥
(∫ ∞

0
g(t, t − a)

kn∑
i=n+1

λni

(
x̂Ui
)β

(a, t)da

) α
β

≥
kn∑

i=n+1

λni

(∫ ∞

0
g(t, t − a)

(
x̂Ui
)β

(a, t)da

) α
β

=
kn∑

i=n+1

λni ŷ
Ui (t).

Since f ′ ≥ 0 and f ′′ ≤ 0, f is nondecreasing and concave, and so, we have

f

(
ŷŪn (t) − p(t, t)Ūn −

∫ ∞

0
p(t − a, t)ūn(a, t)da

)

≥ f

( kn∑
i=n+1

λni

(
ŷUi (t) − p(t, t)Ui (t) −

∫ ∞

0
p(t − a, t)ûi (a, t)da

))

≥
kn∑

i=n+1

λni f

(
ŷUi (t) − p(t, t)Ui (t) −

∫ ∞

0
p(t − a, t)ûi (a, t)da

)
.

Then we get d ≥ J
(
Ūn
) ≥ ∑kn

i=n+1 λni J (Ui ) ≥∑kn
i=n+1 λni

(
d − 1

i2

)
= d −∑kn

i=n+1 λni
1
i2

≥ d −∑∞
i=n+1

1
i2

.

Therefore, by Lemma 3.1, we have J (U∗) = lim
n→∞ J

(
Ūn
) = d, that shows that

U∗ is optimal. �
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4 Qualitative Behavior and Structure of Solutions

This section analyzes the structure of solutions to the optimal control problem (1)–(6)
at the linear f (x) = x . To derive extremum conditions, wemake the same assumptions
about the endogenous controls as in Sect. 3: u ∈ L1∩L∞(Q) andU ∈ L1∩L∞]0,∞[.
As we will see, those assumptions will be later satisfied for the solution obtained in
Theorem 4.2.

Lemma 4.1 (maximum principle) Let (u∗,U∗, x∗, y∗) be a solution to the problem
(1)–(6), then

I ′
u(v, t) ≤ 0 at u∗(v, t) = 0, I ′

u(v, t) = 0 at0 < u∗(v, t) < umax(v, t),

I ′
u(v, t) ≥ 0 at u∗(v, t) = umax(v, t),

I ′
U (v, t) ≤ 0 atU∗(t) = 0, I ′

U (v, t) = 0 at 0 < U∗(t) < Umax(t),

I ′
U (v, t) ≥ 0 atU∗(t) = Umax(t), 0 ≤ t < ∞,−∞ < v < t, (29)

where the Frechet derivatives are

I ′
u(v, t) = α

∫ ∞

t
e−rs−μ(s−t)g(v, s)y

α−β
α (s)xβ−1(v, s)ds

−e−r t p(v, t) at 0 < v < t, (30)

I ′
U (t) = α

∫ ∞

t
e−rs−μ(s−t)g(t, s)y

α−β
α (s)xβ−1(t, s)ds

−e−r t p(t, t), 0 < t < ∞. (31)

Proof is standard and based on the method of Lagrange multipliers adjusted to the
vintage capital models in [13,17,21]. �

Economically, I ′
u(v, t) in (29)–(30) describes the future rental value of vintage v at

time t . If I ′
u(v, t) < 0, then the optimal u(v, t) = 0 by Lemma 4.1, which means no

old vintage v is bought at time t .
Next, we analyze the interior long-term and transition (short-term) dynamics of the

problem (1)–(6). To get meaningful applied results, we assume the unitary price p and
a special structure of the kernel g:

f (x) = x, p(v, t) = 1, g(v, t) = eγ vG(t − v), (32)

where γ > 0 is the rate of exponential technological change and G describes age-
dependent effects such as spillovers, learning-by-doing, forgetting-by-doing, which
depend on the age t − v [12,16,18,20].

4.1 Steady-State Analysis

Under the condition (32), the problem (1)–(6) possesses an interior steady-state solu-
tion, known as the balanced growth path in the economic theory [12,17,21]. It is a
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solution when all major system characteristics grow with the same exponential rate
but given initial conditions are disregarded. Economists commonly use the concept of
balanced growth path to analyze behavior of complex models.

Lemma 4.2 (balanced growth path) If (32) and

γα/ (β(1 − α)) < r (33)

hold, then the problem (1)–(6) has a unique steady-state (balanced growth) trajectory
x̃ , ỹ, Ũ , ũ:

x̃(v, t) = eζ tχ(t − v), (34)

ỹ(t) =
⎧⎨
⎩
eζ t k̄

α(1−β)
α−β

(
α

r+μ

)− α
α−β

at α �= β,

eζ t k̄β
∫ ∞
0 e− γ

1−β
sG

1
1−β (s)ds at α = β,

(35)

ũ(v, t) = eζ tω(t − v), Ũ (t) = k̄eζ tG
1

1−β (0), −∞ < v < t, 0 < t < ∞,

(36)

where the balanced growth rate ζ is

ζ = γα

β(1 − α)
, and (37)

χ(a) = k̄e− γ
1−β

aG
1

1−β (a), a = t − v, (38)

k̄ =
(

α

r + μ

) 1
1−α
(∫ ∞

0
e− γ

1−β
sG

1
1−β (s)ds

) α−β
β(1−α)

, (39)

ω(a) = k̄e− γ
1−β

a
[(

μ + α − β

β(1 − α)(1 − β)
γ

)
G

1
1−β (a) + d

da

(
G

1
1−β (a)

)]
.

(40)

Proof To find the balanced growth path, we assume that the optimality condition (29)
holds for all vintages −∞ < v < t . By Lemma 4.1, substituting (32) to (30), setting
it to zero for −∞ < v < t, 0 < t < ∞, and differentiating it lead to the first-order
extremum condition for an interior solution x(v, t) > 0, y(t) > 0

αeγ v y(α−β)/α(t)G(t − v)xβ−1(v, t) = r + μ. (41)

Next, assuming a balanced capital x̃(v, t) of the form (34), we solve the nonlinear
system (3), (7), (41) and obtain the solution (35)–(40). Finally, the inequality (33)
obtained from (35), (36), and (1) secures convergence of the improper integral in (1).

�
Remark 4.1 The balanced growth path (34)–(40) in the problem (1)–(6) does not
satisfy the initial condition (6) and instead assumes that x(v, 0) = x̃(v, 0) for v ∈
] − ∞, 0[. So, it does not represent a real solution to the problem (1)–(6), but appears
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to play an important role in complete dynamics of the solution analyzed in Sects. 4.2
and 4.2. Moreover, the optimal solution converges to the balanced growth path.

To explore restrictions on the key parameters α, β, γ , and μ, let us assume the
age-independent vintage productivity G(v, t) ≡ G in (32). Then by (35)–(40), we
have an exponential steady-state trajectory:

ũ(v, t) = k̄

(
μ + γ (α − β)

β(1 − α)(1 − β)

)
e

γα
β(1−α)

t e− γ
1−β

(t−v)G
1

1−β , (42)

Ũ (t) = k̄e
γα

β(1−α)
tG

1
1−β , ỹ(t) = k̄

α(1−β)
α−β

(
α

r + μ

)− α
α−β

e
γα

β(1−α)
t
, (43)

x̃(v, t) = k̄e
γα

β(1−α)
t e− γ

1−β
(t−v)G

1
1−β , k̄1−α = α

r + μ

(
γ

1 − β

) β−α
β

G
α−β

β(1−β) .(44)

Thus, atG(v, t) ≡ G, the balanced long–term dynamics (42) of the investment ũ(v, t)
into old vintages resembles the motion (44) of the vintage capital stock x̃(v, t). Let us
consider three cases:

• α > β, then ũ(v, t) and x̃(v, t) are both positive and increase in t for any fixed v. It
means that the firm always buysmore capital of all vintages and the actual amount
of a vintage v exponentially increases in time t . Such dynamics is not sustainable,
which is consistent with the existence Theorem 3.2.

• α = β, then the amount of capital x̃(v, t) of a vintage v remains constant in time
t . This case does not look very natural for real economies, but is formally possible
in the model and is used to reveal the solution structure in Sect. 4.2.

• α < β, then x̃(v, t), ỹ(t), and Ũ (t) are positive, but ũ(v, t) > 0 if and only if
μ(1 − α) > γ and

β < βcr , βcr = μ(1 − α) − γ +
√

(μ(1 − α) − γ )2 + 4γα(1 − α)μ

2μ(1 − α)
< 1

at α < 1. (45)

So, ũ(v, t) > 0 at α < β < βcr, see also [16]. Then ũ(v, t) for every old vintage
−∞ < v < t decreases exponentially in time t because of (42). i.e., the firm buys less
capital of older vintages. The capital x(v, t) of a specific vintage v decreases in time
t because the investment into the vintage v does not compensate deterioration. The
optimal ũ(v, t) → 0 when β → βcr . At β ≥ βcr, the firm does not buy old vintages
at all: ũ(v, t) = 0. So, the control ũ becomes non-essential and can be removed from
the model. Thus, other vintage models with investment only in the latest technology,
e.g., [1,11,12,21], can be used at β ≥ βcr.

The impact of changing asset price. Similar analysis was provided for exponential
price p(v, t) in (32). The major finding is that evolving capital prices are less relevant
for the optimal distribution of investments into old capital than the substitutability
among vintages. Specifically, at the infinite elasticity of substitution β = 1, the prob-

123



J Optim Theory Appl (2017) 172:247–266 259

lem (1)–(6) cannot possess a balanced growth path (42)–(44) with positive investments
into old vintages at any price dynamics.

4.2 Solution at α = β

As follows from Sect. 4.1, the inequality α ≤ β represents a key restriction of the
model (1)–(6). To get an informal insight into the structure of solutions, we start with
the special case α = β, which appears to be simpler. Then, the steady-state capital x̃
found from (41) does not depend on ỹ:

x̃(v, t) = (α(t − v)eγ v/(r + μ)
)1/(1−β) (46)

for all vintages −∞ < v < t . Hence, the solution (u∗,U∗, x∗, y∗) for vintages
installed at v > 0 coincides with the steady state (Ũ , ũ, x̃ , ỹ) of Sect. 4.2. Indeed,
x∗(v, t) = x̃(v, t) follows the Eq. (34) and, thus, leads to the same formulas (36) for
U∗(t) = Ũ (t) and u∗(v, t) = ũ(v, t).

The solution structure is different for older vintages installed on the prehistory
] − ∞, 0]. It involves a transition from the non-optimal initial state x0(v) of capital
x to the best possible balanced trajectory x̃ . For clarity, let Umax(t) and umax(v, t) be
constant, Umax(t) = Umax and umax(v, t) = umax.

Theorem 4.1 Let α = β,μ(1−α) > γ , and Umax ≥ ‖ũ‖. Then, the problem (1)–(6)
has a solution:

u∗(v, t) = ũ(v, t), U∗(t) = Ũ (t), x∗(v, t) = x̃(v, t), y∗(t) = ỹ(t)

for 0 < v < t, 0 < t < ∞.

where x̃ , ỹ, Ũ , ũ are given by (34)–(40). At −∞ < v ≤ 0:

(a) If x0(v) = x̃(v, 0), then u∗(v, t) = ũ(v, t) for 0 < t < ∞.

(b) If x0(v) < x̃(v, 0), then u∗(v, t) =
{
umax for 0 < t ≤ t̄(v),

ũ(v, t) for t̄(v) < t < ∞,

where the instant t̄(v), −∞ < v < 0, is found from the nonlinear equation

umax

μ
eμt̄ − eμt̄

(
α

r + μ
eγ v G(t̄ − v)

) 1
1−β = umax

μ
− x0(v), (47)

that has solution at

umax > μ

(
αeγ v max[0,∞)

G(v)/(r + μ)

) 1
1−β

. (48)

(c) If x0(v) > x̃(v, 0), then u∗(v, t) =
{
0 for 0 < t ≤ t̄(v),

ũ(v, t) for t̄(v) < t < ∞,
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where t̄(v) > 0,−∞ < v < 0, is found from the equation

eμt̄ (αeγ vG(t̄ − v)/(r + μ)
) 1
1−β = x0(v), (49)

that has a solution at min[0,∞)
G ′(v) > −μ/(1 − β). The corresponding x∗ is

x∗(v, t) =
{
e−μt x0(v) + ∫ t

0 e
−μ(t−s)u∗(v, s)ds for 0 < t < t̄(v),

x̃(v, t) for t̄(v) ≤ t < ∞.
(50)

Proof For each fixed v < 0, let us construct the feasible control u(v, t) as

(a) u(v, t) = ũ(v, t), if ; xo(v) = x̃(v, 0);
(b)

u(v, t) =
{
umax at x(v, t) < x̃(v, t),
ũ(v, t) at x(v, t) = x̃(v, t),

if x0(v) < x̃(v, 0); (51)

(c) u(v, t) =
{
0 at x(v, t) > x̃(v, t),
ũ(v, t) at x(v, t) = x̃(v, t),

if x0(v) > x̃(v, 0); 0 < t < ∞,

and prove that the control u satisfies the maximum principle of Lemma 4.1 in all three
cases (a)–(c).
Case (a) Since x0(v) = x̃(v, 0), we can choose x∗(v, t) = x̃(v, t), 0 < t < ∞, and
I ′
u(x; v, t) = 0, by construction of x̃ in Lemma 4.2. The optimal u∗(v, t) is found
from the VIE-I (8) at the given x∗. The Eq. (8) at x0(v) = x̃(v, 0) is the same as the
equation for ũ, so its solution is u∗(v, t) = ũ(v, t).
Case (b) x0(v) < x̃(v, 0). Let us recall that I ′

u(x̃; v, t) = 0 by construction of x̃ .
Then, by (30),

I ′
u(x; v, t) = I ′

u(x; v, t) − I ′
u(x̃; v, t)

= α

∫ ∞

t
e−rs−μ(s−t)g(v, s)

[
xβ−1(v, s) − x̃β−1(v, s)

]
ds ≥ 0, (52)

because β < 1 and x(v, t) ≤ x̃(v, t) by (51). Moreover, I ′
u(x; v, 0) > 0 because

x(v, 0) = x0(v) < x̃(v, 0). Since I ′
u(x; v, t) is continuous in x by (52) and x(v, t) is

continuous in t by (8), then I ′
u(x; v, t) > 0 on some, possibly small, interval [0, t̄[.

Hence, u(v, t) = umax, t ∈ [0, t̄[ by (29). Then, by (7),

x(v, t) = e−μt x0(v) + umax

∫ t

0
e−μ(t−s)ds = e−μt x0(v) + 1 − e−μt

μ
umax.

Thus, for a fixed v < 0, the optimal control u∗(v, t) = umax on [0, t̄[ until the instant t̄
is such that x(v, t̄) = x̃(v, t̄). Substituting x̃(v, t) from (34), we obtain the Eq. (47) for
t̄ . It has at least one solution 0 < t̄ < ∞ if umax satisfies (48). Next, x(v, t̄) = x̃(v, t̄)
that lead to Case (a) on [t̄,∞[.
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Case (c) x0(v) > x̃(v, 0). Then, as in Case (b), I ′
u(x; v, t) ≤ 0 because β < 1 and

x(v, t) ≥ x̃(v, t). Moreover, I ′
u(x; v, 0) < 0 because x(v, 0) = x0(v) > x̃(v, 0).

Therefore I ′
u(x; v, t) < 0 and, by (29), u(v, t) = 0 on some interval [0, t̄]. Then, by

(8), x(v, t) = e−μt x0(v) exponentially decreases in t and becomes x(v, t̄) = x̃(v, t̄)
at the instant t̄ . Thus, for a fixed v < 0, the optimal u(v, t) = 0 on [0, t̄[ until the
instant t̄ such that e−μt̄ x0(v) = x̃(v, t̄). Using x̃(v, t̄) from (34), we obtain (49) for t̄ .
In (49), eμt̄ increases and G(a) can decrease, so (49) has a solution 0 < t̄ < ∞, at
least, at min[0,∞)

G ′(v) > −μ/(1 − β). If (49) has no solution, then I ′
u(x; v, t) < 0 and

u∗(v, t) = 0 for 0 < t < ∞. Next, x(v, t̄) = x̃(v, t̄), and we get Case (a) on [t̄,∞[.
Thus, the constructed solution satisfies the maximum principle (29). �
Interpretation Following common economic terminology [11,12,16,17,21], we refer
to the solution on the interval [0, t̄(v)] as the transition dynamics of vintage v. By
Theorem 4.2, an “ideal” initial distribution of capital on the prehistory ] − ∞, 0]
appears to be x0(v) = x̃(v, 0) for all vintages v < 0. Then, there is no transition
dynamics at all and the optimal control is u∗(v, t) = ũ(v, t).

By Theorem 4.1, the optimal investment u∗(v, t) in a general case is bang-bang for
each fixed old vintage −∞ < v < 0. Indeed, if x0(v) < x̃(v, 0), then u∗ is initially
maximal possible until some time t̄(v) when x(v, t̄) reaches x̃(v, t̄). At x0(v) >

x̃(v, 0), the optimal investment u∗ is initially u∗(v, t) = 0 until the capital decreases
to the optimal level x̃(v, t) because of deterioration. Solving the nonlinear Eqs. (47) or
(49) for t̄ , we obtain the length of transition dynamics t̄ for each vintage−∞ < v < 0,
installed on the prehistory. If that equation has no solution, then the transition dynamics
never ends for that specific vintage v. Such an unlikely situation may occur if a vintage
is largely overfunded or umax is not large enough.

Let us denote themaximal lengthof transitiondynamics as t̄max = max−∞<v≤0 t̄(v).
As shown in Theorem 4.1, the solution coincides with the steady-state trajectory at
t ≥ t̄max for all vintages −∞ < v < t .

4.3 Solution at α < β

In the general case α �= β, the solution structure is more challenging, because the
optimal capital

x∗(v, t) =
[
αeγ v y∗(α−β)/α

(t)G(t − v)/(r + μ)
] 1
1−β

(53)

depends on the output y∗(t) by the extremum condition (41). Correspondingly, y∗(t)
is different from ỹ(t) during the transition dynamics. The ideal initial distribution of
capital

�
x (v, 0)

d f=
[
αeγ v y(0)(α−β)/αG(−v)/(r + μ)

] 1
1−β

, (54)

on the prehistory ]−∞, 0] is different from x̃(v, 0). Fortunately, arising mathematical
complications do not essentially affect the qualitative behavior of solutions, which is
described by the following statement.
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Theorem 4.2 (structure of solutions) Let α < β andμ(1−α) > γ . Then, the optimal
control problem (1)–(6) has a solution (U∗, u∗, x∗, y∗) with the following structure:

U∗(t) =
{

�

U (t) for 0 ≤ t < tmax

Ũ (t) for tmax < t < ∞ , y∗(t) =
{

�
y (t) for 0 ≤ t < tmax,

ỹ(t) for tmax < t < ∞,
(55)

where x̃ , ỹ, Ũ , ũ are given by (34)–(40),
�
y is a unique function, and tmax is determined

by (64) below. At 0 < v < ∞:

x∗(v, t) =
{�
x (v, t) for 0 ≤ t < tmax,

x̃(v, t) for tmax < t < ∞,

u∗(v, t) =
{�
u (v, t) for 0 ≤ t < tmax,

ũ(v, t) for tmax < t < ∞,
(56)

where
�
x (v, t) =

[
α

�
y

α − β

α
(t)eγ vG(t − v)/(r + μ)

] 1
1−β

,

�
u (v, t) = μ

�
x (v, t) + ∂

�
x (v, t)/∂t. (57)

At −∞ < v ≤ 0:

(a)

If x0(v) = �
x (v, 0), then u∗(v, t) = �

u (v, t) for 0 < t < ∞. (58)

(b)

If x0(v) <
�
x (v, 0), then u∗(v, t) =

⎧⎨
⎩
umax for 0 < t ≤ t̄(v),
�
u (v, t) for t̄(v) ≤ t < tmax,

ũ(v, t) for tmax < t < ∞,

(59)

where the instant t̄(v),−∞ < v < 0, is found from the nonlinear equation

umaxe
μt̄/μ − eμt̄ �

x (v, t̄) = umax/μ − x0(v), (60)

that has a solution, at least, at umax/μ >> 1.
(c)

If x0(v) >
�
x (v, 0), then u∗(v, t) =

⎧⎨
⎩
0 for 0 < t ≤ t̄(v),
�
u (v, t) for t̄(v) ≤ t < tmax,

ũ(v, t) for tmax < t < ∞,

(61)

where t̄(v) > 0,−∞ < v < 0, is found from the equation

eμt̄ �
x (v, t̄) = x0(v). (62)

123



J Optim Theory Appl (2017) 172:247–266 263

If (62) has no solution, then u∗(v, t) = 0 at 0 < t < ∞. The corresponding x is

x∗(v, t) =
⎧⎨
⎩
e−μt x0(v) + ∫ t

0 e
−μ(t−s)u(v, s)ds for 0 < t < t̄(v),

�
x (v, t) for t̄(v) ≤ t < tmax,

x̃(v, t) for tmax ≤ t < ∞,

(63)

where t̄max = max−∞<v≤0
t̄(v). (64)

Proof Let us assume that a unique optimal state variable y∗ exists (itwill be determined
from the Eqs. (68)–(69) below). Then, we can construct the following feasible control
u:

(a)
u(v, t) = �

u (v, t), 0 < t < ∞ , if x0(v) = �
x (v, 0); (65)

(b)
u(v, t) =

{
umax at x(v, t) <

�
x (v, t),

ũ(v, t) at x(v, t) = �
x (v, t),

if x0(v) <
�
x (v, 0); (66)

(c)
u(v, t) =

{
0 at x(v, t) >

�
x (v, t),

�
u (v, t) at x(v, t) = �

x (v, t),
if x0(v) >

�
x (v, 0); (67)

for each fixed vintage −∞ < v < 0, where
�
x (v, t) is determined from the Eq. (53)

as (56) and the interior control
�
u (v, t) is determined from the VIE-I (7) as (57).

Analogously to Theorem 4.1, we prove that the control u defined by (65)–(67)
satisfies themaximumprinciple ofLemma4.1 in allCases (a)–(c) and the time t̄(v) > 0
is determined from (60) or (62) for−∞ < v < 0.At 0 < t < t̄(v), the optimal u∗(v, t)
is zero or umax. The transition dynamics for the every past vintage −∞ < v < 0 ends

at t = t̄(v) and x∗(v, t) = �
x (v, t) at t > t̄(v).

To complete the proof, let us determine the optimal y∗ by combining the model
Eqs. (3), (7), (8) with (53), (59), (61). Namely, substituting x from (8) and (66) into
(3), leads to

y(t) =
(∫ t

−∞
eγ vG(t − v)xβ(y; v, t)dv

)α/β

(68)

for the optimal y = y∗, where

x(y; v, t) =
{
e−μt x0(v) + ū

∫ t
0 e

−μ(t−s)ds for 0 < t < t̄(v),[
αy(α−β)/α(t)eγ vG(t − v)/(r + μ)

] 1
1−β for t̄(v) ≤ t < ∞,

ū = 0 or umax. (69)

Let us introduce the new unknown z(t) = yβ/α(t). Then the Eqs. (68)–(69) is
equivalent to
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z(t) =
∫ t

−∞
eγ vG(t − v)xβ(z; v, t)dv, (70)

x(z; v, t) =
{
h(v, t) for 0 < t < t̄(v),

z
α−β

β(1−β) (t) [αeγ vG(t − v)/(r + μ)]
1

1−β for t̄(v) ≤ t < ∞,
(71)

where the function h(v, t) = e−μt x0(v) + ū
∫ t
0 e

−μ(t−s)ds does not depend on the
unknown z.

By construction, t̄(v) = 0 at v > 0. Let us split ] − ∞, t] into two sets �1(t) ∪
�2(t) =] − ∞, t] as

�1(t) = {−∞ < v < t : t̄(v) ≥ t
}
, �2(t) = {−∞ < v < 0 : t̄(v) < t

}
.

Then, the Eqs. (70)–(71) become

z(t) = [α/(r + μ)]
β

1−β z
α−β
1−β (t)

∫
�1(t)

[
eγ vG(t − v)

] 1
1−β dv

+
∫

�2(t)
eγ vG(t − v)hβ(v, t)dv

or z(t) = A1(t)z
α−β
1−β (t) + A2(t), where A1(t) > 0, A2(t) > 0. (72)

The nonlinear Eq. (72) atα ≤ β has a unique solution z(t) for any 0 < t < ∞, because
the curves f1(z) = A1z−θ , θ > 0, and f2(z) = z − A2 have a unique interception
point z∗ > 0. �

Interpretation The purpose of the transition dynamics is to move from the non-optimal
capital distribution x0(v) of pre-installed vintages at t = 0 to the optimal x̃(v, t) for
each past vintage v < 0. The length of bang-bang dynamics t̄(v) > 0 for each
vintage −∞ < v ≤ 0 is determined from the nonlinear Eqs. (47) or (49). The total
length of transition dynamics is tmax = max−∞<v≤0 t̄(v). The investment dynamics
for the past vintages v < 0 is bang-bang on [0, t̄(v)[ and is interior on [t̄(v), tmax[
and [tmax,∞[. The optimal investment u and capital distribution x are interior on the
interval [t̄(v), tmax] but do not coincide with the steady-state trajectory until t reaches
tmax.

The solution structure is simpler for the “newer” vintages 0 < v ≤ t , installed
during the planning horizon. Then, at any instant t > 0, we invest the optimal amount
�

U (t) into “brand new” vintages v = t and
�
u (v, t) into the older vintages 0 ≤ v < t

and obtain the optimal amount of capital.
The solution after t = tmax follows the steady-state trajectory ũ, Ũ , x̃, ỹ. It implies

that the steady-state balanced growth trajectory is globally stable at natural conditions.
The convergence speed is finite and the length of transition period is determined by the
misbalance |x0(v)−x̃(v, 0)|of themost unbalancedvintage v̂ = argmax−∞<v≤0 t̄(v).
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5 Conclusions

The optimal control of a nonlinear heterogeneous dynamic population with age-and-
time-dependent controls is analyzed. The optimizationmodel (1)–(6) describes capital
modernization policies in afirm/economywith age-dependent capital under technolog-
ical change and limited substitutability among capital vintages of different ages [16].
The objective is to maximize utility/profit over the future infinite horizon. Possible
model extensions include other production factors (energy, R&D, or human capital)
to account for environmental pollutions and restrictions [1,2,18–20]. We prove the
existence of solutions, construct explicit solutions, and analyze their structure. The
obtained analytic outcomes shed new light on fundamental links between evolving
economy and technology.

First of all, the model under exponential technological change possesses a steady-
state optimal trajectory (balanced growth) with remarkable properties. In particular,
the balanced growth involves positive investments into old vintages only when the
elasticity of substitution among vintages is smaller than a certain threshold value.

Next, the optimal investment strategy appears to be very different for vintages
installed before and during the planning horizon [0,∞[. Time dynamics of the invest-
ment u and capital amount x for newer vintages (installed during the planning horizon)
is interior and converges to the balanced growth trajectory. The optimal dynamics
for the old vintages (installed before the planning horizon) is richer and includes a
transition period. The goal of this transition is to switch from an initial non-optimal
distribution of pre-installed vintages to the optimal balanced trajectory in the most
effective way. As a result, the optimal investment for each old vintage is initially
bang-bang and depends whether the vintage was initially overfunded or underfunded.
For initially underfunded vintages, the optimal investment is maximal until the vintage
capital increases to the optimal level. For initially overfunded vintages, the optimal
policy is to wait until the vintage capital decreases to the optimal level because of
deterioration.

After the transition dynamics for every old vintage ends, the investment policy for
all vintages is interior and coincides with the long-term balanced growth trajectory.
Similar convergence properties were earlier proven for vintage capital models with
only one-dimensional investment controls in [13,17].
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