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Abstract This paper presents a novel search-path optimization method for moving
target search by an aerial vehicle, applicable to realistically sized search areas. For such
missions, long endurance vehicles are needed, which are usually fixed-winged. The
proposed method accounts for flight kinematics of fixed-wing and rotary-wing aerial
vehicles. It additionally accounts for movements of the target, considerably increasing
complexity of search-path optimization, compared to a static target. The objective is to
maximize the probability to detect a conditionally deterministic moving target within
a given time period. We propose a first K -step-lookahead planning method that takes
flight kinematic constraints into account and in which the target and platform state
space are heterogeneous. It consists of a binary integer linear program that yields a
physically feasible search-path, while maximizing the probability of detection. It is
based on theMax-K-Coverage problem, as it selects K waypoints while maximiz-
ing the probability that a target is within the field of view of a platform at one of
these waypoints. This K -step-lookahead planning method is embedded in an iterative
framework, where the probability of overlooking a target is fed back to the controller
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after observations are made. Simulations show the applicability and effectiveness of
this method.

Keywords Aerial vehicle · Moving target search · Search-path optimization ·
Time-dependent routing

Mathematics Subject Classification 90B40 · 90C10 · 90C90

1 Introduction

Consider a disastrous scenario like a plane crash at sea where the only information
about the crash site comes from the flight plan, maybe supplemented with a Mayday
call or a last blip on the radar. Among the survivors, some may have managed to get
in a life raft, which may be drifting as it is subject to winds and currents. In such a
case, it is not sufficient to just fully cover the search area, since it is possible for the
life raft to move into an area that has already been observed. To increase the chance
of survival, efficient planning methods are required. With the ongoing technological
development of unmanned aerial vehicles (UAVs), the idea of employing a UAV for
search has risen. For large scale search missions, a fixed-winged UAV is needed.
Such platforms are more suitable due to their long endurance and increased load
capacity, so that high quality sensors can be equipped. In this application, additional
restrictions must be set for the planned search-path to be physically feasible. For
example, a fixed-wing UAV is not able to hover, turn sharply or fly backwards. Besides
accounting for the specific flight kinematics, the estimation of the target position
and its movement must be considered. The difficulty here lies in the fact that the
probability of detecting the target at a certain time k depends on the estimation of
the position of the target at that time, which in turn is a function of all previous
observations.

1.1 Related Work

To apply search theory to real-life search missions, efficient planning methods are
required. Due to this important application, extensive research (initiated by Koopman
[1]) has resulted in several optimization approaches. Stewart [2] proposed the path-
constrained search effort allocation problem. Several branch and bound methods have
been developed, e.g., with the MEAN bound by Martins [3], with the DMEAN bound
by Lau et al. [4] and with a static bound by Sato [5]. Morin et al. [6] introduced a
mixed-integer linear program with visibility constraint, in which agents are allowed
to observe adjacent cells. The first approach explicitly considering aerial vehicle kine-
matics for search was presented by Bourgault et al. [7]. They proposed myopic control
solutions, which tend to yield suboptimal search paths. Foraker et al. [8,9] focused on
the continuous counterpart.
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1.2 Contributions

To successfully employ fixed-wing platforms for moving target search, we need a
method allowing for anticipation of the estimated future position and motion of the
target, taking the flight kinematical constraint of such a platform into account. The
individual considerations of these aspects can be found in the mentioned related work.
However, there is no approach incorporating both in one method so far, as it is done
in the paper at hand. Another aspect of our approach is the heterogeneous state space
for the target and platform, whereas all published K -step-lookahead methods so far
consider both to move on a single shared grid. This concept has two benefits; a target
specific grid allows for a more precise estimation of the target position, whereas a plat-
form specific grid allows for modeling more natural flight kinematics. Our approach
furthermore incorporates a novel method for efficient relocation of the platform.

1.3 Outline

The remainder of the paper is organized as follows: In Sect. 2, we describe the prelim-
inary problem statement, followed by the presentation of our method for search-path
optimization in Sect. 3. In Sect. 4, we describe the iterative framework in which we
embed our method. Concrete simulations are presented in Sect. 5. We discuss further
research in Sect. 6 and end this paper with the conclusions in Sect. 7.

2 Problem Statement

This section describes the prerequisites, constraints, and objective that form the search-
path problem as introduced in [7]. These consist of the following aspects we describe
in the subsections: the target model, the sensor model, the platformmodel, and finally,
the objective function.

2.1 Target Model

We consider the search for a moving target in discrete time in the search areaO ⊂ R
2.

The time allocated to a planning stage is defined by a sequence K = (0, . . . , K ) of
K + 1 time steps. A grid-based probability map partitions the search area uniformly
into a finite set of cells C. The target occupies one unknown cell Ck ∈ C at time step
k ∈ K. For the duration of the search mission, a probability map pck is maintained,
in which the probability of containment pck(c) represents the probability of the target
occupying cell c at time k without being detected prior to time k. Although the initial
position of the target is unknown, it is characterized by a known prior probability
distribution pc0.

A target path can be modeled by a stochastic process (C0, . . . ,CK ), which is often
assumed to be a Markovian process. We, however, consider the special case of a
conditionally deterministic target. Here, the path of a target depends merely on its
initial position C0. If this stochastic variable was known, the path of the target would
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be known entirely. Thus, the path of the target is deterministic, conditioned on its
initial position. This assumption is made more often for survivor search at sea [10]
and also for search problems in general [11]. The probability map evolves due to the
target motion model according to

pck+1(c) =
∑

c′∈C
d(c′, c) pck(c′), (1)

where the transition function d(c′, c) ∈ {0, 1} represents the probability that the target
moves from cell c′ to cell c and is assumed to be known for all c′ ∈ C.

2.2 Sensor Model

The considered aerial sensor platform is equipped with a stabilized sensor, which is
used for making observations. Two results are defined for the observation Zc,k on cell
c ∈ C at time k:

Zc,k :=
{
1, if the platform detects the target in cell c at time k,

0, otherwise.

The glimpse probability pgk(ok, c) represents the probability of target detection, given
target occupancy within cell c and platform position ok at time k, i.e.,

pgk(ok, c) := P(Zc,k = 1 |Ck = c, ok). (2)

The overlook probability pok represents the complement of the glimpse probability,
i.e., the probability of overlooking the target, given target occupancy within cell c and
platform position ok at time k, i.e.,

pok(ok, c) := P(Zc,k = 0 |Ck = c, ok) = 1 − pgk(ok, c). (3)

When observations are made, the probability map is updated by the glimpse prob-
ability as in Eq. (2). Therefore, Eq. (1) is extended to account for observation results
as follows:

pck+1(c) = B
∑

c′∈C
d(c′, c) pck(c′)

(
1 − pgk(ok, c

′)
)
, (4)

where the normalization coefficient B is given by

B =
(

∑

c∈C
pck(c) (1 − pgk(ok, c))

)−1

. (5)
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2.3 Platform Model

The object to control in this problem is an aerial platform. Its motion model, adopted
from [12], is the same for rotary-wing and fixed-wing platforms and is given by

xk+1 = xk + sk · cos(θk + αk)

yk+1 = yk + sk · sin(θk + αk)

θk+1 = θk + αk,

(6)

where the parameter sk is the speed of the platform, the parameter θk is its heading
angle and αk is its change of heading at time k, which are obviously restricted to the
laws of physics. The variables xk and yk represent the coordinates of the platform on
the plane above search area O.

2.4 Objective

The objective is to determine a search-path o = (o1, . . . , oK ) maximizing the cumu-
lative probability of detection over time period {1, . . . , K }, i.e.,

max
o

K∑

k=1

∑

c∈C
pdk(ok, c), pdk(ok, c) = pck(c) pgk(ok, c) (7)

where pdk(ok, c) is the probability of detecting the target at time k in cell c. Further-
more, the probability of containment pck(c) is calculated by Eq. (4), but with B = 1.
The normalization from Eq. (5) is omitted, so that the probability map is not normal-
ized. Consequently, the probability of containment pck(·) does not represent an actual
probability anymore, since it does not sum to unity over the grid cells. It does, how-
ever, sum to the probability that the target has not been found up until time k, despite
the search effort. Therefore, the objective function in Eq. (7) yields the cumulative
probability of detection over K.

3 Method for Search-Path Optimization

In this section, we introduce our K -step-lookahead planning method for search-path
optimization. First, in Sect. 3.1, we use the platform model to construct a discretized
and finite platform state space. We then construct a reduced graph, of which the nodes
are a subset of the platform state space, in Sect. 3.2. Then, in Sect. 3.3, we describe
howwe apply certainty equivalence to the overlook probability. We furthermore refor-
mulate the probability map into a set of elements in Sect. 3.4. We then define the
search-path problem on the reduced graph in Sect. 3.5, which we formulate as binary
integer linear program in Sect. 3.6.

3.1 Platform State Space

The platform motion model in (6) results in an infinite and continuous platform state
space. For efficiency purposes, we assume a constant speed sk = s for all k and
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Fig. 1 Three fixed-wing platform control options, resulting in a hexagonal platform space discretization

limit the change of heading α to a predefined set of options. For fixed-wing plat-
forms, we choose {−γ, 0, γ } (in radians), and for rotary-wing platforms, we choose
{−2γ,−γ, 0, γ, 2γ, 3γ } (also in radians). We use γ = π

3 , such that the resulting
platform state space V ′ is discretized and finite. The Voronoi diagram induced by this
platform state space forms a hexagonal grid. Figures 1 and 2 show a segment of this
grid, supplemented by the control options. The Euclidean distance l := ‖ok − ok+1‖
represents the relocation distance in one time step when relocating with speed s.

A hexagonal grid for the aerial platform allows for a more natural modeling of its
kinematics, when compared to using a square grid. All published K -step-lookahead
methods for moving target search optimization (a.o. [2,4–6]) use a single grid for both
searchers and targets.However, such an approach compromises the level of detail of the
estimation of the target position. The proposed method uses a finer grid for the target,
which allows for a more detailed estimation of the target position. A visualization of
the heterogeneous grids is shown in Fig. 3.

3.2 Reduced Graph

A reduced graphG = ((V ∪ v0) , A, R) is used for search-path planning and is defined
by its nodes V , adjacency matrix A, reachability matrix R and the initial position v0 ∈
V ′ of the platform. The complexity of the search-path problem increases exponentially
with the number of nodes, so a reduced graph is beneficial to decrease computational
costs. The nodes are therefore restricted to those which yield a significant glimpse
probability at some time k, i.e.,
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Fig. 2 Seven rotary-wing platform control options, resulting in a hexagonal platform space discretization

Fig. 3 The heterogeneous state spaces for the target (square grid) and the platform (hexagonal grid)

V :=
{

v ∈ V ′ : ∃k ∈ K :
∑

c∈C
pgk(v, c) ≥ τ

}
,

where τ is a threshold value. The binary adjacency matrix A is constructed by adding
an arc between each pair of direct neighbors as follows. An entry av,v′ is 1 if node v is
adjacent to node v′ and 0 otherwise. The parameter ãv,v′ is its negation. Furthermore,
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we define V(v) to be the set of nodes adjacent to node v, i.e., V(v) := {v′ ∈ V :
av,v′ = 1}.

The reachability matrix R is used to direct the platform toward a node v ∈ V
and is constructed as follows. First, recall vt to be the platform position at time t .
Furthermore, let k′ be the minimal number of time steps that the platforms requires to
reach any node in V . A platform relocates with predefined speed sreloc > s. It holds
this increased speed until t + k′ − 1 and starts searching again at time t + k′. The set
of relocation arcs is represented by the binary reachability matrix R of size |V| × K ,
where entry

rv,k :=
{
1, node v is reachable in k′ + k time steps,

0, otherwise.
(8)

The parameter r̃v,k is its negation. By using these relocation arcs, there is at least one
feasible search-path yielding a reward in terms of probability of detection. Note that
the horizon recedes with k′ + K time steps at each planning stage.

3.3 Model Simplification

To further simplify the model for planning purposes, we assume the target to be
detected with probability one when it is in the field of view (FOV) of the sensor
platform. In other words, we set the overlook probability to zero while planning. After
an observation is made, the actual overlook probability is fed back to the controller
and taken into account in the subsequent planning stage. Let us define the field of view
as follows.

Definition 3.1 (Field Of View (FOV)) The field of view FOV (v) of a platform at node
v at time k is given by a subset of C such that the glimpse probability exceeds a certain
threshold η > 0, i.e.,

FOV (vk) := {c ∈ C : pgk(vk, c) ≥ η} .

We exchange the glimpse function from Eq. (2) by the following, such that a target
within field of view FOV (vk) is detected with probability one and zero otherwise,
i.e.,

pgk(vk, c) :=
{
1, if c ∈ FOV (vk),

0, otherwise.

3.4 Reformulation of the Probability Map

We reformulate the probability map into a set of elements E . Here, we add one element
e to the set E for each cell within a FOV at a node, i.e., c ∈ ⋃

v∈V FOV (v). The
initial probability of containment of the cell pc0(c) is assigned as reward we to the
corresponding element, i.e., we = pc0(c). Element e is furthermore initially located
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Fig. 4 Element e is within the FOV of node v, whereas element e′ is not. Therefore, lke,v = 1 and lke′,v = 0
for current time k

at cell c, and its location over time is updated according to the transition probability
d(c′, c). A binary location matrix L specifies the location of the elements with respect
to the FOV of a node as follows: An entry lke,v is 1 if element e is within the FOV of
node v at time k and 0 otherwise. Figure 4 shows this schematically.

3.5 The Search-Path Problem on the Reduced Graph

Now that the graph G, the set of elements E , and its location matrix L are defined, we
can formulate the search-path problem as follows. It consists of finding a physically
feasible walk on the graph G, such that the sum over the reward of covered elements is
maximized. For a simple graph (which has no multiple arcs), a walk may be specified
completely by a sequence of nodes [13]. Formally:

Definition 3.2 (Walk) Let K′ = {kstart, kstart + 1, kstart + 2, . . . , kend} ⊂ N be a
sequence of time steps. A walk is a sequence of nodes (vk)k∈K′ , where consecutive
nodes in the sequence are adjacent nodes in the graph. That is, node vk+1 must be in
set V(vk), for all k ∈ {kstart, . . . , kend − 1}.
The physical feasibility of a walk is inherent for a rotary-wing platform. However, a
fixed-wing platform can not hover, make sharp turns, or fly backwards.

Definition 3.3 (Physically Feasible Walk) A walk (vk)k∈K′ is physically feasible for
fixed-wing platforms if and only if node vk+1 is in set V(vk) \ V(vk−1), for all k ∈
{kstart + 1, . . . , kend − 1}.
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Fig. 5 Kinematical constraints on the walk for rotary-wing platforms. The nodes in set V(vk ) are adjacent
to node vk . A walk (vk−1, vk , vk+1) is physically feasible for a rotary-wing platform if and only if node
vk+1 ∈ V(vk )

The sets V(vk) and V(vk) \V(vk−1) are shown schematically in Figs. 5 and 6, respec-
tively.

3.6 Binary Integer Linear Programming Formulation

To find a physically feasible walk that maximizes the probability of detection, we
formulate the following binary integer linear program (BILP). It is based on the
Max-K-Coverage problem [14], as it selects K waypoints while maximizing the
probability that a target is within the field of view of a platform at one of these way-
points. The constraints restrict the choice of waypoints, so that they define a physically
feasible search-path.

Decision Variables

Let B := {0, 1}. Decision variable zkv ∈ B is 1 if the platform is at node v at time
k and 0 otherwise. These are the main decision variables and describe a physically
feasible walk. The auxiliary decision variable ze ∈ B is 1 if element e is covered and
0 otherwise.

Objective

The objective is to maximize the sum over the rewards of all covered elements, i.e.,
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Fig. 6 Kinematical constraints on the walk for fixed-wing platforms. The nodes in setV(vk−1) are adjacent
to node vk−1. Analogously, the nodes in set V(vk ) are adjacent to node vk . A walk (vk−1, vk , vk+1) is
physically feasible for a fixed-wing platform if and only if node vk+1 ∈ V(vk ) \ V(vk−1)

max
∑

e∈E
weze, (9)

where an element is covered if there is at least one k ∈ K such that the element is
located at time k within the FOV of the platform at node v, i.e.,

K∑

k=1

∑

v∈V
lke,vz

k
v ≥ ze, ∀e ∈ E . (10)

In this formulation, elements that are observed multiple times, only count once in the
objective function. This is analogous to theMax-K-Coverage problem.

Walk Constraints

The following constraints are introduced to ensure the necessary structure of a walk.
First of all, the walk must be a sequence of nodes. So for any time k a maximum of
one node can be selected, i.e.,

∑

v∈V
zkv ≤ 1, ∀k ∈ K. (11)

This summay be zero, because it is possible for a platform to relocate during a number
of time steps, say k′, before the search starts. In this case, no nodes are selected for
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time steps k < k′. However, once the platform is at a node at time k ≥ k′, it also has
to be at a node at time k + 1, i.e.,

∑

v∈V
zkv −

∑

v∈V
zk+1
v ≤ 0, ∀k ∈ {1, . . . , K − 1}. (12)

The next constraint ensures the adjacency of direct successive nodes, i.e.,

∑

v′∈V
ãv,v′ zk+1

v′ + zkv ≤ 1, ∀k ∈ {1, . . . , K − 1},∀v ∈ V. (13)

Kinematical Constraints

The flight kinematic constraints ensure that the walk contains no sharp turn, no loop,
and no cycle of length two for fixed-wing platforms. To this end, we introduce para-
meter ψ ∈ B, which assumes the value zero if the platform is fixed-winged:

∑

v′∈V
av,v′ zk+1

v′ + zk−1
v ≤ 1 + ψ, ∀k ∈ {2, . . . , K − 1},∀v ∈ V. (14)

A rotary-wing platform, however, is able tomake sharp turns, hover and fly backwards.
Therefore, such platforms should not be restricted by this constraint. Parameter ψ

assumes the value one if the platform is rotary-winged. This constraint is thereby
relaxed for rotary-wing platforms.

At the start of a planning stage, the platform either relocates or keeps searching.
These scenarios require different constraints; either the relocation constraint or the
connecting constraint.

Relocation Constraint

The relocation constraint ensures the reachability of an assigned node. It prevents the
assignment of the platform to a node at a time k, when it is physically out of reach:

∑

v∈V

K∑

k=1

zkv r̃v,k = 0. (15)

Connecting Constraints

The connecting constraints ensure the physically feasibility over the entire duration
of the search mission, by connecting the walks of the consecutive planning stages.
The first newly assigned node is restricted by the second last node (denoted by v−1)
and by the last node (denoted by v0). These nodes have been selected in the previous
planning stage and are therefore mandatory at the start of the next walk, i.e.,

z0v0 = 1, z−1
v−1

= 1. (16)

123



J Optim Theory Appl (2017) 172:965–983 977

Constraints (12) and (13) for time k = 0 and constraint (14) for times k = −1 and
k = 0 are furthermore included to ensure the physically feasibility on the connection
between the walks. To be able to fix the last two nodes v−1 and v0 in the next planning
stage, at least two nodes are to be selected in the current planning stage. This is ensured
by the following constraint:

∑

v∈V

K∑

k=1

zkv ≥ 2. (17)

Binary constraints

The binary constraints for all decision variables are

ze, z
k
v ∈ B, ∀e ∈ E,∀k ∈ K,∀v ∈ V. (18)

The number of possible physically feasible walks on the graphG is of orderO(2K |V |).

Lemma 3.1 There exists an optimal solution to the BILP in (9)–(18).

Proof We show that all constraints hold for a given physically feasible walk on the
graph G, that the objective value in (9) is bounded and that the discrete solution space
is nonempty and finite. Let (vk)k∈K be a physically feasible walk on the graph G
that is reachable by a the platform. Then, for each k ∈ {2, . . . , K − 1}, it holds that
vk+1 ∈ V(vk) \V(vk−1) by Definition (3.3), and for k = 1, it holds that vk+1 ∈ V(vk)

by Definition (3.2), i.e., ak+1,k = 1 for each k ∈ {1, . . . , K −1} and ak+1,k−1 = 0 for
each k ∈ {2, . . . , K − 1}. Moreover, rv,k = 1 for each k ∈ K by construction of the
reachabilitymatrix R as in (8). The values of the decision variables {zkv : k ∈ K, v ∈ V}
corresponding to (vk)k∈K are zk

′
v′ = 1 if the k′-th entry of (vk)k∈K equals v′ and 0

otherwise. It is now easy to verify that constraints (11)–(18) are satisfied. Furthermore,
we can set all values for the auxiliary variables {ze : e ∈ E} at their lower bounds at
zero, so that also constraint (10) is satisfied for both a fixed-wing platform (ψ = 0)
and a rotary-wing (ψ = 1) platform. The objective value in (9) is bounded, because
it is a finite sum over linear terms in a single bounded variable. Finally, we have
K |V| + |E | binary decision variables and hence a finite solution space with a size of
order O(2K |V |+|E |).

We conclude that there exists an optimal solution to the BILP in (9)–(18). ��

4 Iterative Framework with Feedback

In this section, we describe the essence of solving the iterative search-path planning
method. In each iteration, a K -step-look-ahead planning is solved, where the reward
after K time steps is ignored. This iterative framework accounts for sensor imperfec-
tions and also for sensor disturbances. We do this by setting the overlook probability
to zero. Then, when an observation is made, an estimation of the overlook probability
is fed back to the planner and can be taken into account in the consequent planning
stage. Feeding back the estimated overlook probability has two major advantages.
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Fig. 7 Schematic overview of the iterative framework for moving target search

First, it significantly simplifies the problem to be deterministic. Secondly, the over-
look probability is hard to predict in advance in realistic search scenarios (due to, e.g.,
fog, smoke or obstacles). By applying this iterative framework, the planning period
at each stage remains constant, and the horizon recedes with K time steps until the
target is found. Figure 7 shows a schematic overview of search-path planning in an
iterative framework.

5 Simulations

In this section, we present the simulation environment and the results. All simulations
were performed on an Intel(R) CoreTM i7-4810MQ CPU processor with 2.80 GHz
and a usable memory of 15.6 GB. The simulation platform is written in MATLAB,
using the commercial solver Gurobi to solve the BILPs.

We compared the BILP method with the artificial potential field (APF) method
[15], under the exact same kinematical constraints as for the BILP method. We chose
this well-established method, because it is often used in control applications includ-
ing scenarios for autonomous UAV path-planning and, in particular, for UAV search
for moving targets [16]. Another reason to use the APF method is its robustness to
the challenge of deciding when the platform is in an area where the probability of
containment is zero. In this case, the probability of detecting the target may be zero
for each possible search-path and no decision can be made by many greedy or even
K -step-lookahead methods. Since the APF utilizes a potential field, this problem only
occurs when the platform flies exactly centered in a symmetric distributed probability
of location of the target.

5.1 Experimental Set-Up

To generate random experiments, we developed test instance generators for two types
of instances. The first type of instances represents situations at the start of the search
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Fig. 8 Snapshots of a simulation of one fixed-wing platform searching for a single target

Fig. 9 Snapshots of a simulation of one fixed-wing platform searching for a single target with a scattered
location probability function

mission, where the pdf is still dense. See, for example, the leftmost snapshot in Fig. 8.
The second type of instances represent situations where the pdf is scattered of the
search area, as shown in Fig. 9. This situation also occurs typically after observations
have been made. See, for example, the rightmost snapshot in Fig. 8. We used equal
settings for most characteristics for each type of test instance.We will enumerate there
first starting with the platform characteristics. We set sreloc = M as the relocation
speed, where M is some large value such that each node is reachable within one time
step. This way, the disadvantageous greedy character of theAPF is canceled out during
relocation. The start position is irrelevant due to the large M and the homogeneous
environment.We used s = 4 as the search speed, resulting in a distance between nodes
of l = 4. Consequently, the inradius of the hexagons is two (as in Fig. 4). For sensor
characteristics, we used the typical glimpse probability function [17,18]:

pgk(ok, c) = 1 − exp−ω(ok ,c,k),

with ω(ok, c, k) ≥ 0 being a measure of search effectiveness for cell c. The search
effectiveness decreases with the Euclidean distance ||ok − c|| between cell c and the
platform at ok at time k, as follows:

ω(ok, c, k) = W (||ok − c||)−1 ,

where W is some sensor quality indicator for which we used W = 0.735. We use
η = 0.5 as the detectability threshold, resulting in a FOV with radius 2.5. Since we
focus on conditionally deterministic target behavior, the transition matrix is binary.
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The target moves one cell in east direction with probability one. So far, we mentioned
all characteristics that are uniform for all test instances. The major aspect in which
the instances of each type differ, is the randomly generated start state of the search
mission. We distinguish between start states with a dense pdf and start states with a
scattered pdf:

(i) Dense pdf: The search missions in these simulations take place on a 100 × 100
square grid. All initial probability maps were bivariate normal distributed (∼
N (μ,
)), with μ = (

50
30

)
and 
 =

(
σ 2
1 0

0 σ 2
2

)
, where σ 2

1 , σ 2
2 ∼ U(40, 75).

(ii) Scattered pdf: The search missions in these simulations take place on a smaller
28 × 36 square grid. Whether a cell has a probability of containing the target
greater than zero is Bernoulli distributed, with parameter ξ uniformly distributed,
i.e., ξ ∼ U(0.1, 0.5). Then, the probability in which of these cells the target is
located is uniformly distributed over the positive cells.

We ran a total of 200 test instances on randomized initial probability maps, 20 for
each of the time periods K ∈ {6, 8, 10, 12, 14}, for both dense and scattered types
of tests. The test results show the success of the search, measured by the achieved
cumulative probability of detection. These results are presented next.

5.2 Results

Both methods are applicable to search-path planning for moving targets. However, the
results are most promising for the proposed BILP method. The simulation results in
Fig. 10 show the improved cumulative probability of detection in percentage for the
dense test instances compared to that achieved by the APF method. The simulation
results in Fig. 11 show the results analogously for the scattered test instances. On
many instances, the BILP yielded 20% improvement and even an improvement in
more than 73% was achieved on a scattered test instance.

There is a noticeable difference when comparing the results for a dense (Fig. 10)
and scattered (Fig. 11) pdf. We notice a decrease in superiority of the BILP with
increasing K in the first case (dense), whereas there seems no significant decrease in
superiority in the latter case. This can be explained by the fact that when the cumulative
probability of detection approaches one, the reward yielded at a time step approaches

Fig. 10 Simulation results for dense pdf: cumulative probability of detection
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Fig. 11 Simulation results for scattered pdf: cumulative probability of detection

Table 1 Simulation results:
available, maximum, and
average computation times (in
seconds) of the BILP and APF
methods

K Available BILP APF

AVG MAX AVG MAX

6 120.00 0.40 0.69 0.03 0.06

8 160.00 0.94 2.35 0.19 0.22

10 200.00 3.10 8.39 0.23 0.27

12 240.00 14.74 40.14 0.28 0.33

14 280.00 110.18 341.13 0.30 0.32

zero. Indeed, in the first case it is more likely to approach a cumulative probability
of detection of one in a dense pdf when compared to a scattered pdf, because in the
former the high reward actions are grouped together around the mean of the pdf. The
computation times are shown in Table 1.

Within the iterative framework, optimization is performed during the execution
of a previously planned search-path. Hence, this duration is the available time for
computation and is shown in the second column in Table 1. An estimation on available
computation time can be acquired using the standard turn rate in aviation. It takes the
platform two minutes to turn 360°. This takes six nodes on the reduced graph. So
each time step would approximately have a duration of 20 s in the application. This
means that when K = 12, the solver has four minutes available for computation of
the next stage. The problem was solved well within available computation time for
all instances with K ≤ 12, but the available computation time was exceeded for a
few instances with K = 14. So for K ≥ 14, the problem may become intractable on
realistically sized search areas for the solver we used. In this case, the APF can be
used as backup method to provide a feasible solution at very low computational cost,
as it needs less than one second on all instances.

6 Further Research

The aim in further research is to decrease the computation time of the proposedmethod.
Promising efficient algorithms for path-constrained moving target search exist [3,4],
which could be adopted to the case in which kinematical constraints must be taken into
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account and in which the target- and searcher grids are heterogeneous. The current
state-of-the-art approach is the branch and bound method with DMEAN bound by
Lau et al. [4]. This method generalizes and tightens the MEAN bound by Martins [3].
Both methods branch on the waypoints and compute the bound by solving a longest
path problem on an directed acyclic graph, while ignoring observation results. As
the authors point out, this bound is not as strong for cases in which targets have a
high probability of staying in their current cell, say c. Over 200 times more bounding
attempts are needed on those test instances when compared to the cases with more
energetic targets. This can be explained by the fact that the computed longest path in
the calculation of the bound is a repetition of cell c, for which observations after the
first are clearly redundant. The same argument holds in our case with conditionally
moving targets. Therefore, our further research aims for the development of a branch
and bound procedure for solving our model that employs a more suitable bound for
conditionallymoving targets and,moreover, takes kinematical constraints into account
and applies to heterogeneous target- and searcher grids.

7 Conclusions

Several recent cases, especially emergencies at sea, have shown the high importance
of acquiring knowledge about the location of a target. Natural disasters, extreme cases
in air transport and the shipping industry as well as terroristic threats, are the basis
for possible scenarios of interest. Many of these scenarios can have disastrous con-
sequences when the target is not found (in time). Effective search-path optimization
methods are therefore needed. We presented a novel approach, consisting of a binary
integer linear program (BILP) solution, embedded in an iterative framework.

We ran simulations for several search-path lengths and compared the performance
of our approach to a well-established method for search-path planning. Results show
that our approach yields better results on all test instances, however at increased com-
putational costs. Some time for optimization is available though, since it is performed
during the execution of a previously planned search-path.

Themain goal of this paper was to introduce and demonstrate the newmathematical
formulation. As a consequence, we did not focus yet on improving the computation
time. This may be accomplished by the development of a customized algorithm, which
is the aim in further research.
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